
Artificial Intelligence 296 (2021) 103505
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Acyclic orders, partition schemes and CSPs: Unified hardness

proofs and improved algorithms ✩

Peter Jonsson, Victor Lagerkvist ∗, George Osipov

Department of Computer and Information Science, Linköpings Universitet, Campus Valla, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 June 2020
Received in revised form 25 January 2021
Accepted 12 April 2021
Available online 15 April 2021

Keywords:
Constraint satisfaction problems
Infinite domains
Partition schemes
Lower bounds

Many computational problems arising in, for instance, artificial intelligence can be realized
as infinite-domain constraint satisfaction problems (CSPs) based on partition schemes: a
set of pairwise disjoint binary relations (containing the equality relation) whose union
spans the underlying domain and which is closed under converse. We first consider
partition schemes that contain an acyclic order and where the constraint language contains
all unions of the basic relations; such CSPs are frequently occurring in e.g. temporal
and spatial reasoning. We identify properties of such orders which, when combined,
are sufficient to establish NP-hardness of the CSP and strong lower bounds under the
exponential-time hypothesis, even for degree-bounded problems. This result explains,
in a uniform way, many existing hardness results from the literature, and shows that
it is impossible to obtain subexponential time algorithms unless the exponential-time
hypothesis fails. However, some of these problems (including several important temporal
problems), despite likely not being solvable in subexponential time, admit non-trivial
improved exponential-time algorithm, and we present a novel improved algorithm for RCC-
8 and related formalisms.

© 2021 Published by Elsevier B.V.

1. Introduction

In this article we study the complexity of infinite-domain constraint satisfaction problems over partition schemes. In this
framework one can formulate many naturally occurring reasoning problems in artificial intelligence such as Allen’s interval
algebra and the region connection calculus. We identify shared properties among these problems, based on the existence of
acyclic orders, and use these properties to provide a general NP-hardness result and prove strong lower bounds under the
exponential-time hypothesis. Importantly, to the best of our knowledge, this is the first lower bound under the exponential-
time hypothesis for problems of this form. Motivated by these lower bounds we also turn to the problem of constructing
improved algorithms for CSPs over partition schemes, with a particular focus on the region connection calculus.

1.1. Background

The constraint satisfaction problem over a constraint language � (CSP(�)) is the decision problem of verifying whether
a set of constraints based on the relations in � admits a satisfying assignment. For finite domains the complexity of

✩ Parts of this article appeared in the proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS-2018).

* Corresponding author.
E-mail addresses: peter.jonsson@liu.se (P. Jonsson), victor.lagerkvist@liu.se (V. Lagerkvist), george.osipov@liu.se (G. Osipov).
https://doi.org/10.1016/j.artint.2021.103505
0004-3702/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.artint.2021.103505
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103505&domain=pdf
mailto:peter.jonsson@liu.se
mailto:victor.lagerkvist@liu.se
mailto:george.osipov@liu.se
https://doi.org/10.1016/j.artint.2021.103505

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
CSP(�) is well understood due to the recent dichotomy theorem separating tractable from NP-complete problems [9,42],
but for infinite domains the situation differs markedly. This class of problems includes both undecidable problems and
NP-intermediate problems, and it is therefore common to impose additional assumptions on the allowed constraints. The
predominant method has been to fix a constraint language �, usually satisfying certain model-theoretic properties, and
analyse the complexity of CSPs over first-order reducts of �. Traditionally, this has also been the case for CSPs arising from
artificial intelligence, e.g. temporal and spatial reasoning problems, albeit usually with weaker closure conditions.

Motivated by problems of this form, we study the complexity of infinite-domain CSPs over partition schemes. A partition
scheme [29] is a set of pairwise disjoint binary relations B over a domain D such that

⋃
R∈B R = D2, the equality relation

is a member of B, and the converse of R is in B for every R ∈ B. Due to their capability of modelling many different
kinds of qualitative reasoning problems, partition schemes are the de facto standard for CSPs in the artificial intelligence
community [13]. Given a partition scheme, the predominant way of forming new relations is to allow unions of the relations
in B, and we let B∨= denote this set. Equivalently, each relation in B∨= can be defined as a disjunction of the form
B1(x, y) ∨ B2(x, y) ∨ · · · ∨ Bk(x, y) for some {B1, . . . , Bk} ⊆ B, and the set B∨= thus contains all relations definable in this
way.

Famous AI examples of formalisms based on partition schemes include Allen’s interval algebra, the region connection cal-
culus (RCC-8), and the rectangle algebra. For more examples, see e.g. the survey by Dylla et al. [14]. CSP(B∨=) problems
have been proven to be NP-hard for many choices of B. The proofs have utilised various reductions from various problems,
but there has not been a clear explanation why the majority of them are NP-hard. Thus, does there exist one reduction
applicable to every partition scheme? Or does one need separate proofs for (e.g.) RCC-8 and Allen’s interval algebra, and
then perform an exhaustive case analysis on all possible set of base relations B?

Thus, while quite a bit is known about specific partition schemes, it is safe to say that we lack a more general under-
standing of why these problems are NP-hard. When turning to questions of more fine-grained complexity the situation is
even more dire. For example, can CSPs over partition schemes be solved roughly as fast as Boolean satisfiability problems,
i.e., in O (2n) time? Or at least as fast as a finite-domain CSP, i.e., O (cn) for some c ≥ 1? Classifying partition schemes accord-
ing to this highly “fine-grained” level of complexity is a very hard open problem which we should not hope to immediately
resolve, and as a first sanity check it is common to first rule out the existence of subexponential algorithms, i.e., algorithms
with a running time of 2o(n) . Naturally, this cannot be done unconditionally, and a popular assumption in this context is
the exponential-time hypothesis (ETH) which states that the 3-SAT problem cannot be solved in subexponential time. Despite
the fact that CSPs over partition schemes are among the most frequently studied CSPs in artificial intelligence, it is fair to
say that such ETH-based lower bounds have largely been neglected by both the artificial intelligence community and the
CSP community, and to the best of our knowledge there are no concrete lower bounds under the ETH for these problems.
There are a few reasons for this. First, significant efforts have been made to solve hard reasoning problems with efficient
heuristics [35], which are typically difficult to analyse rigorously even if they work well for certain real-world instances.
Second, existing lower bounds are typically based on size-preserving reductions from SAT-like problems where one needs
the ability to express disjunctive clauses, which is difficult to express with partition schemes. To the best of our knowledge,
the only concrete lower bounds for a CSP over a partition scheme is the bound by Jonsson and Lagerkvist [25] which relates
the complexity of Allen’s interval algebra to the complexity of the Chromatic Number problem (but not under the more
common assumption ETH).

1.2. Our results

Our first step (in Section 3) is to note that the majority of practically relevant partition schemes contain acyclic orders
satisfying certain properties, which we in this article refer to as unbounded total orders, in-forks, out-forks, and no-forks. For
brevity, we typically refer to these conditions as C1, C2, C3 and C4. We provide several examples from the literature of
partition schemes containing acyclic orders of this form, e.g., Allen’s interval algebra, the unit interval algebra, and RCC-8.
While there is no general recipe for proving that a partition scheme contains an acyclic order of the above form, all the
examples that we have tried show that it in practice is rather straightforward.

In Section 4 we turn to the problem of proving lower bounds for CSPs over partition schemes containing an acyclic order
satisfying C1–C4. Through a sophisticated reduction we prove that no problem of this form can be solved in subexponential
time (under the ETH), even in the structurally restricted case where a variable may occur in at most 3 constraints. The case
when a variable may occur in at most 2 constraints is handled in Section 4.3 where we establish that all CSPs of this form
are tractable if the template in question is ω-categorical.

In particular, our results imply that CSPs over partition schemes containing acyclic orders of this form are NP-hard.
Hence, we succeed both in finding a uniform hardness proof, and with proving lower bounds under the ETH. Importantly,
our lower bounds are the first ETH-based lower bounds for CSPs of this form. It might also be interesting to observe that
we do not need any strong model-theoretic properties, e.g. ω-categoricity, which is otherwise common for infinite-domain
CSPs. The reduction establishing NP-hardness is also interesting to compare to the procedure by Renz and Li [36] which
takes a partition scheme as input and tries to prove NP-hardness. One important distinction is that our result provides a
concrete source of NP-hardness while the algorithm in Renz and Li gives no such insight. Moreover, this procedure is not
complete, and is due to computational constraints not applicable to e.g. the rectangle algebra, while it is a straightforward
2

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
task to prove that this algebra falls within the scope of our result. Hence, our study offers a more theoretical explanation of
why so many naturally occurring CSPs over partition schemes are computationally hard.

One way of interpreting these results is that CSP(B∨=), when B is a partition scheme containing an acyclic order sat-
isfying the aforementioned properties, is far from being polynomial-time solvable: there is a constant c > 1 such that the
problem cannot be solved in O (cn) time. An immediate consequence of lower bounds of this form is that we can imme-
diately rule out certain kinds of algorithms for CSP(B∨=), e.g. algorithms based on graph-decomposition and k-consistency,
which typically run in subexponential or polynomial time. It is of course tempting to strengthen our lower bound even fur-
ther since the current best known algorithm for CSP(B∨=) for an arbitrary partition scheme B runs in 2O (n2) time, if CSP(B)

is polynomial-time solvable [25,39]. Improvements to 2O (n logn) are possible for certain temporal CSPs and for Allen’s interval
algebra [25], so there is reason for being optimistic. We attack this question in Section 5 where we begin by presenting an
2O (n) time algorithm for the degree-bounded case, and then present a novel 2O (n logn) time algorithm for RCC-8. This is the
first example of a non-trivial spatial partition scheme whose CSP can be solved in 2o(n2) time. Classifying partition schemes
admitting improved algorithms of this form is an interesting open question, which we discuss in greater detail in Section 6,
among other unresolved questions.

2. Preliminaries

In this section we introduce the necessary prerequisites concerning constraint satisfaction problem and partition
schemes. We begin by defining the CSP problem when it is parameterized by a set of relations.

Definition 1. Let � be a set of finitary relations over some set D of values. The constraint satisfaction problem over � (CSP(�))
is defined as follows:

Instance: A set V of variables and a set C of constraints of the form R(v1, . . . , vk), where k is the arity of R , v1, . . . , vk ∈ V
and R ∈ �.
Question: Is there a function f : V → D such that (f (v1), . . . , f (vk)) ∈ R for every R(v1, . . . , vk) ∈ C?

The set � is called a constraint language, and the function f is sometimes called a satisfying assignment, or a solution.
Importantly, the domain D is allowed to be infinite, and CSPs over constraint languages over infinite domains are typically
called infinite-domain CSPs, to contrast them with finite-domain CSPs. Given an instance I of CSP(�) we write ||I|| for the
number of bits required to represent I . We will occasionally encounter bounded-degree CSP instances. Let (V , C) denote an
instance of CSP(�). If a variable x occurs in B (distinct) constraints in C , then we say that the degree of x is B . We let
CSP(�)-B denote the CSP(�) problem where each variable in the input is restricted to have degree at most B . Note that if
(V , C) is a CSP(�)-B instance, then |C | ≤ B · |V |, implying that the number of constraints is linearly bounded with respect
to the number of variables.

We are now ready to introduce partition schemes [29]. Let B = {B1, . . . , Bm} be a constraint language consisting of binary
relations over a domain D . We say that B is jointly exhaustive if

⋃
B = D2 and that B is pairwise disjoint if Bi ∩ B j = ∅

whenever i �= j. We say that B is a partition scheme if (1) B is jointly exhaustive and pairwise disjoint, (2) eqD = {(x, x) | x ∈
D} ∈ B, and (3) for every Bi ∈ B, the converse relation B�

i (i.e. B�
i = {(y, x) | (x, y) ∈ Bi}) is in B. We define B∨= to be the

set of all unions of relations from B. Note that each such relation is still binary, i.e., of arity 2. Equivalently, each relation
in B∨= can be viewed as a disjunction B1(x, y) ∨ B2(x, y) ∨ · · · ∨ Bk(x, y) for some {B1, . . . , Bk} ⊆ B. We sometimes abuse
notation and write (B1, . . . , Bk) to denote the relation B1 ∪ · · · ∪ Bk . The set B∨= and the problem CSP(�) where � ⊆ B∨=
are typical objects that are studied in the artificial intelligence literature. For example, it has been common to use a relation
algebra A as a starting point and then define a network satisfaction problem over A, which in our notation is nothing else
than the CSP over a set of binary relations. Note that if CSP(B) is polynomial-time solvable, then CSP(B∨=) is a member of
NP.

Example 1. Allen’s interval algebra [2] is a well-known formalism for temporal reasoning where one considers relations be-
tween intervals of the form I = [I−, I+], where I−, I+ ∈ R is the start and end point, respectively. In Allen’s algebra one
can for instance describe that one interval begins before another interval, and one express such relations in terms of a par-
tition scheme consisting of 13 basic relations (see Table 1), and then form more complicated relations by taking the union
of the basic relations. If we let A denote the set of 13 basic relations in Allen’s algebra, then CSP(A∨=) is an alternative
formulation of the network consistency problem over Allen’s algebra. Note that CSP(A∨=) is an infinite-domain CSP since
the underlying domain of real intervals is intrinsically infinite.

An extension of the interval algebra is the so-called rectangle algebra [19,32]. Here, one considers relations between
rectangles in the plane by extending the basic relations in the interval algebra to the projections of a rectangle onto the x-
and y-axis, respectively. In other words, given r, s ∈A and two rectangles represented by the intervals Ix, I y , J x, J y we may
define the relation r ⊕ s in the rectangle algebra holding if Ix(r) J x and I y(s) J y .

Example 2. RCC-8 [34] is a formalism for qualitative spatial reasoning where the basic objects (referred to as regions) are
non-empty regular closed subsets of a topological space. The regions do not have to be internally connected, that is, they
3

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
Table 1
The thirteen basic relations in Allen’s interval algebra. The
endpoint relations I− < I+ and J− < J+ that are valid for
all relations have been omitted.

Basic relation Example Endpoints

x precedes y p xxx I+ < J−
y preceded by x p−1 yyy

x meets y m xxxx I+ = J−
y met-by x m−1 yyyy

x overlaps y o xxxx I− < J− < I+ ,
y overl.-by x o−1 yyyy I+ < J+

x during y d xxx I− > J− ,
y includes x d−1 yyyyyyy I+ < J+

x starts y s xxx I− = J− ,
y started by x s−1 yyyyyyy I+ < J+

x finishes y f xxx I+ = J+ ,
y finished by x f−1 yyyyyyy I− > J−

x equals y ≡ xxxx I− = J− ,
yyyy I+ = J+

X Y

EQ(X, Y).

X

Y

PO(X, Y).

X Y

NTPP(X, Y).

Y X

NTTP−1(X, Y).

X

Y

EC(X, Y).

X

Y

DC(X, Y).

X Y

TPP(X, Y).

Y X

TPP−1(X, Y).

Fig. 1. Illustration of the basic relations of RCC-8 with two-dimensional disks.

may consist of different disconnected pieces. RCC-8 contains eight basic relations: EQ (equal), PO (partial overlap), DC
(disconnected), EC (externally connected), NTPP (non-tangential proper part), its converse NTPP−1, TPP (tangential proper
part) and its converse TPP−1. See Fig. 1 for examples. RCC-5 is a variant of RCC-8 where one is not able to distinguish
regions from their topological closure, i.e. the distinction between boundary points and interior points is ignored. Thus,
the disconnectedness relations DC and EC are replaced by DR = DC ∪ EC, the tangential and non-tangential proper part
relations TPP and NTPP are replaced by PP = TPP ∪ NTPP, and PP−1 is defined analogously.

Last, we define two satisfiability problems useful in the context of lower bounds, which we will return to in Section 4.1.
If V is a set of variables and f a function from V to {0, 1}, then we define the function h f as h f (x) = f (x) and h f (¬x) =
1 − f (x) for any x ∈ V . For k ≥ 1 we define the k-satisfiability (k-SAT) problem as follows.

Instance: A set of variables V and a set clauses of the form (�1 ∨ . . . ∨ �k), where �i = ¬x or �i = x for some x ∈ V .
Question: Does there exist a function f : V → {0, 1} such that h f (�1) + . . . + h f (�k) ≥ 1 for each clause (�1 ∨ . . . ∨ �k)?

The variant of k-SAT where we in addition require that the function f does not assign the same value to each literal in
any clause is known as the not-all-equal-k-satisfiability problem (NAE-k-SAT). NAE-3-SAT remains NP-hard even if it is
restricted to clauses containing only positive literals, and we invite the reader to verify that this restricted problem can be
formulated as a Boolean CSP over the template N = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.

3. Acyclic orders

CSPs based on partition schemes are often used for qualitative reasoning. We acknowledge that it is not obvious how to
define “qualitative reasoning” rigorously, but the concept seems to have an informal meaning that is generally accepted.
Renz and Nebel [39, p. 161] write
4

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
a b c

d1

a b c

d2

Fig. 2. Illustration of in-fork (left) and out-fork (right). Solid arrows denote the ≺ relation and dotted arrows the � relation.

Qualitative reasoning is an approach for dealing with commonsense knowledge without using numerical computation.
Instead, one tries to represent knowledge using a limited vocabulary such as qualitative relationships between entities
or qualitative categories of numerical values, ...

Abstraction is the defining feature of qualitative reasoning: qualitative reasoning is about disregarding unnecessary and
uninteresting details. With this in mind, it is clear that an important kind of qualitative relationships between objects are
“part-of” relations. One may argue that such relations are orders that satisfy certain additional properties. A typical example
of such a relation is the NTPP relation in RCC-8—this can be viewed as an archetypical example of a “part-of” relation.
Inspired by this, we present (in Section 3.1) a collection of four properties that capture some common aspects of “part-of”
relations. Many other relations (that are not necessarily “part-of” relations) satisfy these properties, too: one example is the
precedes relation p in Allen’s algebra. In fact, relations of this kind appear very frequently in CSPs for qualitative reasoning
and we present a number of examples in Section 3.2. Naturally, while our conditions on acyclic orders are sufficient to
establish hardness, there exists CSPs over other types of partition schemes which are of independent interest. For example,
if we leave the realm of qualitative reasoning, then the graph interval sandwich problem [17] can be phrased as a CSP over
the two relations p ∪ p−1 and

⋃
R∈A\{p,p−1} R , neither of which is acyclic. Another relevant example is the partition scheme

{eqD , neqD} over a countably infinite D . While the tractable problem CSP({eqD , neqD}) might not be terribly interesting,
the optimisation variant of this problem where one is interested in maximising the number of satisfied constraints, MAX-
CSP({eqD , neqD}), can be viewed as an alternative formulation of correlation clustering [5].

3.1. Conditions on acyclic orders

Let ≺ ⊆ D2 denote a binary relation and let � denote its converse ≺� . We say that ≺ is an acyclic order if there does
not exist any finite subset {d1, . . . , dk} ⊆ D such that d1 ≺ d2 ≺ · · · ≺ dk−1 ≺ dk ≺ d1. Acyclic orders are irreflexive (i.e. they
do not contain any element d such that d ≺ d) by definition. We say that ≺ is a strict partial order if it is irreflexive and for
arbitrary d, d′, d′′ ∈ D: d ≺ d′ and d′ ≺ d′′ imply d ≺ d′′ (transitivity). Note that these two properties also ensure that ≺ is
antisymmetric, i.e. if d ≺ d′ , then d′ ≺ d does not hold. It is easy to verify that strict partial orders are acyclic orders but that
there exist acyclic orders that are not strict partial orders. We say that ≺ is a strict total order if ≺ is a strict partial order
and it is a connex relation, i.e. for arbitrary distinct d, d′ ∈ D , either d ≺ d′ or d′ ≺ d holds. We will now define additional
properties of acyclic orders particularly relevant in the context of CSP(B∨=). Here, we invite the reader to view the relation
� which holds between two elements if they are not comparable with respect to ≺, although all that is needed is that �
satisfies the following properties.

Definition 2. Let ≺ ⊆ D2 be an acyclic order and � ⊆ D2 a relation. We define the following properties.

C1. (unbounded total orders) for every k ∈N , there exists a subset L ⊆ D such that |L| ≥ k and ≺ is a strict total order on
L,

C2. (in-fork) if a, b, c ∈ D , a ≺ b ≺ c, and a ≺ c, then there exists d1 ∈ D such that d1 � a, d1 � b, and d1(≺, �)c,
C3. (out-fork) if a, b, c ∈ D and a ≺ b ≺ c, and a ≺ c, then there exists d2 ∈ D such that d2(≺, �)a, d2 � b, and d2 � c, and
C4. (no-fork) if a, b, c ∈ D and a ≺ b ≺ c, and a ≺ c, then there does not exist any d3 ∈ D such that d3 � a, d3(≺, �)b, and

d3 � c.

Relations satisfying these properties are abundant in the artificial intelligence literature, but they have to the best of
our knowledge not been explicitly formalized before. The conditions in-fork and out-fork are illustrated in Fig. 2. Given a
relation R it is typically easy to check if it is an acyclic order that contains an infinite total order, but checking C2–C4 may
need additional work.

Many partition schemes contain strict partial orders, and these are slightly easier to work with than acyclic relations,
since it is always possible to define the relation � in a canonical way. Given an order ≺ ⊆ D2, we let � denote its incompa-
rability relation D2 \ ⋃{≺, �, eqD}. If B is a partition scheme and B∨= contains an order ≺, then � is included in B∨= , too.
We obtain the following characterization.

Theorem 3. Let B be a partition scheme with domain D such that B∨= contains a strict partial order ≺. If ≺ and the incomparability
relation � satisfy C1–C3 then they satisfy C4.
5

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
a

b

c

d1d2

Fig. 3. The choice of d1 and d2 in the unit interval example.

Proof. Assume to the contrary that there exist a, b, c, d3 ∈ D such that d3 � a, d3(≺, �)b, and d3 � c. The relation ≺ is a
strict partial order so it is transitive. If d3 ≺ b, then d3 ≺ c. But then d3 � c cannot hold since the relations ≺ and � are
disjoint. Similarly, if d3 � b, then a ≺ d3 and d3 � a cannot hold. �
3.2. Examples

Consider Allen’s algebra and the relation p, i.e. the relation stating that one interval appears strictly before another
interval. In this case, � can be chosen to be the relation that holds if and only if two distinct intervals have at least one
point in common. The relation p is clearly acyclic (in fact, it is a strict partial order) and it contains many infinite strict
total orders such as T = {[0, 1], [2, 3], [4, 5], . . . }. Pick three intervals I j = [I−j , I+j] ∈ T , 1 ≤ j ≤ 3, such that I1(p)I2(p)I3.
The transitivity of p implies that I1(p)I3, too. For in-fork, we choose I4 = [I−1 , I+2] so that I4 � I1, I4 � I2, and I4 ≺ I3. For
out-fork, one may choose I5 = [I−2 , I+3]. Concerning the no-fork property, simply note that an interval I6 which precedes I2
(or is preceded by I2) cannot share a point with both I1 and I3.

We continue with a more complex example that is based on acyclic orders instead of strict partial orders. The Unit
Interval Algebra (UIA) is Allen’s interval algebra restricted to intervals of length one. The UIA has important applications
in, for instance, bioinformatics [33]. Consider the overlaps relation o. This relation is irreflexive but it is not transitive in
general: the unit intervals [0, 1], [0.9, 1.9], and [1.8, 2.8] are examples of this. Hence, it is not a partial order. We show that
o is an acyclic order that satisfies C1–C4. The fact that o is an acyclic order is easy to verify. Choose the relation ≺ to equal
o and let � hold if and only if two intervals do not have a common point, i.e., � = (p, p−1).

C1. We claim that the order (L, o) where L = {[x, x + 1] | 0 < x < 1 and x ∈ Q} is an infinite strict total order—this implies
property C1. Irreflexivity is obvious so we continue with the connexity property. We see that if [a−, a+], [b−, b+] are
distinct members of L, then either −1 < a− − b− < 0 or 0 < a− − b− < 1. In the first case, it follows that a− < b− and
1 + a− > b− which implies that a+ = 1 + a− > b− > a− and a(o)b. The other case is analogous. To verify that (L, o) is
transitive, we arbitrarily pick three distinct unit intervals a, b, c = [a−, a+], [b−, b+], [c−, c+] in L such that a(o)b(o)c.
We need to verify that a− < c− and c− < a+ < c+ . The fact that a(o)b(o)c implies that a− < b− < c− and, consequently,
that a+ < c+ since a+ = a− + 1 and c+ = c− + 1. Finally, note that c− − a− < 1 so c− − (a+ − 1) < 1 and c− < a+ .

C2/C3. We begin by arbitrarily choosing three distinct unit intervals a, b, c = [a−, a+], [b−, b+], [c−, c+] in D such that
a(o)b(o)c and a(o)c. Let d1 = [c+−b+

2 , c
+−b+

2 + 1]. We see that a(p)d1, b(p)d1, and c(o)d1 so d1 �a, d1 �b, and d1(≺, �)c.
Let d2 = [b−−a−

2 − 1, b
−−a−

2]. We see that d2(o)a, d2(p)b, and d2(p)c. This implies that d2(≺, �)a, d2 � b, and d2 � c. The
choice of d1 and d2 is illustrated in Fig. 3.

C4. Pick three unit intervals a, b, c = [a−, a+], [b−, b+], [c−, c+] in D such that a(o)b(o)c and a(o)c. Assume to the contrary
that there is a d3 ∈ D such that d3 � a, d3(≺, �)b, and d3 � c. If d3(p)a, then d3 cannot satisfy d3(≺, �)b so d3(p−1)a.
Similarly d3(p)c. This contradicts the fact that a ≺ c.

Let us consider another example where the domain contains the closed disks in R2 , the relation ≺ is the strict subset
relation, and where � holds between two regions if and only if neither region included in the other. For each k ≥ 1 it
is then clear that there exists a set of k regions where ≺ induces a strict total order, e.g., k disks c1, c2, . . . , ck where
c1 ≺ c2 . . . ≺ ck . Pick three disks d1, d2, d3 ∈ D such that d1 ≺ d2 ≺ d3. How to choose suitable disks for verifying in-fork
and out-fork is illustrated in Fig. 4. For the no-fork property, simply observe that any region containing (or is contained by)
6

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
Fig. 4. The dashed circles show possible choices of disks for in-fork (left) and out-fork (right).

d2 also contains d1 (or is contained by d3). This example can easily be adapted to relations such as PP in RCC-5, NTPP in
RCC-8, and the relation d ⊕ d in the rectangle algebra.

The examples presented above are just a small selection of partition schemes that satisfy properties C1–C4 and many
additional examples can be found, for instance, in the survey by Dylla et al. [14]. Last, let us remark that there are examples
of strict partial orders that do not have in- and/or out-forks. Well-known examples are the less-than relation < in the (1-
dimensional) point algebra and in the branching time algebra. Interestingly, CSP(B∨=) is polynomial-time solvable in these
two cases and we will come back to this observation at the end of Section 4.1.

4. Lower bounds for CSP(B∨=)

We will now study the computational complexity of CSP(B∨=) when B∨= contains an acyclic order ≺ and a relation �
that satisfy C1–C4. To avoid lengthy formulations of this kind we introduce the following set of templates.

Definition 4. We let H be the set of partition schemes B such that (1) CSP(B) is solvable in polynomial time, and (2) B
contains an acyclic order ≺ and a relation � that satisfy C1–C4.

Note that it is sufficient that the partition scheme contains a single acyclic order with these properties: the other re-
lations are not relevant as long as CSP(B) is tractable. Examples where the connection between acyclic orders and the
complexity of the resulting CSPs is quite pronounced can be found in, for instance, Grigni et al. [18], Renz and Nebel [37],
Moratz et al. [31], and Krokhin et al. [27]. Thus, is CSP(B∨=) always NP-hard when B ∈H, or can there exist tractable cases?
If CSP(B∨=) is indeed NP-hard, how fast can it be solved? Might there exist some particularly “easy” partition scheme B
where CSP(B∨=) is solvable in O (cn) for a very small constant c? Or even in O (cn) time for every constant c > 1, i.e., in
subexponential time1? Naturally, we cannot hope to unconditionally prove that a CSP(B∨=) problem is not subexponential,
and it is instead common to prove lower bounds subjected to the assumption that a specific problem is not solvable in
subexponential time. For this purpose the 3-SAT problem, i.e., satisfiability of clauses of length at most 3, has turned out to
be a very useful starting point.

Definition 5. The conjecture that 3-SAT is not solvable in subexponential time is known as the exponential-time hypothesis
(ETH) [23].

The general idea behind a non-subexponentiality lower bound subjected to the ETH is then similar to a typical NP-
hardness proof: one needs to provide a suitable reduction from 3-SAT to the problem in question. The complicating factor,
of course, is that one needs reductions preserving subexponential complexity, which can sometimes be much more difficult
to construct than ordinary polynomial-time many-one reductions. More information about the ETH and its consequences
can be found in the survey by Lokshtanov et al. [30].

Example 3. Consider the classical gadget reduction from 4-SAT to 3-SAT which replaces a clause of the form (x1 ∨x2 ∨x3 ∨x4)

with (x1 ∨ x2 ∨ y) ∧ (x3 ∨ x4 ∨ ¬y), where y is a fresh variable. If one is not careful then one might be led to believe that
this reduction preserves subexponential complexity since we for each clause in the original instance only introduces one
fresh variable. But what if the instance contains a superlinear amount of clauses with respect to the number of variables,
e.g., a quadratic number? Assuming that 3-SAT is solvable in O (cn) time for some c > 0, where n is the number of variables,
this reduction would then only say that 4-SAT is solvable in O (cn2

) time, and in particular would not imply that 4-SAT is
subexponential if 3-SAT is subexponential.

However, it is known that the degree-bounded k-SAT problem (for some fixed B > 0) is solvable in subexponential time
if and only if k-SAT is solvable in subexponential time, using the powerful idea of sparsification [23]. If one then reduces

1 Here, and in the rest of this section, n will always denote the number of variables in an instance of CSP(B∨=).
7

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
from a degree-bounded problem the total number of clauses is linear with respect to the number of variables, meaning that
the above reduction preserves subexponential complexity.

Impagliazzo et al. [23] introduce a more general theory of reductions preserving subexponential complexity but for our
purposes, it is sufficient with polynomial-time many-one reductions which given an instance with n variables produce an
instance with O (n) variables.

4.1. ETH-based lower bounds and NP-hardness

Arbitrarily choose B in H. We have two challenges to overcome: first, is it possible to find a uniform reduction applicable
to every CSP(B∨=) problem; second, can such a reduction, if it even exists, be used to obtain lower bounds under the ETH?
We will reach an affirmative answer to both of these questions in this section, and will see that it is possible to obtain
lower bounds even for degree-bounded CSP(B∨=)-B problems, indeed, even for the severely restricted problem CSP(B∨=)-3
where a variable may occur in at most 3 constraints. However, before we turn to the details we consider an example which
shows a large difference between CSP(B∨=) problems and related CSPs, and highlight the involved difficulty.

Example 4. For a partition scheme B over the domain D , let B∨k be the set of all relations definable by disjunctions of
length at most k, where each atom is a constraint over B. It is easy to see that B∨= ⊆ B∨k for some k, but that the
converse is not necessarily true. In fact, B∨k is in general much more expressive than B∨= in the context of CSPs. To see
this, consider the following reduction from 3-SAT to CSP(B∨3). We only sketch the details since they are not important for
the subsequent results.

1. Assume that the domain D contains at least two elements.
2. Since B is a partition scheme it always contains the equality relation eqD and the inequality relation neqD over D .
3. Introduce two fresh variables x f and xt and constrain them as neqD(x f , xt).
4. For each 3-clause, e.g., (x1 ∨ x2 ∨ ¬x3) introduce the constraint eqD(x1, xt) ∨ eqD(x2, xt) ∨ eqD(x3, x f).

In other words this reduction is a standard gadget reduction from 3-SAT to CSP(B∨3) which replaces each 3-clause by the
corresponding disjunction over B. Moreover, since it only introduces 2 fresh variables in total, it immediately follows that
CSP(B∨3) cannot be solved in subexponential time without violating the ETH (recall Example 3). Note that we do not even
require any additional assumptions on B: it is sufficient that it is a partition scheme.

For CSP(B∨=) the situation is much more difficult since it (in general) is not possible to represent disjunctions of the
required form. We will soon see that while it is possible to obtain a suitable reduction to CSP(B∨=) when B ∈ H, it is
significantly more complicated than the reduction in Example 4. Before we proceed with the actual reduction we define a
useful gadget.

Lemma 6. Assume that B ∈ H. Then there exists an instance of CSP(B∨=) with variables {a, b, c, x1, x2} which satisfies the following
properties:

G1. For arbitrary elements da, db, dc ∈ D such that da ≺ db ≺ dc and da ≺ dc , there exist elements d1, d2 ∈ D such that the function
s : V → {da, db, dc, d1, d2} defined by s(a) = da, s(b) = db, s(c) = dc , s(x1) = d1 and s(x2) = d2 is a solution to the instance
(V , C ∪ {a ≺ b, b ≺ c}).

G2. For arbitrary elements da, db, dc ∈ D such that dc ≺ db ≺ da and dc ≺ da, there exist elements d1, d2 ∈ D such that the function
s : V → {da, db, dc, d1, d2} defined by s(a) = dc , s(b) = db, s(c) = da, s(x1) = d1 and s(x2) = d2 is a solution to the instance
(V , C ∪ {c ≺ b, b ≺ a}).

G3. (V , C ∪ {b ≺ a, b ≺ c, a(≺, �)c}) is not satisfiable.
G4. (V , C ∪ {a ≺ b, c ≺ b, a(≺, �)c}) is not satisfiable.

Proof. Define the gadget G(a, b, c, x1, x2) to be the CSP(B∨=) instance

({a,b, c, x1, x2}, {x1 � a, x1 � b, x1(≺,�)c, x2(≺,�)a, x2 � b, x2 � c}).
We demonstrate that G satisfies G1-G4. Properties G1 and G2 follow immediately from in-fork and out-fork. To prove G3
and G4, we need to show that whenever a, b, c is totally ordered in a way different from a ≺ b ≺ c or c ≺ b ≺ a, then the
gadget is not satisfied. Assume for instance that b ≺ a ≺ c. Then, {b ≺ a, a ≺ c, x2(≺, �)a, x2 �b, x2 �c} must be satisfiable and
this violates property C4. The remaining three cases can be ruled out analogously. We conclude that G has the properties
G1–G4. �

Informally, the gadget G(a, b, c, x1, x2) constrains b to be between a and c. Equipped with this lemma, we are now ready
to prove a weaker version of the main result of the article.
8

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
Lemma 7. Let B ∈H. Then CSP(B∨=) is NP-hard and it is not solvable in subexponential time, unless the ETH is false.

Proof. Recall that NAE-3-SAT restricted to positive literals may be viewed as CSP({N}) where N = {0, 1}3 \{(0, 0, 0), (1, 1, 1)},
and that this problem is NP-complete. We will show that there exists a polynomial-time many-to-one reduction f from
CSP({N}) to CSP(B∨=).

Arbitrarily choose an instance (A, T) of CSP({N}) and construct an instance I = f ((A, T)) of CSP(B∨=) as follows:

F1: add the variable M to I ,
F2: for each a ∈ A, add a variable a and the constraint a(≺, �)M to I ,
F3: for each triple N(a, b, c) ∈ T , introduce five variables z, x1, x2, x3, x4 and add a(≺, �)b, a(≺, �)c, b(≺, �)c, G(a, M, z, x1,

x2), and G(b, z, c, x3, x4) to I , where G is the gadget from Lemma 6.

Clearly, the reduction above can be carried out in polynomial time. We proceed with the correctness proof.
First, assume that s is a solution to I . For each a ∈ A, either s(a) ≺ s(M) or s(a) � s(M). We define a solution s′ : A →

{0, 1} such that s′(a) = 0 if and only if s(a) ≺ M . We continue by proving that s′ satisfies each N(a, b, c) ∈ T . Assume to the
contrary that s′(a) = s′(b) = s′(c) = 0, i.e. s(a), s(b), s(c) ≺ s(M). We analyse the gadgets G(a, M, z, x1, x2), G(b, z, r, x3, x4)

and the four orderings that they allow.

1. s(a) ≺ s(M) ≺ s(z) and s(b) ≺ s(z) ≺ s(c). We see that s(M) ≺ s(z) ≺ s(c) so s′(c) = 1 and this is not possible.
2. s(a) � s(M) � s(z) and s(b) ≺ s(z) ≺ s(r). This is not possible since s(a) ≺ s(M).
3. s(a) ≺ s(M) ≺ s(z) and s(b) � s(z) � s(r). We see that s(M) ≺ s(z) ≺ s(b) so s′(b) = 1 and this is not possible.
4. s(a) � s(M) � s(z) and s(b) � s(z) � s(r). This is not possible since we know that s(a) ≺ s(M).

The case when s′(a) = s′(b) = s′(c) = 1 can be ruled out similarly. We conclude that at least one variable is assigned 0,
at least one variable is assigned 1, and the constraint N(a, b, c) is satisfied.

For the other direction, assume that there exists a solution s′ : A → {0, 1} to (A, T). We show how to construct a solution
to the instance I . Let A0 ⊆ A be the variables that are assigned 0 by s′ and let A1 ⊆ A that are assigned 1. Let (L, ≺) denote
a strict total order in (D, ≺) that contains 2|A| + 2 elements

d1 ≺ e1 ≺ d2 ≺ e2 ≺ · · · ≺ e|A| ≺ d|A|+1 ≺ e|A|+1.

Construct s : A ∪ {M} → {d1, . . . , d|A|+1} such that s(a) ≺ s(M) if a ∈ A0 and s(a) � s(M) if a ∈ A1. The function s satisfies
all constraints introduced in step F2. We continue by the constraints introduced in step F3. Consider an arbitrary constraint
N(a, b, c) ∈ T and the corresponding constraints in I: we have introduced five fresh variables z, x1, x2, x3, x4 and the con-
straints: (1) a(≺, �)b, (2) a(≺, �)c, (3) b(≺, �)c, (4) G(a, M, z, x1, x2), and (5) G(b, z, c, x3, x4). The constraints (1) − (3) are
clearly satisfied by s. We will now show how to choose s(z) in order to satisfy constraints (3) and (4). Have in mind that,
for instance in constraint (4), it is sufficient to choose s(z) such that s(a) ≺ s(M) ≺ s(z) or s(a) � s(M) � s(z); suitable values
always exist for x1 and x2 due to G1 and G2.

Let e+ be the e-element in (L, ≺) that is the immediate larger neighbour to the element f (M) and define e− analogously.
Given two distinct a, b ∈ A, let eab be an arbitrary e-element in (L, ≺) that lies between s(a) and s(b). The following table
summarises how s(z) should be chosen.

s′(a) s′(b) s′(c) s(z)

0 0 1 e+
0 1 0 e+
0 1 1 ebc
1 0 0 ebc
1 0 1 e−
1 1 0 e−

We conclude that the function s can be extended to a solution to I . �
We need the last stepping stone to prove the stronger version of the lemma above (recall that CSP(B∨=)-3 is the degree-

bounded problem where a variable may occur in at most 3 constraints).

Lemma 8. Let B be a partition scheme and assume (V , C) is an instance of CSP(B∨=). If |C | ≤ c|V | for some constant c, then (V , C)

can be reduced to an instance of CSP(B∨=)-3 with at most 2c|V | variables in polynomial time.

Proof. First, recall that eqD ∈ B since B is a partition scheme. Then pick a variable x ∈ V occurring in constraints c1, . . . , ck
for k > 3. Introduce k fresh variables x1, . . . , xk together with the constraints x1(eqD)x2, x2(eqD)x3, . . . , xk−1(eqD)xk . Next,
9

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
replace each occurrence of x in ci by the corresponding variable xi . Clearly, the degree of each xi variable is at most 3, and
the equality constraints enforce that x1, . . . , xk are always assigned the same value in any satisfying assignment. Moreover,
each constraint contains two variables, so the total number of variables introduced by this reduction is bounded from above
by 2|C | ≤ 2c|V |. �

With this lemma at hand, we are now ready to prove the main result by carefully analysing the reduction in Lemma 7.

Theorem 9. Let B ∈H. Then CSP(B∨=)-3 is NP-hard and it is not solvable in subexponential time, unless the ETH is false.

Proof. As before, let N = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. There exists a constant B ≥ 1 such that CSP({N})-B is NP-complete
and solvable in subexponential time if and only if the ETH is false [26].

Take an arbitrary instance (A, T) of CSP({N})-B with |A| = n (note that |T | ≤ Bn) and apply the reduction f from
Lemma 7 to obtain an instance (V , C) = f ((A, T)) of CSP(B∨=). Observe that |C | = |A| + 5|T | ≤ (1 + 5B)n, since we in-
troduce a constraint a(≺, �)M for each a ∈ A and five constraints for each N(a, b, c) ∈ T . The term 1 + 5B is constant.
Hence, combining f with the reduction from Lemma 7 yields an instance of CSP(B∨=)-3 with O (n) variables in polynomial
time. �

Naturally, Theorem 9 also implies that CSP(B∨=)-3 (and, hence, CSP(B∨=)) is NP-complete. For strict partial orders we
may combine Theorem 9 with the observation in Theorem 3 to obtain the following corollary.

Corollary 10. Let B be a partition scheme with domain D such that B∨= contains a strict partial order ≺. Assume ≺ together with
the incomparability relation � satisfy C1–C3 . Then CSP(B∨=)-3 is NP-hard and not solvable in subexponential time, unless the ETH is
false.

In summary, we may rule out subexponential time algorithms for CSP(B∨=)-3 for partition schemes B ∈ H. However,
the best general algorithm for CSP(B∨=) runs in O (2O (n2)) time (if CSP(B) is tractable) [25,39]. Hence, there is a large
discrepancy between the upper and lower bound for this problem, suggesting that (at least) one of these bounds can be
strengthened. We return to this question in Section 5.

4.2. Consequences

The properties in Definition 2 are sufficient for establishing NP-hardness of CSP(B∨=), and it is thus natural to ask
to which extent they are also necessary. Although a complete answer seems difficult to obtain, we may at least observe
that if ≺ ∈ B is an acyclic order such that every strict total order in it contains at most k elements and there is at least
one strict total order with three or more elements, then CSP(B∨=) is NP-hard, regardless of whether ≺ has properties
C2–C4 or not. This can be seen via a polynomial-time reduction from k-Colourability (i.e. the problem CSP({Rk}) where
Rk = {(x, y) ∈ {1, . . . , k}2 | x �= y}) to CSP(B∨=). Let (V , E) be an arbitrary undirected graph. Introduce variables c1, . . . , ck for
each colour, and constrain them as c1(≺)c2(≺) . . . (≺)ck . For each vertex v ∈ V , introduce a variable w and the constraints
w(≺, �, eqD)ci , 1 ≤ i ≤ k. Recall that �, eqD ∈ B since B is a partition scheme so the relation (≺, �, eqD) is a member
of B∨= . Note that these constraints imply that w equals exactly one colour variable in any satisfying assignment. Finally,
introduce the constraint w(≺, �)w ′ for each edge (v, v ′) in E . It is easy to verify that the resulting CSP(B∨=) instance has a
solution if and only if (V , E) is k-colourable. It is also easy to verify that the reduction can be computed in polynomial time
since k is a constant that only depends on the choice of B. Since k-Colourability is NP-hard whenever k ≥ 3, NP-hardness
of CSP(B∨=) follows.

Similarly, it is natural to ask what happens if ≺ is an acyclic order that contains infinite strict total orders but does not
have in- and/or out-forks. We have seen that this sometimes leads to tractability, as in the case of e.g. the point algebra and
the branching time algebra, but this is not always the case. For a simple counterexample, let D = {(0, i), (1, i), (2, i) | i ∈N}
and define ≺ ⊆ D2 such that (a, b) ≺ (c, d) if and only if a = c and b < d. It is easy to verify that ≺ is an acyclic order
(in fact, it is a strict partial order), it contains infinite strict partial orders (such as (0, 0) ≺ (0, 1) ≺ (0, 2) ≺ . . .), and that
it does not have in- or out-forks. Let B = {≺, �, �, eqD} where � = D2 \ ⋃{≺, �, eqD}, and observe that B is a partition
scheme. We show that CSP(B∨=) is an NP-hard problem via a polynomial-time reduction from 3-Colourability. Let (V , E)

be an arbitrary undirected graph. For each vertex v ∈ V , introduce a variable w , and for each edge (w, w ′) ∈ E , introduce
the constraint w � w ′ . Note that ((a, b), (c, d)) ∈ � if and only if a �= c and that a and c are restricted to the three-element
set {0, 1, 2}. Given this, it is easy to verify that the resulting CSP(B∨=) instance has a solution if and only if (V , E) is
3-colourable.

4.3. A tractable subclass of degree-bounded problems

Given that CSP(B∨=)-3 is NP-hard whenever B ∈H, it is interesting to see whether the degree bound can be further low-
ered with retained NP-hardness or not. We will not be able to answer this question in its full generality but for ω-categorical
10

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
partition schemes B, CSP(B∨=)-2 is, to the contrary, always solvable in polynomial time. We begin by recapitulating the
concept of ω-categoricity and its connections to qualitative CSPs. A first-order theory is a set of first-order sentences and the
first-order theory of a constraint language � is the set of first-order sentences that are logically entailed by �. We say that
a satisfiable first-order theory T is ω-categorical if all countable models of � are isomorphic, and a constraint language is
ω-categorical if its first-order theory is ω-categorical. It is known that a large number of qualitative CSPs can be captured via
ω-categorical constraint languages: well-known examples include Allen’s algebra [21] and RCC-8 [8]. Many more examples
can be found in Section 1 of Bodirsky & Jonsson [7].

The basic idea behind our tractability result is to study the tree-width of CSP(B∨=)-2 instances and exploit a result by
Bodirsky & Dalmau [6]. A tree-decomposition of a graph G = (V , E) is a pair D = (T , f), where T is a rooted tree with
vertex set T and f : T → 2V is a function such that the following properties hold:

(T1)
⋃

t∈T f (t) = V ,
(T2) for every u ∈ V , the set {t ∈ T | u ∈ f (t)} induces a connected subtree of T , and
(T3) for each edge (u, v) ∈ E , there exists a t ∈ T such that {u, v} ⊆ f (t).

The width of the tree-decomposition D is maxt∈T | f (t)| − 1, and the treewidth of G is the minimum width over all
tree-decompositions of G .

We will consider the treewidth of Gaifman graphs. The Gaifman graph (or the primal graph) of a CSP instance (V , C) is
the graph on vertex set V where two distinct vertices vi and v j are adjacent if and only if vi and v j simultaneously appear
in the scope of some constraint in C . The following result is a direct consequence of Corollary 1 in Bodirsky & Dalmau [6].

Proposition 11. Let � be a finite ω-categorical constraint language. Then CSP(�) restricted to instances whose Gaifman graphs have
tree-width bounded by some constant is solvable in polynomial time.

Theorem 12. If B is an ω-categorical partition scheme, then CSP(B∨=)-2 is solvable in polynomial time.

Proof. If B is ω-categorical, then B∨= is ω-categorical, too, since this property is preserved under first-order definitions
[22, Theorem 7.3.8]. Let (V , C) be an arbitrary instance of CSP(B∨=)-2. Since the relations in B∨= are binary, it is easy to
see that the Gaifman graph of (V , C) is the disjoint union of simple paths and cycles. It is well-known (and not difficult
to verify) that such a graph has tree-width at most 2. The result follows from Proposition 11 since B∨= is a finite set of
relations. �
5. Faster exponential-time algorithms for CSP(B∨=)

We have established that CSP(B∨=) for B ∈ H is unlikely to be solvable in subexponential time, so we focus our efforts
on constructing faster exponential-time algorithms. Algorithm 1 (that we present below) is an abstract description of the
“classical” backtracking algorithm for solving CSPs over partition schemes. It is not so difficult to see that this algorithm
solves CSP(B∨=) in 2O (n2) time (cf. Jonsson & Lagerkvist [25] or Renz & Nebel [38]), and we will soon see that this algorithm
applied to the degree-bounded problem runs in 2O (n) time. The algorithm is well-known but we give a detailed account of
it since it makes the presentation of the degree-bounded case much simpler. We note that the general upper bound can be
improved for several specific partition schemes, for instance:

• the CSP over Allen’s interval algebra admits a 2O (n logn) time algorithm [25], and
• the CSP over Allen’s interval algebra restricted to intervals of unit length admits a 2O (n log logn) time algorithm [11].

Importantly, as we will prove in this section, the CSP problem over RCC-8 also admits a 2O (n logn) time algorithm. This
immediately implies, for instance, that the CSPs for RCC-5 and the partial-order time algebra can be solved within this time
bound, too [3].

5.1. The branching algorithm

When presenting the branching algorithm we for simplicity assume that the constraint language B is a partition scheme
where CSP(B) is solvable in polynomial time. One can show that an instance I = (V , C) of CSP(B∨=) is satisfiable by
providing a certificate defined as a satisfiable instance I ′ = (V , C ′) of CSP(B) obtained by removing all but one relation from
each constraint in C . Note that I is satisfiable if and only if it has a certificate: a satisfying assignment to I satisfies I ′ , and
vice versa.

Lemma 13. Let B be a partition scheme where CSP(B) is solvable in polynomial time. Then Algorithm 1 solves an instance I = (V , C)

of CSP(B∨=) in 2|C | log(|B|−1) · poly(||I||) time.
11

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
Algorithm 1 Branching procedure for CSP(B∨=).

1: procedure Branch(I = (V , C))
2: if all constraints in C have at most one basic relation then
3: return SolveBaseCase(I) // I is an instance of CSP(B)

4: take any constraint c = x(R1, . . . , , Rm)y in C with m > 1
5: for Ri ∈ {R1, . . . , Rm} do
6: I ′ ← I with c replaced by Ri(x, y)

7: if Branch(I ′) then
8: return Yes
9: return No

Proof. To confirm that Algorithm 1 is correct, observe that it considers every possible instance of CSP(B) that can be
obtained from I by removing relations from the constraints. The algorithm returns yes if and only if there is a certificate
among these instances.

To determine the running time, note that we may assume without loss of generality that m < |B| on line 5 of the
algorithm (otherwise the constraint c is trivially satisfiable). Then, for each constraint the algorithm considers at most
|B| − 1 branches. The size of the recursion tree is at most (|B| − 1)|C | = 2|C | log(|B|−1) , while the computation in the base
case requires polynomial time in ||I||. Hence, the running time of the algorithm is bounded by 2|C | log(|B|−1) · poly(||I||). �
Corollary 14. CSP(B∨=) is solvable in 2O (n2) time.

Proof. Since the relations in B are binary, there are at most
(n

2

)
constraints in C . The size of the constraint language B is

fixed, so |C | log(|B| − 1) ∈ O (n2). �
Corollary 15. CSP(B∨=)-B is solvable in 2B log(|B|−1)n · poly(||I||) time.

Proof. Each variable appears in at most B constraints so |C | ≤ Bn. �
Hence, if B ∈ H then CSP(B∨=)-B is solvable in 2O (n) time but not in 2o(n) time, unless the ETH fails (by Theorem 9).

One interpretation of these results is that backtracking algorithms, which in practice are used in solvers for many temporal
and spatial reasoning problems, are close to being optimal in the degree-bounded case.

5.2. A faster algorithm for RCC-8

Let R denote the set of basic relations in RCC-8 (as defined in Example 2). To convey the intuition behind our algorithm,
we start by describing a maximal tractable fragment Ĥ8 of R∨= identified in [37]. It contains 108 out of 28 = 256 relations
of the full algebra. The missing relations can be classified into six sets:

N1 = {R | PO � R,TPP ⊆ R,TPP−1 ⊆ R}
N2 = {R | PO � R,NTPP ⊆ R,NTPP−1 ⊆ R}
N3 = {R | PO � R,TPP ⊆ R,NTPP−1 ⊆ R}
N4 = {R | PO � R,NTPP ⊆ R,TPP−1 ⊆ R}
N5 = {R | EQ ⊆ R,NTPP ⊆ R,TPP � R}
N6 = {R | EQ ⊆ R,NTPP−1 ⊆ R,TPP−1 � R}

Observe that the constraints that make an instance of CSP(R∨=) hard are those containing both (N)TPP and (N)TPP−1

(N1 through N4) and those containing EQ together with other relations (N5 and N6). Fixing a partition on the variables
and restricting the instance accordingly eliminates the latter kind of constraints, while fixing an ordering according to
NTPP ∪ TPP eliminates the former kind. Note that NTPP and TPP are both acyclic orders (in fact, even strict partial orders)
and that the relation NTPP ∪ TPP is crucial for establishing the gadget in Lemma 6. We are now ready to present the
improved algorithm for RCC-8.

Theorem 16. CSP(R∨=) can be solved in 2O (n logn) time.

Proof. Let I = (V , C) be an instance of the problem. We enumerate surjective functions π : V → {1, . . . , r}, where r ∈ Z,
1 ≤ r ≤ n (also known as ordered partitions on V) and restrict each constraint c ∈ C over (u, v) ∈ V 2 as follows:

(π1) If π(u) = π(v), then remove NTPP±1 and TPP±1 from c.
12

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
(π2) If π(u) < π(v), then remove EQ, TPP−1 and NTPP−1 from c.
(π3) If π(u) > π(v), then remove EQ, TPP and NTPP from c.

Observe that constraints of the restricted instance Iπ do not contain relations from N1 ∪ · · · ∪ N6. Thus, Iπ is in Ĥ8 and
we can solve it in polynomial time. By definition, the algorithm is sound, i.e. if it returns yes, then I is satisfiable. To prove
completeness, assume that I ′ = (V , C ′) is a certificate to I . Define two relations according to C ′: an equivalence relation

{(u, v) ∈ V 2 | EQ(u, v) ∈ C ′ or EQ(v, u) ∈ C ′} (1)

and an acyclic order

{(u, v) ∈ V 2 |NTPP(u, v) ∈ C ′ or NTPP−1(v, u) ∈ C ′ or (2)

TPP(u, v) ∈ C ′ or TPP−1(v, u) ∈ C ′}
Relation (1) partitions V into r equivalence classes for some r ∈ Z, 1 ≤ r ≤ n. Relation (2) respects (1), so it induces an
acyclic ordering on the equivalent classes. Arbitrarily extend it to a linear order and index equivalence classes V 1, . . . , Vr

accordingly. Define π ′ : V → {1, . . . , r} as π ′(v) = i if and only if v ∈ V i for all v ∈ V . Since the algorithm enumerates
ordered partitions, at some point it considers Iπ ′ and returns yes.

To determine the time complexity, we observe that there are at most nn ordered partitions of an n-element set. Gen-
erating all unordered partitions of a set takes O (1) amortized time per partition [41] and generating all permutations
takes O (1) time per permutation [40]. Checking a restricted instance takes polynomial time. Thus, the running time of the
algorithm is bounded by nn · poly(||I||) ∈ 2O (n logn) . �

This algorithm may be interesting to compare with the algorithm for RCC-8 suggested by Renz and Nebel [38]. Their
approach is based on Algorithm 1 but SolveBaseCase is applied to instances of maximal tractable subclasses instead of
instances of CSP(R). The algorithm presented in Theorem 16 also utilises a maximal tractable subclass but the underlying
search strategy is very different. Renz and Nebel’s algorithm improves the branching factor when compared to Algorithm 1
and the effect is clearly noticeable in their experimental evaluation. However, the algorithm by Renz and Nebel uses heuris-
tics and it is thus difficult to calculate its running time and compare it to the concrete upper bound obtained in Theorem 16.

6. Discussion

Our main focus has been to study the complexity of CSPs over partition schemes B, with a particular emphasis on
CSP(B∨=) when B contains an acyclic order. We identified the four properties C1, C2, C3, C4 and provided several real-world
examples of acyclic orders satisfying these properties. More importantly, we proved that these properties are sufficient for
establishing both NP-hardness and lower bounds under the ETH, even for the degree-bounded problems. At this stage it is
worth to yet again point out that none of our results require model-theoretic assumptions such as ω-categoricity.

One important consequence of lower bound results is that they can be used to rule out certain types of algorithms. First
of all, k-consistency algorithms are not applicable since they run in polynomial time for arbitrary fixed k. The powerful
generalisation of k-consistency, the Datalog framework [6,16], is not applicable either since every Datalog program runs in
polynomial time, too. Another example is provided by graph-decomposition algorithms for CSPs (for instance, algorithms
that exploit treewidth). Such algorithms have been highly influential in the CSP context [1,4,12], but they typically result in
polynomial-time or subexponential algorithms and are therefore unlikely to be usable for CSP(B∨=) problems.

Naturally, there are types of exponential-time algorithms that are not ruled out by our lower bounds, and one of the
main open questions of our article is whether it is possible to classify the CSP(B∨=) problems solvable faster than 2O (n2)

— similarly to how we were able to obtain an improved algorithm for RCC-8. Could it be the case that all problems of this
form are solvable in 2O (n logn) time, or even in single-exponential time? A uniform upper bound of this form would be a
major improvement but would not contradict any of our lower bounds. Jonsson and Lagerkvist [25] have presented general
results for obtaining algorithms based on enumeration of domain values, which are sometimes much faster than branch-
ing algorithms. For example, Allen’s interval algebra is solvable in 2O (n2) time with the branching algorithm in Section 5,
but the enumeration-based algorithm in Jonsson and Lagerkvist [25] runs in 2O (n logn) time. The range of applicability for
enumeration-based algorithms is unfortunately not well understood, and more work is needed to clarify whether it gener-
alises to broader classes of partition schemes.

Another viable approach is to use methods that have been successful in solving finite-domain CSPs. Einarson [15] demon-
strates how the finite-domain version of the PPSZ algorithm [20] can be applied to infinite-domain CSPs. His results are
inconclusive: the algorithm is faster than previously known algorithms for certain problems but it is, for instance, not
competetive for Allen’s interval algebra CSP(A∨=). Similarly, there exist several general results on the kernelizability of fi-
nite domain CSPs [10,24,28], i.e., algorithms for reducing the number of constraints. Could some of these approaches be
generalised to infinite-domain CSPs? If yes, then we might be able to obtain improved algorithm simply by combining a
kernelization procedure with the branching algorithm presented in Section 5.
13

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
These examples also suggest that it may be worthwhile to strengthen the subexponential lower bound for CSP(B∨=) even
further—if possible. One possible way of doing this is to exploit the strong exponential-time hypothesis, i.e. the conjecture that
SAT is not solvable in O ∗(cn) time for any c < 2. The challenge here is that the SETH intrinsically requires reductions
where one can “simulate” clauses of arbitrary high arity with a very small overhead—this seems difficult for CSP(B∨=)

which only allows binary relations. Another possibility is to use bounds based on the Chromatic Number problem: Jonsson
and Lagerkvist [25, Th. 21] have related the time complexity of Allen’s interval algebra with the time complexity of the
Chromatic Number problem and obtained concrete lower bounds of the form O ∗(cn) for a constant c > 1 depending on the
complexity of Chromatic Number. Thus, we ask the following: should stronger lower bounds for CSP(B∨=) be pursued in
the setting of CNF-SAT and the SETH, or are problems of this kind fundamentally closer to e.g. colouring problems?

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. In addition, the first author is partially supported by the Swedish Research
Council (VR) under grant 2017-04112, and the second author by VR under grant 2019-03690.

References

[1] J. Alber, H. Fernau, R. Niedermeier, Parameterized complexity: exponential speed-up for planar graph problems, J. Algorithms 52 (1) (2004) 26–56.
[2] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (11) (1983) 832–843.
[3] F. Anger, D. Mitra, R. Rodríguez, Satisfiability in nonlinear time: algorithms and complexity, in: Proc. 12th International Florida Artificial Intelligence

Research Society Conference (FLAIRS-1999), 1999, pp. 406–411.
[4] S. Arora, B. Barak, D. Steurer, Subexponential algorithms for unique games and related problems, J. ACM 62 (5) (2015) 42:1–42:25.
[5] Nikhil Bansal, Avrim Blum, Shuchi Chawla, Correlation clustering, Mach. Learn. 56 (1–3) (2004) 89–113.
[6] M. Bodirsky, V. Dalmau, Datalog and constraint satisfaction with infinite templates, J. Comput. Syst. Sci. 79 (1) (2013) 79–100.
[7] M. Bodirsky, P. Jonsson, A model-theoretic view on qualitative constraint reasoning, J. Artif. Intell. Res. 58 (2017) 339–385.
[8] M. Bodirsky, S. Wölfl, RCC8 is polynomial on networks of bounded treewidth, in: Proc. 22nd International Joint Conference on Artificial Intelligence

(IJCAI-2011), 2011, pp. 756–761.
[9] A. Bulatov, A dichotomy theorem for nonuniform CSPs, in: Proc. 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS-2017), 2017,

pp. 319–330.
[10] H. Chen, B.M.P. Jansen, A. Pieterse, Best-case and worst-case sparsifiability of Boolean CSPs, in: Proc. 13th International Symposium on Parameterized

and Exact Computation (IPEC-2018), in: LIPIcs, vol. 115, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp. 15:1–15:13.
[11] K. Dabrowski, P. Jonsson, S. Ordyniak, G. Osipov, Fine-grained complexity of temporal problems, in: Proc. 17th International Conference on Principles

of Knowledge Representation and Reasoning (KR-2020), 2020, pp. 284–293.
[12] R. de Haan, I.A. Kanj, S. Szeider, On the subexponential-time complexity of CSP, J. Artif. Intell. Res. 52 (2015) 203–234.
[13] I. Düntsch, Relation algebras and their application in temporal and spatial reasoning, Artif. Intell. Rev. 23 (4) (Jun 2005) 315–357.
[14] F. Dylla, J.H. Lee, T. Mossakowski, T. Schneider, A. van Delden, J. van de Ven, D. Wolter, A survey of qualitative spatial and temporal calculi: algebraic

and computational properties, ACM Comput. Surv. 50 (1) (2017) 7:1–7:39.
[15] C. Einarson, An extension of the PPSZ algorithm to infinite-domain constraint satisfaction problems, Master’s thesis report, Department of Computer

and Information Science, Linköpings Universitet, 2017.
[16] T. Feder, M.Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory,

SIAM J. Comput. 28 (1) (1998) 57–104.
[17] M.C. Golumbic, R. Shamir, Complexity and algorithms for reasoning about time: a graph-theoretic approach, J. ACM 40 (5) (1993) 1108–1133.
[18] M. Grigni, D. Papadias, C.H. Papadimitriou, Topological inference, in: Proc. 14th International Joint Conference on Artificial Intelligence (IJCAI-1995),

1995, pp. 901–907.
[19] H. Güsgen, Spatial reasoning based on Allen’s temporal logic, Technical report ICSI TR89-049, International Computer Science Institute, 1993.
[20] T. Hertli, I. Hurbain, S. Millius, R.A. Moser, D. Scheder, M. Szedlák, The PPSZ algorithm for constraint satisfaction problems on more than two colors,

in: Proc. 22nd International Conference on Principles and Practice of Constraint Programming (CP-2016), 2016, pp. 421–437.
[21] R. Hirsch, Relation algebras of intervals, Artif. Intell. 83 (2) (1996) 267–295.
[22] W. Hodges, A Shorter Model Theory, Cambridge University Press, USA, 1997.
[23] R. Impagliazzo, R. Paturi, On the complexity of k-SAT, J. Comput. Syst. Sci. 62 (2) (2001) 367–375.
[24] B.M.P. Jansen, A. Pieterse, Optimal sparsification for some binary csps using low-degree polynomials, ACM Trans. Comput. Theory 11 (4) (2019)

28:1–28:26.
[25] P. Jonsson, V. Lagerkvist, An initial study of time complexity in infinite-domain constraint satisfaction, Artif. Intell. 245 (2017) 115–133.
[26] P. Jonsson, V. Lagerkvist, G. Nordh, B. Zanuttini, Strong partial clones and the time complexity of SAT problems, J. Comput. Syst. Sci. 84 (2017) 52–78.
[27] A. Krokhin, P. Jeavons, P. Jonsson, Reasoning about temporal relations: the tractable subclasses of Allen’s interval algebra, J. ACM 50 (5) (2003) 591–640.
[28] V. Lagerkvist, M. Wahlström, Sparsification of SAT and CSP problems via tractable extensions, ACM Trans. Comput. Theory 12 (2) (2020) 13:1–13:29.
[29] G. Ligozat, J. Renz, What is a qualitative calculus? A general framework, in: Proc. 8th Pacific Rim International Conference on Artificial Intelligence

(PRICAI-2004), 2004, pp. 53–64.
[30] D. Lokshtanov, D. Marx, S. Saurabh, Lower bounds based on the exponential time hypothesis, Bull. Eur. Assoc. Theor. Comput. Sci. 105 (2011) 41–72.
[31] R. Moratz, J. Renz, D. Wolter, Qualitative spatial reasoning about line segments, in: Proc. 14th European Conference on Artificial Intelligence (ECAI-

2000), 2000, pp. 234–238.
[32] A. Mukerjee, G. Joe, A qualitative model for space, in: Proc. 8th National Conference on Artificial Intelligence (AAAI-1990), 1990, pp. 721–727.
[33] I. Pe’er, R. Shamir, Satisfiability problems on intervals and unit intervals, Theor. Comput. Sci. 175 (2) (1997) 349–372.
14

http://refhub.elsevier.com/S0004-3702(21)00056-4/bibB2710A2F039B6E5ADBC2BB7E273DE613s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib3CAA3C6740714F76E62095915A276636s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib89F27514E2B6D12AEE7044E3C367E8C6s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib89F27514E2B6D12AEE7044E3C367E8C6s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibCE9C4EA82207918AFDCCB8AB66DC581Fs1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib2770EAD7DD815D4FA7AA47E87E58FE6Bs1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib632D7CB4ECC0CACB2CE686116FDF4FC3s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibEEFFD7710B6B691D379114B793A65093s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib8C8D41206A97BB401C220725F687B727s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib8C8D41206A97BB401C220725F687B727s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib39D5E479634B84EF50F6C4D734B80EA0s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib39D5E479634B84EF50F6C4D734B80EA0s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib1133FA8DBA23FB3B62959407991AE409s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib1133FA8DBA23FB3B62959407991AE409s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib5AD0CF5397B44995A4794453BF0E0EB2s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib5AD0CF5397B44995A4794453BF0E0EB2s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib1FA63FFC61254F93261BFF365B6586A8s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibD978E05A4793B8F871EDCFB16EF0F267s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib2DE88479DC01DE461E7DAB5E1539A3C7s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib2DE88479DC01DE461E7DAB5E1539A3C7s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib403FD46640928721C0C5FB1CB8592CE2s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib403FD46640928721C0C5FB1CB8592CE2s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib743858D9A0358E93F68977D92C3A67D8s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib743858D9A0358E93F68977D92C3A67D8s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib3BB31790AD172539580CF3A855085293s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibDBF45FEE045929E64B069DCF9250CB4As1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibDBF45FEE045929E64B069DCF9250CB4As1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibF739E52A3A2DDBCA6AD6450FFA18ED5Ds1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibB3C714AEA4F7B986DAFBC373F49762B1s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibB3C714AEA4F7B986DAFBC373F49762B1s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib45A36E1353B0C442FF325D84BBDC02E5s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib0A354A082E34AB3BA6D51CDFC1D1F43Cs1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibEAD4853868CEE5E32079F68F30110FE3s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib0F47F95BF64D832330D0383151080DD9s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib0F47F95BF64D832330D0383151080DD9s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib5A46B90A4E430506EA1E44ABBC708256s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib18771887833133F1167F48B6C9253345s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibB7474BD2981C98BB1BA4C1F1A215EF45s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibE9930DFA0A5AD885485277C1B0D199B2s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibC296E51FC74A93EB0C232B59C4B2A7EDs1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibC296E51FC74A93EB0C232B59C4B2A7EDs1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibA09F7CB4D0A42D9AECB04699D1841EBAs1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibE56B9C130B6B07192FA27CF4E641A851s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibE56B9C130B6B07192FA27CF4E641A851s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib109B40352E9111883B9B145EB70F6DDEs1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib1D5357739D92DE120826EA0A98A6B52Es1

P. Jonsson, V. Lagerkvist and G. Osipov Artificial Intelligence 296 (2021) 103505
[34] D. Randell, Z. Cui, A. Cohn, A spatial logic based on regions and connection, in: Proc. 3rd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-1992), 1992, pp. 165–176.

[35] J. Renz, Qualitative spatial and temporal reasoning: efficient algorithms for everyone, in: Proc. 20th International Joint Conference on Artifical Intelli-
gence (IJCAI-2007), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007, pp. 526–531.

[36] J. Renz, J.J. Li, Automated complexity proofs for qualitative spatial and temporal calculi, in: Proc. Principles of Knowledge Representation and Reasoning
(KR-2008), 2008, pp. 715–723.

[37] J. Renz, B. Nebel, On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the region connection calculus, Artif. Intell.
108 (1–2) (1999) 69–123.

[38] J. Renz, B. Nebel, Efficient methods for qualitative spatial reasoning, J. Artif. Intell. Res. 15 (1) (2001) 289–318.
[39] J. Renz, B. Nebel, Qualitative spatial reasoning using constraint calculi, in: Marco Aiello, Ian Pratt-Hartmann, Johan van Benthem (Eds.), Handbook of

Spatial Logics, Springer, 2007, pp. 161–215.
[40] R. Sedgewick, Permutation generation methods, ACM Comput. Surv. 9 (2) (1977) 137–164.
[41] I. Semba, An efficient algorithm for generating all k-subsets (1 ≤ k ≤ m ≤ n) of the set {1, 2, . . . , n} in lexicographical order, J. Algorithms 5 (2) (1984)

281–283.
[42] D. Zhuk, A proof of the CSP dichotomy conjecture, J. ACM 67 (5) (2020) 30:1–30:78.
15

http://refhub.elsevier.com/S0004-3702(21)00056-4/bib81EC7B83240ECD70712DFA9632991486s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib81EC7B83240ECD70712DFA9632991486s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib23BFA9160BC6EF7788A2677ED7010759s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib23BFA9160BC6EF7788A2677ED7010759s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib8FF225ECBF20AB32C3C4313B06BCBB70s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib8FF225ECBF20AB32C3C4313B06BCBB70s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibF1A53387777CC28AB4484D95034EC966s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibF1A53387777CC28AB4484D95034EC966s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib646F890DB800D95D9FA75E8AA2ED4E07s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib87DA12DCE057C63EB063A29907F65D01s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib87DA12DCE057C63EB063A29907F65D01s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibC2A6E11C35237F43F965E137B7AD626Es1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibB436F70F7FAE5FEEAC37F24616962CC9s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bibB436F70F7FAE5FEEAC37F24616962CC9s1
http://refhub.elsevier.com/S0004-3702(21)00056-4/bib53A3A63673A78293502E317E37B6A568s1

	Acyclic orders, partition schemes and CSPs: Unified hardness proofs and improved algorithms
	1 Introduction
	1.1 Background
	1.2 Our results

	2 Preliminaries
	3 Acyclic orders
	3.1 Conditions on acyclic orders
	3.2 Examples

	4 Lower bounds for CSP(B∨=)
	4.1 ETH-based lower bounds and NP-hardness
	4.2 Consequences
	4.3 A tractable subclass of degree-bounded problems

	5 Faster exponential-time algorithms for CSP(B∨=)
	5.1 The branching algorithm
	5.2 A faster algorithm for RCC-8

	6 Discussion
	Declaration of competing interest
	Acknowledgements
	References

