
GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR

INFINITE-DOMAIN CSPS

PETER JONSSON AND VICTOR LAGERKVIST

Abstract. We study the fine-grained complexity of NP-complete, infinite-domain constraint
satisfaction problems (CSPs) parameterised by a set of first-order definable relations (with equality).

Such CSPs are of central importance since they form a subclass of any infinite-domain CSP

parameterised by a set of first-order definable relations over a relational structure (possibly
containing more than just equality). We prove that under the randomised exponential-time

hypothesis it is not possible to find c > 1 such that a CSP over an arbitrary finite equality language
is solvable in O(cn) time (n is the number of variables). Stronger lower bounds are possible for

infinite equality languages where we rule out the existence of 2o(n logn) time algorithms; a lower

bound which also extends to satisfiability modulo theories solving for an arbitrary background
theory. Despite these lower bounds we prove that for each c > 1 there exists an NP-hard equality
CSP solvable in O(cn) time. Lower bounds like these immediately ask for closely matching upper

bounds, and we prove that a CSP over a finite equality language is always solvable in O(cn) time
for a fixed c, and manage to extend this algorithm to the much broader class of CSPs where
constraints are formed by first-order formulas over a unary structure.

1. Introduction

In this article we study the fine-grained, rather than classical, coarse, complexity of infinite-domain
constraint satisfaction problems. We approach the subject in a systematic manner and obtain powerful
lower bounds applicable to all infinite-domain CSPs where constraints consists of first-order definable
relations over a fixed relational structure. In the direction of upper bounds we obtain improved,
single-exponential time algorithms for equality CSPs, and the broader class of CSPs over reducts of
unary structures. Some parts of this article have been presented in preliminary form in a conference
publication [20].

Background. Let Γ denote a (finite or infinite) set of finitary relations over a (finite or infinite)
set D. The input to the constraint satisfaction problem over Γ (CSP(Γ)) is a pair (V,C) where
V is a set of variables (with domain D) and C is a set of constraints over Γ. A constraint is an
expression R(x1, . . . , xn) where x1, . . . , xn are variables in V and n equals the arity of the relation
R. The problem is to find an assignment f : V → D that satisfies every constraint in C, i.e.
(f(x1), . . . , f(xn)) ∈ R for every constraint R(x1, . . . , xn) in C. The set Γ is called the constraint
language or the template. The CSP is computationally hard in the general case; if the variable
domains are finite, then the problem is NP-complete, and otherwise it may be of arbitrarily high
complexity or even undecidable [6].

Depending on the constraint language Γ, it is possible to formulate many natural problems as
CSP(Γ) problems. This is especially true if we allow templates over an infinite universe, which
increases the expressive power of CSPs and e.g. makes it possible to formulate a rich amount of
problems from artificial intelligence [7, 15]. The complexity of CSPs have also been the subject
of intense theoretical research: for each constraint language Γ over a finite domain CSP(Γ) is
always either polynomial-time solvable or is NP-complete [13, 41]. Infinite-domain CSPs are in

1

2 PETER JONSSON AND VICTOR LAGERKVIST

general undecidable, but there exists a wealth of results when additional restrictions are imposed.
Early examples include the CSP formulation of Allen’s interval algebra [25], the region connection
calculus [31], CSPs over first-order definable relations with equality [8] (equality CSPs), and temporal
CSPs [9], i.e. CSPs where the constraint language is first-order definable in the structure (Q;<)
whose domain is the set of rational numbers Q and where < denotes the usual strict order of
the rationals. More generally, it is common to consider first-order reducts of a fixed relational
structure A, i.e., languages that are first-order definable with equality over A. Equality CSPs then
correspond to CSP(Γ) when Γ is a first-order reduct of (A; ∅) for some universe A (an equality
language) while temporal CSPs correspond to CSP(Γ) when Γ is a first-order reduct of (Q;<). To
make the intended meaning clearer we sometimes treat equality languages as first-order reducts of
(A; =), where = is the equality relation over the universe A, even though this is strictly speaking
not needed since the equality relation is always allowed in first-order formulas. Equality CSPs have
previously been intensively studied due to their fundamental importance for understanding more
complex CSPs, since any classification of a larger relational structure A necessarily also needs to
include a classification of equality CSPs (an equality language Γ is a reduct of any countably infinite
structure A). Let us also remark that CSPs in this setting are very similar to reasoning problems
occurring in artificial intelligence, where one fixes a set of “base relations” A, typically binary, and
then consider a satisfiability problem where constraints are taken from e.g. the relation algebra
generated by A, or the set of all disjunctive clauses over A [15]. A recent comparison may also be
found in satisfiability modulo theories (SMT) where a background theory A is fixed, and where one
considers the satisfiability problem of first-order formulas (with equality) restricted to interpretations
agreeing with A [3].

While theoretical CSP research has concentrated on classical complexity, complexity theory
itself has partially shifted towards parameterised complexity and fine-grained complexity, which e.g.
encompasses constructing improved exponential-time algorithms, and proving lower bounds with
stronger assumptions than P 6= NP. A popular conjecture for this purpose is the exponential-time
hypothesis (ETH). It states that the 3-SAT problem is not solvable in subexponential time, i.e. it is
not solvable in 2o(n) time, where n is the number of variables. Another popular conjecture is the
strong ETH (SETH) which, roughly, states that the fine-grained complexity of k-SAT tends to 2n for
increasing values of k.

In this article we study the fine-grained complexity of NP-hard infinite-domain CSPs, with a
particular focus on equality CSPs using the number of variables, n, as the complexity parameter. As
remarked, equality CSPs constitute a natural starting point for questions of fine-grained complexity,
since if we cannot even overcome this obstacle there is little hope of understanding fine-grained
complexity questions for larger classes of CSPs. Assume, for example, that we prove that there exists
an equality language Γ such that CSP(Γ) is not solvable in O(f(n)) time, for some function f . Then,
regardless of which relational structure A that we choose, we cannot hope to construct an algorithm
with a running time of O(f(n)) which is applicable to CSP(∆) for every first-order reduct ∆ of A.
Under this viewpoint it is therefore crucial to prove lower bounds for equality CSPs before moving
on to construct faster exponential-time algorithms for broader classes of infinite-domain CSPs.

Thus, among the class of NP-hard equality CSPs, how does the choice of Γ affect the fine-grained

complexity of CSP(Γ)? For example, it is known that CSP(Γ) is solvable in O∗(2n·log(0.792n
ln(n+1)

)) time
when Γ is an arbitrary equality language [18] (the O∗ notation is used to suppress polynomial factors).
Concerning lower bounds it is known that no NP-complete equality CSP(Γ) problem is solvable
in subexponential time without violating the ETH. This follows from Barto & Pinsker [2]: if Γ is
an equality language and CSP(Γ) is NP-hard, then Γ pp-interprets 3-SAT since Γ is a first-order
reduct of the finitely bounded homogeneous structure (N; =). This fact combined with Theorem 3.1
in [22] gives the result. Furthermore, if Γ is the full first-order reduct of (A; =) then there cannot

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 3

exist an O∗(cn) time algorithm for CSP(Γ) for any constant c without violating the SETH [18].
Despite bounds like these, there are still large gaps in our understanding of fine-grained complexity
of infinite-domain CSPs in general, and of equality CSPs in particular. For example, is it possible
to find an equality language Γ such that CSP(Γ) is NP-complete but solvable in O(cn) time for a
constant c > 1? Is it possible to solve CSP(Γ) in O(cn) time whenever Γ is a finite equality language,
and in that case, does c depend on Γ or is it possible to find a uniform value? Furthermore, since no
NP-complete equality CSP is solvable in subexponential time without violating the ETH, does there
exist a c > 1 such that no NP-complete equality CSP is solvable in O(cn) time?

Our Results. After defining the necessary preliminaries (in Section 2) we in Section 3 begin to
answer the aforementioned questions by a careful study of lower bounds. First, we prove that under
the randomised ETH for each c > 1 there exists a finite equality language Γc such that CSP(Γc) is
not solvable in O(cn) time. Second, we showcase a striking difference between finite and infinite
languages and prove the existence of an infinite equality language Γ such that CSP(Γ) is not solvable
in 2o(n logn) time (under the ETH). In particular this lower bound rules out a uniform O(cn) time
algorithm, c > 1, applicable to arbitrary equality CSPs (which previously was only known to hold
under the much stronger SETH). We also manage to lift this lower bound to SMT, where little is
known about the fine-grained complexity, despite being a framework with a wide range of applications
due to the availability of efficient SAT solvers. We provide the first known lower bound under the
ETH and show that regardless of the background theory it is not possible to solve the resulting SMT
in 2o(n logn) time without violating the ETH. Importantly, this shows that existing algorithms for
SMT running in 2O(n logn) time are close to being optimal (cf. Rodeh & Strichman [32]). It should
also be noted that we are able to prove this as a straightforward consequence of our general bounds for
equality CSPs, indicating yet another advantage of studying fine-grained complexity in this setting.
Third, we prove that for each constant c > 1 there exists an NP-complete equality CSP which is
solvable in O(cn) time, and thus rule out the existence of an “easiest NP-complete equality CSP”.
Such CSPs are known to exist for finite-domain CSPs [22] so we see a clear dividing line between
finite and infinite-domain CSPs. We also provide an algebraic explanation of the lack of such an
“easiest CSP problem”, based on a connection between fine-grained complexity of CSPs and algebraic
invariants called partial polymorphisms. Since partial polymorphisms recently have become an
important tool for studying fine-grained complexity of CSPs and related problems [21, 22, 23, 26, 27]
it therefore appears important to chart any differences to the finite-domain case. In short, an “easiest
NP-complete CSP” would have a maximally large set of partial polymorphisms, and we prove that
such a maximal set cannot exist for the set of all equality relations. The proof also generalises to
other classes of languages, e.g., temporal languages, and can, interestingly, be proven independently
of any complexity theoretical assumptions.

In light of these lower bounds, what is the best possible exponential-time algorithm for equality
CSPs that we could hope for? We tackle this question in Section 4 and construct an O∗(cn) time
algorithm for CSP(Γ) whenever Γ is a finite equality language, where c is a constant depending only
on the arities of relations in Γ. Note that while the constant c likely can be improved, we have already
established (under the randomised ETH) that it is not possible to find a uniform value. Similarly, it
appears difficult to extend the algorithm to non-trivial classes of infinite equality languages since we
have already proved that there is an infinite equality language that cannot be solved in 2o(n logn) time
under the ETH. Here, it is also interesting to note that certain classes of infinite-domain CSPs do
not admit an O(cn) algorithm even if the template is finite. For instance, there is a finite temporal
language whose CSP (under the randomised ETH) cannot be solved in 2o(n logn) time [19]. Could
it even be the case that finite equality CSPs are the only reasonable class of infinite-domain CSPs
solvable in single-exponential time, and that every non-trivial structure results in CSPs of higher

4 PETER JONSSON AND VICTOR LAGERKVIST

complexity? This, however, is not the case, and we do manage to construct an O∗(cn) time algorithm
applicable to a much richer and broader class of problems, namely CSPs over reducts of unary
structures. More precisely, say that Γ is a unary structure (US) language if Γ is a first-order reduct of
a structure (A;U1, . . . , Uk) where each Ui is unary. Such CSPs are a subclass of first-order definable
structures with atoms and have attracted recent attention from the automata theory community
[11, 12, 24]. They have also been studied by the CSP community and the complexity has been fully
classified [5, 10]. The algorithm works by partitioning the domains of the unary relations U1, . . . , Uk
in such a way that we create a finite “pseudo-universe” U where each element gives an implicit
description of a finite equality language. This makes it possible to enumerate the elements of U and
in each iteration test the satisfiability of the corresponding equality CSP instance.

These results paint a peculiar picture of the fine-grained complexity of equality CSPs (and all
classes of infinite-domain CSPs over first-order reducts of relational structures). On the one hand,
equality CSPs are incredibly hard to solve (no uniform O(cn) time algorithm for finite languages
under the randomised ETH, and no 2o(n logn) time algorithm for infinite languages), but on the other
hand one for any c > 1, say, c = 1.00001, can find an NP-hard equality CSP solvable in O(cn) time.
These conflicting messages indicate that a complete understanding of fine-grained complexity of
equality CSPs is well out of reach, but we have simultaneously unravelled several interesting research
directions. We discuss some of these in Section 5.

2. Preliminaries

A relational structure is a tuple (A;σ, I) where A is a set typically called a domain, or a universe, σ
is a relational signature, and I is a function from σ to the set of all relations over A which assigns each
relation symbol a corresponding relation over A. For simplicity, we will typically write a relational
structure as (A;R1, . . . , Rk) where each Ri is a relation over A, and will not make a sharp distinction
between relations and their corresponding signatures. A set of relations Γ over A is a first-order
reduct of a relational structure A = (A;R1, . . . , Rk) if each R ∈ Γ is the set of models of a σ-formula
(with equality) interpreted in (A;R1, . . . , Rk). Alternatively, one may view Γ as a set of relations
where each relation has a first-order definition (without parameters) in A. In symbols, we write
R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) if R is the set of models of the first-order formula ϕ(x1, . . . , xn) with
respect to the free variables x1, . . . , xn.

2.1. The Constraint Satisfaction Problem. Let Γ be a set of finitary relations over some set
A of values, occasionally called a constraint language. The constraint satisfaction problem over Γ
(CSP(Γ)) is defined as follows.

Instance: A set V of variables and a set C of constraints of the form R(x1, . . . , xk), where k is
the arity of R, x1, . . . , xk ∈ V and R ∈ Γ.
Question: Is there a function f : V → A such that (f(x1), . . . , f(xk)) ∈ R for every
R(x1, . . . , xk) ∈ C?

Concerning representation, we take a simple approach and only consider the case when Γ is
a first-order reduct of a relational structure, and represent each relation R ∈ Γ by a first-order
formula. However, the exact representation is only important if Γ is infinite, since any reasonable
representation can be chosen and precomputed if Γ is finite.

2.2. Primitive Positive Definitions and Interpretations. Let Γ be a constraint language over
a domain A. A k-ary relation R is said to have a primitive positive definition (pp-definition) over Γ if

R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ : R1(x1) ∧ . . . ∧Rm(xm)

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 5

where each Ri ∈ Γ ∪ {EqA} and each xi is a tuple of variables over x1, . . . , xk, y1, . . . , yk′ matching
the arity of Ri. Here, and in the sequel, EqA is the equality relation {(a, a) | a ∈ A)} over A. Thus,
R is definable by a first-order formula consisting only of existential quantification and conjunction
over positive atoms from Γ and equality constraints. If Γ is a constraint language we let 〈Γ〉 be the
smallest set of relations containing Γ closed under pp-definitions. Pp-definitions are typically only
useful for comparing similar languages over the same domain, but can be generalised as follows.

Definition 1. Let A and B be two domains and let Γ and ∆ be two constraint languages over A
and B, respectively. A primitive positive interpretation (pp-interpretation) of ∆ over Γ consists of:

(1) a d-ary relation F ⊆ Ad,
(2) and a surjective function f : F → B

such that F, f−1(EqB) ∈ 〈Γ〉 and f−1(R) ∈ 〈Γ〉 for every k-ary R ∈ ∆, where f−1(R) denotes the
(k · d)-ary relation

{(x1
1, . . . , x

d
1, . . . , x

1
k, . . . , x

d
k) ∈ Ak·d | (f(x1

1, . . . , x
d
1), . . . , f(x1

k, . . . , x
d
k)) ∈ R}.

Hence, pp-interpretations are generalisations of pp-definitions, and can be used to obtain polynomial-
time reductions between CSPs.

Theorem 2 (cf. Theorem 3.1.4 in Bodirsky [4]). If Γ and ∆ are finite constraint languages and
there exists a pp-interpretation of ∆ over Γ, then CSP(∆) is polynomial-time reducible to CSP(Γ).

We invite the reader to verify that a standard reduction from the 3-coloring problem (formulable
as a CSP over the inequality relation over a ternary domain) to 3-SAT (formulable as a Boolean
CSP) can be expressed as a pp-interpretation of the 3-coloring relation over 3-SAT.

2.3. Equality Languages. We say that Γ is an equality language if each R ∈ Γ admits a first-order
definition over a relational structure (A; ∅), i.e. the empty structure. Recall here that the equality
relation is always accessible in first-order logic. Without loss of generality we henceforth assume
that A = N, write Eq (or = in infix notation) for the equality relation over N, and R 6= or 6= (in infix
notation) for the inequality relation {(x, y) ∈ N2 | x 6= y} over N. Via these conventions an equality
language can also be viewed as a set of first-order definable relations over (N; =), and we typically
prefer this notation over (A; ∅) since the intended meaning is clearer. The computational problem we
consider is then CSP(Γ) when Γ is an equality language. This problem is easily seen to belong to NP
for any finite language, and its classical complexity has been completely classified [8].

Theorem 3. Let Γ be an equality language. Then either

(1) CSP(Γ) is polynomial-time solvable or
(2) there exists a finite ∆ ⊆ Γ such that CSP(∆) is NP-complete since ∆ pp-interprets every

finite-domain relation.

Example 4. Let S = {(x, x, y), (x, y, y) | x, y ∈ N, x 6= y}, and observe that S(x, y, z) ≡ (x = y∧y 6=
z) ∨ (x 6= y ∧ y = z). Thus, {S} is an equality language, and it is known that {S} pp-interprets a
language ∆ where CSP(∆) is NP-hard, which implies that CSP({S}) is NP-hard, too. For tractability,
if we take {Eq,R 6=} then CSP({Eq,R 6=}) is well-known to be polynomial-time solvable. This can
be proven via Theorem 3, however, CSP({Eq,R6=}) can also be solved by elementary propagation
methods.

2.4. Fine-Grained Complexity and the Exponential-Time Hypothesis. Assume that CSP(Γ)
is NP-complete. How fast can we solve CSP(Γ), and is it possible to prove stronger lower bounds
than an expected superpolynomial running time (under P 6= NP)? Such questions, especially when
the complexity parameter is the number of variables |V | or the number of constraints |C|, fall under

6 PETER JONSSON AND VICTOR LAGERKVIST

the umbrella of fine-grained complexity. To prove non-trivial lower bounds for NP-complete problems
we typically need stronger assumptions than P 6= NP. Say that CSP(Γ) is solvable in subexponential
time if CSP(Γ) is solvable in O(2ε|V |) for each ε > 0. The conjecture that 3-SAT is not solvable in
subexponential time is called the exponential-time hypothesis (ETH). There exists several stronger
variants of the ETH. First, an algorithm A is said to be a 2c·|V |-randomised algorithm if its running
time is bounded by 2c·|V | · poly(||I||) and its error probability is at most 1/3 (||I|| is the number of
bits required to represent a CSP instance I). For k, d ≥ 1 we then define

ck = inf{c | ∃ a deterministic 2c·|V | algorithm for k-SAT}
and

cd,k = inf{c | ∃ a 2c·|V |-randomised algorithm for CSP(Γd,k)},
where Γd,k is the set of all relations over the set {0, . . . , d− 1} of arity at most k. The randomised
exponential-time hypothesis (r-ETH) is then the conjecture that c2,3 > 0, i.e., that 3-SAT is not
solvable in subexponential time even with randomised algorithms, and the strong exponential-time
hypothesis (SETH) is the conjecture that the limit of the sequence c3, c4, . . . is equal to 1.

3. Lower Bounds on the Complexity of Equality Constraints

In this section we investigate lower bounds for equality CSPs. As remarked in Section 1, such
lower bounds are valuable since if it is possible to prove that, for an equality language Γ, CSP(Γ) is
not solvable in O(f(|V |)) time (for some function f) then, for some arbitrary relational structure A,
there exists a ∆ such that CSP(∆) is not solvable in O(f(|V |)) time and ∆ is a first-order reduct of
A. Let us recapitulate two known lower bounds.

Theorem 5. Let Γ be an equality language.

(1) If CSP(Γ) is NP-hard then it is not solvable in subexponential time unless the ETH is false
(Theorem 3.1 in [22]), and

(2) if Γ is the full first-order reduct of (N; =) then CSP(Γ) is not solvable in O(c|V |) time for
any c > 1 unless the SETH is false (Theorem 19 in [18]).

3.1. Finite Versus Infinite Equality Languages. We begin by proving that for every c > 1
there exists a finite equality language Γc such that CSP(Γc) is not solvable in O(2c|V |) time without
contradicting the r-ETH. This result is a substantial strengthening of Theorem 5(2). We first require
the following result [39, Thm. 1].

Theorem 6. If r-ETH holds, then there exists a universal constant α > 0 such that α · log(d) ≤ cd,2
for all d ≥ 3,

Theorem 7. For every c > 1, there exists a finite equality language Γc such that CSP(Γc) cannot be
solved in O(2c·|V |) (randomised) time unless the r-ETH is false.

Proof. For 1 ≤ a, b ≤ d define

Rd,a,b(c1, . . . , cd, x, y) ≡
d∨
i=1

x = ci ∧
d∨
i=1

y = ci ∧ (x 6= ca ∨ y 6= cb) .

For arbitrary d then define the finite equality language

Θd = {6=} ∪ {Rd,a,b | 1 ≤ a, b ≤ d}.

We present a polynomial-time reduction from CSP(Γd,2) to CSP(Θd) only introducing a constant
number of fresh variables. Let (V,C) be an instance of CSP(Γd,2). Introduce d fresh variables
c1, . . . , cd together with constraints {ci 6= cj | 1 ≤ i < j ≤ d}. For each R(x, y) ∈ C, add the

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 7

constraints Rd,a,b(c1, . . . , cd, x, y) for every 1 ≤ a, b ≤ d such that (a, b) 6∈ R. The resulting instance
(V ∪ {c1, . . . , cd}, C ′) can be constructed in polynomial time, and is clearly satisfiable if and only if
(V,C) is satisfiable. Furthermore, d is fixed so only a constant number of variables are introduced. By
Theorem 6, CSP(Θd) cannot be solved in 2(cd,2−ε)·|V | time for any ε > 0 unless r-ETH is false, and
the result follows by choosing d such that cd,2 ≥ c. We know that α · log(d) ≤ cd,2 so it is sufficient

to choose a d such that α · log(d) ≥ c, e.g. d = 2d
c
α e. �

Thus, assuming the r-ETH, there cannot exist an algorithm solving CSP(Γ) in O(c|V |) time for
every finite equality language Γ. This can be strengthened even further for infinite equality languages,
and we will show the existence of Γ such that CSP(Γ) is not solvable in O(2o(|V | log |V |)) time without
contradicting the ETH. In contrast, the second statement of Theorem 5 is only valid under the much
stronger SETH, and only if Γ consists of all first-order definable relations over (N; =). For this lower
bound we provide a reduction from the k × k Independent Set problem: given a graph G over
the vertex set {1, . . . , k} × {1, . . . , k} (where k is part of the input), is there an independent set of
size k in G with exactly one element from each row? One may view this problem as a variant of
the standard Independent Set problem where the vertices are the elements of a k × k table and one
wants to find an independent set that contain exactly one element from each row. The following
lower bound is known under the ETH [29].

Theorem 8. k × k Independent Set is not solvable in 2o(k log k) time unless the ETH is false.

For n ≥ 1 define Rn(y, x1, . . . , xn) ≡ y = x1 ∨ y = x2 ∨ · · · ∨ y = xn, and let R(x, y, z, w) ≡ x 6=
y ∨ z 6= w. Let Γinf be the infinite equality language {6=, R,R1, R2, . . .}.

Theorem 9. CSP(Γinf) cannot be solved in 2o(|V | log |V |) time unless the ETH is false.

Proof. To prove the result, we present a polynomial-time reduction from k × k Independent Set
to CSP(Γinf) such that the resulting CSP(Γinf) instance only contains 2k variables. Let G = (V,E)
denote an arbitrary graph where V = {1, . . . , k} × {1, . . . , k}. We then begin by introducing k
variables a1, . . . , ak together with the constraints ai 6= aj , 1 ≤ i < j ≤ k. Second, for each row
1 ≤ i ≤ k in G, introduce a variable xi and the constraint Rk(xi, a1, . . . , ak). This constraint ensures
that xi equals one of the variables a1, . . . , ak. Third, for each edge e = ((a, b), (c, d)) ∈ E, introduce
the constraint R(xa, ab, xc, ad). This constraint guarantees that both endpoints of an edge are not
put into the independent set simultaneously. �

Hence, we cannot even hope to solve CSP(Γ) in O(c|V |) time for any c when Γ is allowed to be
infinite. Furthermore, since an equality CSP is always solvable in 2O(|V | log |V |) time [18], the bound
in Theorem 9 is asymptotically tight.

Thus, the distinction between finite and infinite languages seems to be rather important in the
context of equality CSPs, but if one considers slightly richer structures than (N; =) then significantly
stronger bounds can be obtained also for finite languages. Let ≺ ⊆ D2 denote a binary relation
over a set D and let � denote its converse where x � y holds if and only if y ≺ x holds. We
say that ≺ is an acyclic order if there does not exist any finite subset {d1, . . . , dk} ⊆ D such that
d1 ≺ d2 ≺ · · · ≺ dk−1 ≺ dk ≺ d1. Acyclic orders are irreflexive (i.e. they do not contain any element
d such that d ≺ d) by definition. We say that ≺ is a strict partial order if it is irreflexive and for
arbitrary d, d′, d′′ ∈ D: d ≺ d′ and d′ ≺ d′′ imply d ≺ d′′ (transitivity). Note that these two properties
also ensure that ≺ is antisymmetric, i.e. if d ≺ d′, then d′ ≺ d does not hold. We say that ≺ is a
strict total order if ≺ is a strict partial order and it is a connex relation, i.e. for arbitrary distinct
d, d′ ∈ D, either d ≺ d′ or d′ ≺ d holds. Finally, we say that ≺ contains unbounded total orders if for
every k ∈ N, there exists a subset L ⊆ D such that |L| ≥ k and ≺ is a strict total order on L.

8 PETER JONSSON AND VICTOR LAGERKVIST

Example 10. The less-than relation < over Q is an acyclic order containing unbounded total orders.
For the latter property, simply observe that < is a strict total order {1, . . . , k}. However, there exists
a wealth of examples of acyclic orders containing unbounded total orders in the artificial intelligence
literature, especially in combination with qualitative reasoning problems, e.g., temporal and spatial
reasoning problems such as Allen’s interval algebra and the region connection calculus. For many
additional examples of this kind, see e.g. the survey by Dylla et al [15].

The following result is a significant strengthening of Theorem 11 in [19].

Theorem 11. Let ≺⊆ D2 be an acyclic order that contains unbounded total orders. Then, there
exists a constraint language Γ such that

(1) Γ is finite,
(2) Γ is first-order definable in (D;≺) (even with quantifier-free definitions), and
(3) CSP(Γ) is not solvable in 2o(n logn) time unless the ETH is false.

Proof. Let Γ = {≺, R, S} where

• R(x, y) ≡ x ≺ y ∨ y ≺ x and
• S(x, a, b, y, c, d) ≡ x ≺ a ∨ b ≺ x ∨ y ≺ c ∨ d ≺ y.

Clearly, Γ is finite and (quantifier-free) first-order definable in (D;≺). Assume that CSP(Γ) can be
solved in 2o(n logn) time. We show how to polynomial-time reduce k × k Independent Set to CSP(Γ)
in a way such that only O(k) variables are used. Hence, k × k Independent Set can be solved in
2o(k log k) time and this contradicts the ETH via Theorem 8.

Let G = (V,E) be an arbitrary instance of k× k Independent Set. Introduce 2k+ 1 fresh variables
y1, . . . , yk, t1, . . . , tk+1. The idea behind these variables is that yi, 1 ≤ i ≤ k, points out the vertex in
row i that is to be included in the independent set. This is done with the aid of variables t1, . . . , tk+1.
Informally speaking, if yi “lies between” tj and tj+1, then we will put the jth vertex on row i into
the independent set. Now, let V1 = {y1, . . . , yk, t1, . . . , tk+1} and

C1 = {ti ≺ tj | 1 ≤ i < j ≤ k}.

Since ≺ is a acyclic order that contains unbounded total orders, we know that I1 = (V1, C1) is
satisfiable.

In every solution s to I1, it holds that s(ti) ≺ s(tj) when 1 ≤ i < j ≤ k + 1. Constrain each yi,
1 ≤ i ≤ k, as follows:

• t1 ≺ yi,
• R(yi, tj) for 2 ≤ j ≤ k, and
• yi ≺ tk+1.

Let C2 denote the corresponding set of constraints and let I2 = (V1, C1 ∪ C2). It is easy to verify
that in every solution s to I2 and for each 1 ≤ j ≤ k, the variable yj , satisfies s(ti) ≺ s(yj) ≺ s(ti+1)
for exactly one 1 ≤ i ≤ d. We will interpret this as “the ith vertex on row j is chosen for inclusion in
the independent set”. Note that a solution always exists to I2 since ≺ is a acyclic order that contains
unbounded total orders.

For each edge {(xa, xb), (xc, xd)} in E, we introduce the following constraint

S(ya, tb, tb+1, yc, td, td+1).

With the given interpretations of ya, tb, yc, td, this constraint implies that we cannot simultaneously
choose vertex b on row a and vertex d on row c for inclusion in the independent set. Let C3 denote
the resulting set of constraints and let I3 = (V1, C1 ∪ C2 ∪ C3). Given the explanations above, it is
easy to verify that I3 is satisfiable if and only if G is a yes-instance. We conclude the proof by noting
that I3 can be computed in polynomial time and contains O(k) variables. �

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 9

3.2. Satisfiability Modulo Theories. We will now consider a problem which is related to equality
CSPs, for which we rather effortlessly can obtain lower bounds by reducing from CSP(Γinf). Satis-
fiability modulo theories (SMT) is a decision problem for logical formulas with respect to a given
background theory. The logical formulas are expressed in classical first-order logic with equality.
However, it is quite common to not use the full power of this framework; for instance, a frequent
restriction is to require that the formulas are quantifier-free (and we will use this fragment ourselves
below). An accessible introducion to SMT can be found in the survey by Barrett et al. [1]. Let
SMT(T) be the problem of determining whether a first-order formula (with respect to a background
theory T) is satisfiable, and let SMT 6∀(T) be the subproblem where universal quantifiers are not
allowed. We can then readily prove a matching lower bound valid for any background theory T .

Theorem 12. SMT6∀(∅) cannot be solved in 2o(|V | log |V |) time unless the ETH is false.

Proof. We present a polynomial-time reduction from CSP(Γinf) which does not introduce any fresh
variables. Let (V,C) be an instance of CSP(Γinf), where V = {x1, . . . , xk} and C = {c1, . . . , cp}.
Define F to be the formula ∃x1 . . . ∃xk : F1 ∧ · · · ∧ Fp where

• Fi = (¬(x = y)) if ci = x 6= y,
• Fi = (y = x1 ∨ y = x2 ∨ . . . ∨ y = xn) if ci = Rn(y, x1, . . . , xn), and
• Fi = (¬(x = y) ∨ ¬(z = w)) if ci = S(x, y, z, w).

It is obvious that F is true if and only if (V,C) has a solution, that F can easily be constructed in
polynomial time, and that F contains as many variables as there are variables in V . The result then
follows from Theorem 9. �

SMT6∀(∅) is often referred to as equality logic and this problem is important in, for instance,
hardware verification [14]. In fact, a slightly more expressive logic known as the logic of equality
with uninterpreted functions (EUF) is extensively used in hardware verification. There are several
known algorithms that solve EUF in O(|V |!) = 2O(|V | log |V |) time — see, for instance, the discussion
in Section 12 in the article by Rodeh & Strichman [32]. We conclude, with the aid of Theorem 12,
that such algorithms are close to optimal.

To present another optimality result in SMT, we consider the well-known unit two variable per
inequality (UTVPI) class of constraints, i.e., SMT 6∀(UTVPI) where UTVPI for each integer b and
coefficients c1, c2 ∈ {−1, 1} contains the relation {(x, y) ∈ Z2 | c1 · x + c2 · y ≥ b}. The UTVPI
class has many applications in, for instance, abstract interpretation, spatial databases, and theorem
proving (cf. Schutt and Stuckey [37] and the references therein). It is known [38] that SMT 6∀(UTVPI)

can be solved in 2O(|V | log d) time where d = 2|V |(bmax + 1) + 1 and bmax is the maximum over the
absolute values of constant terms in the constraints. Using Theorem 12 we can prove that this
algorithm is close to optimal.

Theorem 13. SMT6∀(UTVPI) cannot be solved in 2o(|V | log d) time unless the ETH is false.

Proof. Assume there is an algorithm A that solves SMT6∀(UTVPI) in 2o(|V | log d) time. The formulas
constructed in Theorem 12 are SMT 6∀(UTVPI) formulas (degenerate ones, though, since they do not
contain UTVPI constraints). Thus, bmax for this class X of formulas is 0, implying that A can solve
SMT 6∀(UTVPI) restricted to X in 2o(n logn) time, contradicting Theorem 12. �

Difference logic is an interesting fragment of SMT6∀(UTVPI) where only constraints of the form
x− y ≥ b are allowed. Difference logic has found applications in, for example, verification of timed
automata [30] and analysis of dynamic fault trees [40]. The lower bound in Theorem 13 naturally
holds also in this restricted case.

10 PETER JONSSON AND VICTOR LAGERKVIST

3.3. No Easiest NP-Hard Infinite-Domain CSP. Our lower bounds suggest that equality CSPs
are rather different from finite-domain CSPs when viewed under the lens of fine-grained complexity. In
this section we prove yet another differentiating factor. For each finite A it is known that there exists
a constraint language ΓA with domain A such that CSP(ΓA) is NP-complete, and if an NP-complete
CSP(∆)1 over A is solvable in O(c|V |) time, then CSP(ΓA) is solvable in O(c|V |) time, too [22]. More
generally, if G is a set of constraint languages over A, we say that CSP(Γ) for some Γ ∈ G is the
easiest CSP problem in G if CSP(Γ) is solvable in O∗(c|V |) time whenever CSP(∆) for ∆ ∈ G is
solvable in O∗(c|V |) time.

Contrary to the finite-domain case we will prove that there does not exist an easiest NP-complete
equality CSP, unless the ETH is false. In order to prove this, we show that for every c > 1 there
exists an equality language Γc such that CSP(Γc) is NP-complete but solvable in O∗(c|V |) time.
First, recall from Example 4 that the ternary relation S = {(x, x, y), (x, y, y) | x, y ∈ N, x 6= y} has
an NP-complete CSP. We will show how S can be extended with additional arguments in order to
decrease the time complexity of the resulting CSP. If v = (v1, . . . , vk) and w = (w1, . . . , wk) are
two k-ary tuples of variables, x is a variable, and R is a binary relation, then we write R(x,v) for∧

1≤i≤k R(x, vi), R(v,w) for
∧

1≤i,j≤k R(vi, wj), and R(v) for
∧

1≤i,j≤k,i 6=j R(vi, vj).
For arbitrary k ≥ 1 now define

Sk1 (x, y, z,v,w) ≡
∧

s∈{x,y,z},t∈{v,w}

R 6=(s, t) ∧ R 6=(v,w),

Sk2 (x, y, z,v,w) ≡ x = y ∧ y 6= z ∧ Eq(v) ∧ R 6=(w),

Sk3 (x, y, z,v,w) ≡ x 6= y ∧ y = z ∧ R 6=(v) ∧ Eq(w), and

Sk(x, y, z,v,w) ≡ Sk1 (x, y, z,v,w) ∧
(
Sk2 (x, y, z,v,w) ∨ Sk3 (x, y, z,v,w)

)
where v = (v1, . . . , vk) and w = (w1, . . . , wk) are two distinct k-ary tuples of variables.
The general idea behind the relation Sk is that we want to take an existing relation S yielding an

NP-hard CSP and add a number of variables, depending on the given parameter k, so that these
variables depend on the original variables from S but cannot be identified with each other. The
latter point is important since it allows us to construct a branching algorithm with a sufficiently
good branching factor.

It is straightforward to verify that the problem CSP({Sk}) is NP-complete with the aid of
Theorem 2 since S ∈ 〈{Sk}〉. We will now prove that the fine-grained complexity of CSP({Sk})
decreases with increasing k, in the following sense.

Theorem 14. Let c > 1. Then there exists k such that CSP({Sk}) is solvable in O∗(c|V |) time.

Proof. We will present an algorithm Y for CSP({Sk}) which runs in O∗(2
n
k) time. The claim then

follows from choosing a sufficiently large k ≥ 1
log c . Thus, choose k ≥ 1 and let (V,C) be an instance

of CSP({Sk}), where |V | = n. Say that a set of inequality constraints L is consistent if L, viewed
as an instance of CSP({R 6=}), is satisfiable, and inconsistent otherwise. The consistency of a set
of inequality constraints can be determined in polynomial time since CSP({R6=}) is in P (from
Example 4). Consider the algorithm Y in Figure 1. The set L is used to keep track of inequality
constraints induced by the constraints in the instance.

For correctness, the algorithm branches on a constraint Sk(x, y, z,v,w) ∈ C, and either identifies
x with y, or y with z; in the process, it identifies variables and introduces inequality constraints
according to the definition of Sk. Furthermore, the algorithm answers ‘yes’ if and only if it
for each constraint Sk(x, y, z,v,w) ∈ C is possible to identify x with y, or y with z, in a non-
contradictory way, and answers ‘no’, otherwise. Concerning time complexity, note first that all

1For technical reasons ∆ contains all unary relations over A.

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 11

Algorithm Y ((V,C), L)

(1) If L is inconsistent, return no.
(2) If L is consistent and C = ∅, return ‘yes’.
(3) Pick a constraint Sk(x, y, z,v,w) ∈ C where v = (v1, . . . , vk) and w = (w1, . . . , wk).
(4) Return ‘no’ if:

(a) |{x, y, z}| = 1,
(b) {x, y, z} ∩ {v1, . . . , vk, w1, . . . , wk} 6= ∅,
(c) {v1, . . . , vk} ∩ {w1, . . . , wk} 6= ∅, or if
(d) |{v1, . . . , vk}| < k and |{w1, . . . , wk}| < k.

(5) If |{v1, . . . , vk}| < k and |{w1, . . . , wk}| = k then we identify y with x, v1 with every variable
in {v1, . . . , vk} \ {v1}, remove Sk(x, y, z,v,w) from C, add

R 6=(w),R6=(x,v),R 6=(x,w),R 6=(z,v),R 6=(z,w),R6=(x, z)

to L, and jump to step (2).
(6) The case |{v1, . . . , vk}| = k, |{w1, . . . , wk}| < k, is handled analogously.
(7) If none of the above cases apply we proceed as follows.

(a) If |{x, y, z}| = 2 then no branching is necessary, and depending on whether x = y or
x 6= y we jump to step (b) or step (c) below.

(b) Identify y with x, vj (2 ≤ j ≤ k) with v1, add
R 6=(w),R 6=(x,v),R6=(x,w),R 6=(z,v),R 6=(z,w),R 6=(x, z)
to L, remove Sk(x, y, z,v,w) from C, and let a1 = Y ((V,C), L).

(c) Identify z with y, wj (2 ≤ j ≤ k) with w1, add
R 6=(v),R 6=(x,v),R 6=(x,w),R6=(y,v),R 6=(y,w),R6=(x, y)
to L, remove Sk(x, y, z,v,w) from C, and let a2 = Y ((V,C), L).

(8) Answer ‘yes’ if a1 =‘yes’ or a2 =‘yes’, and otherwise ‘no’.

Figure 1. Algorithm for the proof of Theorem 14.

variables in v and w are distinct, once step (7) is reached. This follows from the tests undertaken
in step 4 where we systematically verify that {w1, . . . , wk} and {v1, . . . , vk} are disjoint and that
|{w1, . . . , wk}| = |{v1, . . . , vk}| = k. Furthermore, if (7)(b) or (7)(c) is reached then |{x, y, z}| = 3,
as otherwise the current instance is unsatisfiable (|{x, y, z}| = 1) or no branching was required
(|{x, y, z}| = 2). Thus, in each branch in step 7 we eliminate k variables via variable identification,
which implies that the time complexity is bounded by the recurrence T (n) = 2T (n− k) + poly(||I||).
Thus, algorithm Y has total running time O∗(2

n
k), and therefore it solves CSP({Sk}) in O∗(cn) time

for a sufficiently large k. �

We immediately obtain the following corollary.

Corollary 15. Let A = (A;R1, . . . , Rk) be a relational structure over a countably infinite A. Assume
that a first-order reduct Γ of A is NP-complete if and only if Γ pp-interprets 3-SAT. Let G = {Γ | Γ
is a first-order reduct of A and CSP(Γ) is NP-complete}. If G has an easiest CSP, then the ETH is
false.

Proof. For each c > 1 there exists a constraint language Γc ∈ G such that CSP(Γc) is NP-complete
and solvable in O∗(c|V |) time (Theorem 14). If G has an easiest NP-complete problem CSP(Γ) then
(1) CSP(Γ) pp-interprets 3-SAT, and (2) CSP(Γ) is solvable in O∗(c|V |) time for each c > 1. Thus,
CSP(Γ) is solvable in subexponential time, but this violates the ETH by Theorem 3.1 in [22]. �

12 PETER JONSSON AND VICTOR LAGERKVIST

Observe that the class of relational structures considered in Corollary 15 includes the NP-hard
cases of the CSP dichotomy conjecture over finitely bounded homogeneous structures [2]. It is worth
noting that after the Feder-Vardi conjecture on finite-domain CSPs was settled (independently) by
Bulatov [13] and Zhuk [41], a large part of the complexity-oriented CSP work has concentrated on
homogeneous infinite-domain CSPs.

3.4. Algebra and Fine-Grained Complexity of Equality CSPs. Our lower bounds suggest a
large difference in fine-grained complexity between equality CSPs and finite-domain CSPs. In this
section we take a different viewpoint and investigate this difference through the lens of universal
algebra and partial clone theory, with the aim of achieving an algebraic explanation of the results
obtained in the previous section. We will see a correspondence to the non-existence of certain relations
known as weak bases. Via the results from Section 3.3 we are first able to give a straightforward
proof conditional to the ETH (Theorem 19) which we then strengthen to an unconditional proof
(Theorem 21) but which requires more elaborate arguments.

3.4.1. Algebraic Background. The basic setting on the functional side is to consider partial functions
over a universe A. We view a partial function as a mapping of the form f : X → A for a set X ⊆ Ak
called the domain of f , and denoted by domain(f) = X. Then a partial function f of arity k is said
to be a partial polymorphism of an n-ary relation R over A if f(t1, . . . , tk) ∈ R for each sequence
of tuples t1, . . . , tk ∈ R such that (t1[i], . . . , tk[i]) ∈ domain(f) for each 1 ≤ i ≤ n. If f is total,
i.e., f is always defined, then f is simply called a polymorphism. If we let pPol(R) be the set of
all partial polymorphisms of a relation R, and pPol(Γ) =

⋂
R∈Γ pPol(R) be the set of all partial

polymorphisms of the set of relations Γ, the resulting sets of partial functions are called strong partial
clones. Similarly, we write Pol(Γ) for the set of all polymorphisms of Γ, and the resulting sets of
functions are known as clones. If F is a set of (total or partial) functions then we write Inv(F) to
denote the set of relations invariant under each function in F .

Let us also briefly mention some properties of strong partial clones. In this context the term strong
means that if f ∈ pPol(Γ) then f|X ∈ pPol(Γ) for each restriction of f on the domain X ⊆ domain(f),
i.e., domain(f|X) = X and f(x) = f|X(x) for each x ∈ X. More generally, if X 6⊆ domain(f) then
we let f|X be the restriction of f to the set domain(f) ∩X. Then strong partial clones of the form
pPol(Γ) are precisely the local strong partial clones over A [34], meaning that f ∈ pPol(Γ) for a
k-ary (partial) function f if f|X ∈ pPol(Γ) for each finite X ⊆ Ak. On the relational side strong
partial clones pPol(Γ) correspond to sets of relations closed under pp-definitions without existential
quantification, quantifier-free pp-definitions (qfpp-definitions). We write 〈Γ〉 6∃ for the smallest set of
relations containing Γ which is closed under qfpp-definitions. For ω-categorical structures we then
have the following useful correspondence between Inv(·) and pPol(·). The theorem follows almost
directly from Romov [33], but for completeness we include a proof sketch where the ω-categorical
case differs.

Theorem 16. Let Γ and ∆ be two ω-categorical sets of relations over a domain A. Then (1)
Inv(pPol(Γ)) = 〈Γ〉6∃ and (2) Γ ⊆ 〈∆〉6∃ if and only if pPol(∆) ⊆ pPol(Γ).

Proof. Since Γ is ω-categorical there for each n ≥ 1 only exists a finite number of first-order definable
relations of arity n (see, e.g., Theorem 6.3.1 in Hodges [17]). The first claim then follows from
Proposition 2 in Romov [33] since infinite intersections of relations and direct limits of relations can
always be expressed via qfpp-definitions over a finite number of relations from Γ. The second claim
then readily follows by standard arguments. �

There is a similar connection between Pol(·) and 〈·〉 which we omit since it is not directly useful for
our purposes (see, e.g., the introductory textbook by Lau [28]). Theorem 16 then implies that partial

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 13

polymorphisms determine the fine-grained complexity of CSPs in the following sense, as originally
proved by Jonsson et al. for Boolean CSPs [21].

Theorem 17. Let Γ and ∆ be two finite ω-categorical languages. If pPol(∆) ⊆ pPol(Γ) then there
exists a polynomial-time many-one reduction f from CSP(Γ) to CSP(∆) such that f((V,C)) = (V ′, C ′),
|V ′| ≤ |V |, for each instance (V,C) of CSP(Γ).

The lattice of strong partial clones is uncountable in the Boolean domain [16] and it is to a large
extent unexplored. Quite naturally, even less is known for arbitrary finite domains or infinite domains.
However, we can simplify the task of analysing strong partial clones by restricting our attention to
strong partial clones pPol(Γ) where Pol(Γ) = C for a fixed clone C. It is then of particular interest
to determine whether the set of strong partial clones of this form, sometimes called an interval, has a
largest element.

Definition 18. Let C be a clone over a finite or countably infinite domain A. If there exists a set
of relations Γw over A such that Pol(Γw) = C and pPol(Γw) =

⋃
{pPol(∆) | Pol(∆) = C} then we

say that Γw is a weak base of Inv(C).

Thus, pPol(Γw) is the largest element in {pPol(∆) | Pol(∆) = C}, which on the relational side
means that Γw ⊆ 〈∆〉 6∃ for every set of relations ∆ such that Pol(∆) = C. Hence, Γw is minimally
expressive with respect to qfpp-definitions among the generating sets of Inv(C), which explains the
name “weak base”. If A is finite and C can be generated by a finite set of functions over A, then it
is known that Inv(C) has a weak base [36]. For infinite domains the situation differs, and weak bases
do not necessarily exist. For both negative and positive examples, see Romov [35].

Might it then be possible that 〈Γ〉 admits a weak base whenever Γ is an equality language? And
which implications would that have if CSP(Γ) is NP-complete? Let E be the set of all first-order
definable relations over (N; =). Now, recall the definition of the relation S from Example 4. It is
then known that S ∈ 〈Γ〉 (and thus, CSP(Γ) is NP-complete) for an equality language Γ if and only
if 〈Γ〉 = E [8]. Thus, we are interested in determining whether E has a weak base, and we may now
observe that the existence of a weak base would have far-reaching implications.

Proposition 19. If E has a weak base then the ETH is false.

Proof. Assume that E has a weak base Γw. Assume first that Γw is infinite. It is then known
that there exists a finite set ∆ ⊆ Γw such that 〈Γw〉 = 〈∆〉, implying also that 〈Γw〉6∃ = 〈Γ〉 6∃ (see,
e.g., the second condition of Theorem 7.4.2 in Bodirsky [4]. Thus, assume that Γw is finite. But
then Theorem 17 together with the relations constructed in Theorem 14 implies that CSP(Γw) is
solvable in O(c|V |) time for every c > 1. However, then Theorem 5 implies that 3-SAT is solvable in
subexponential time, thus contradicting the ETH. �

3.4.2. The Non-Existence of a Weak Base. Due to Proposition 19 we strongly suspect that E does
not have a weak base, but we will see that one can unconditionally prove that E does not have a
weak base. In fact, we will prove a fairly general condition which determines the non-existence of a
weak base, which is particularly poignant in the relationship of NP-hard CSPs. For a universe A, let
RA6= = {(x, y) ∈ A2 | x 6= y} be the inequality relation over A.

Lemma 20. Let Γ be a finite, ω-categorical set of relations over an infinite domain A. If RA6= ∈ 〈Γ〉
then 〈Γ〉 does not admit a weak base.

Proof. Let f be an arbitrary k-ary function over A. Our goal is to show that there for every finite
X ⊂ domain(f) = Ak exists an equality constraint language Γ such that 〈Γ〉 = E and such that f|X
preserves Γ. If 〈Γ〉 admits a weak base Γw then, clearly, fX ∈ pPol(Γw) for every finite X ⊂ Ak,

14 PETER JONSSON AND VICTOR LAGERKVIST

which implies that f ∈ pPol(Γw) for every function f (since pPol(Γw) is local). This contradicts the
assumption that RA6= ∈ 〈Γ〉 since RA6=, for example, is not preserved by any constant function over D.

Hence, let X ⊂ Ak be finite. Let N = {d1, . . . , dk | (d1, . . . , dk) ∈ X} be the set of values occuring
in tuples in X, and let |N | = n. Let Γ = {R1, . . . , Rl} and define the relation R to be the Cartesian
product of all relations in Γ, i.e., R = R1 × . . .×Rl. Let m be the arity of the relation R. Clearly,
〈{R}〉 = 〈Γ〉, since Γ can pp-define R via a conjunction, and R can pp-define each relation in Γ by
projecting away every other argument. Define the (m+ n+ 1)-ary relation Rn such that

Rn(x1, . . . , xm, y1, . . . , yn, yn+1) ≡

R(x1, . . . , xm) ∧
∧

i,j∈{1,...,n+1},i6=j

RA6=(yi, yj).

This relation is pp-definable by R since we assumed that R can pp-define the inequality relation RA6= ,
and since

R(x1, . . . , xm) ≡ ∃y1, . . . , yn+1 : Rn(x1, . . . , xm, y1, . . . , yn, yn+1),

we also have that 〈{R}〉 = 〈{Rn}〉 = 〈Γ〉. Next, we claim that f|X preserves Rn. Consider any
sequence of tuples t1, . . . , tk ∈ Rn. Due to the definition of Rn we then have that t[m+ i] 6= t[m+ j]
for any distinct i, j ∈ {1, . . . , n + 1}. Hence, |{t[i] | 1 ≤ i ≤ m + n + 1}| > N , meaning that
f(t1, . . . , tk) is undefined, and that f preserves Rn.

Last, assume there exists Γw such that pPol(Γw) =
⋃
〈∆〉=〈Γ〉 pPol(∆), i.e., that Γw is a weak base of

〈Γ〉. Then, by the above construction, f|X ∈ pPol(Γw) for every finiteX since pPol({Rn}) ⊆ pPol(Γw),
which then implies that f ∈ pPol(Γw) since pPol(Γw) is local. Hence, the strong partial clone pPol(Γw)
would need to contain all total functions over A. But then Γw cannot be a weak base of 〈Γ〉 since the
assumption that RA6= ∈ 〈Γ〉 = 〈Γw〉 e.g. implies that Γw cannot be preserved by any constant function
over A. �

This condition is sufficient to establish non-existence of weak bases in the context of both equality
languages and temporal languages.

Theorem 21. E does not have a weak base.

Proof. Since E is the set of all first-order definable relations it clearly follows that R 6= ∈ E . But since
all equality languages are ω-categorical, and since E = 〈{S}〉, the result then directly follows from
Lemma 20. �

Observe that Theorem 21 together with Theorem 16 implies that⋂
{〈Γ〉 6∃ | Γ is an equality constraint language, 〈Γ〉 = E} = 〈Eq〉 6∃.

To see this, assume otherwise, i.e., that there exists R /∈ 〈Eq〉 6∃ such that R ∈ 〈∆〉6∃ for Γ such that
〈Γ〉 = E . This, however, would imply that pPol(Eq) ⊃ pPol(R) ⊇

⋃
〈Γ〉=E pPol(Γ). This contradicts

the proof of Theorem 21 since it is shown that
⋃
〈Γ〉=E contains all (total and partial) functions. One

interpretation of this result is that equality languages resulting in NP-hard CSPs have rather little in
common with regards to qfpp-definability. For example, we may conclude that not all such languages
can qfpp-define the inequality relation NeqN.

Last, we will show that the non-existence of weak bases is not solely a property of equality CSPs,
and that an analogous property can be proven also for temporal CSPs, i.e., CSP(Γ) where each
relation in Γ has a first-order definition in the structure (Q;<).

This class of CSPs is a strict generalisation of equality CSPs and includes many natural problems,
e.g., the betweenness problem and the cyclic ordering problem. For many other examples, see Bodirsky

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 15

& Kára [9]. Let T be the set of all first-order definable relations over (Q;<). For x1, . . . , xk ∈ Q, we
write −−−−−→x1 . . . xk when x1 < · · · < xk. The following dichotomy holds for temporal CSPs.
Theorem 22. (Bodirsky and Kára [9]) Let Γ ⊆ T be a temporal constraint language. If there is a
primitive positive definition of Betw, Cycl, Sep, T3, −T3, or S in Γ, where

(1) Betw = {(x, y, z) ∈ Q3 | −−→xyz ∨ −−→zyx},
(2) Cycl = {(x, y, z) ∈ Q3 | −−→xyz ∨ −−→yzx ∨ −−→zxy},
(3) Sep = {(x1, y1, x2, y2) ∈ Q4 | −−−−−−→x1x2y1y2 ∨ −−−−−−→x1y2y1x2 ∨−−−−−−→y1x2x1y2 ∨ −−−−−−→y1y2x1x2 ∨−−−−−−→x2x1y2y1 ∨ −−−−−−→x2y1y2x1 ∨−−−−−−→y2x1x2y1 ∨ −−−−−−→y2y1x2x1},
(4) T3 = {(x, y, z) ∈ Q3 | x = y < z ∨ x = z < y}, and
(5) −T3 = {(−x,−y,−z) | (x, y, z) ∈ T3},

then CSP(Γ) is NP-complete. Otherwise, CSP(Γ) is tractable.

With the help of this classification we can then prove that 〈Γ〉 cannot admit a weak base whenever
CSP(Γ) is NP-complete (assuming P 6= NP).

Theorem 23. Let Γ ⊆ T be a finite temporal language. If Γ pp-defines Betw, Cycl, Sep, T3, −T3,
or S, then 〈Γ〉 does not admit a weak base.

Proof. We want to apply Lemma 20, and thus need to show that Γ can pp-define the inequality
relation RQ

6= over Q. To prove this it is sufficient to show that Betw, Cycl, Sep, T3, −T3, and S,
can all pp-define the inequality relation, which can be done with straightforward arguments. For
example, RQ

6=(x, y) ≡ ∃z : Betw(x, y, z), and RQ
6=(x, y) ≡ ∃z : Cycl(x, y, z). The result then directly

follows from Lemma 20. �

4. Upper Bounds for Equality CSPs and Reducts of Unary Structures

The lower bounds established in Section 3 suggest that we cannot construct an O(c|V |) time
algorithm (c > 1) which is applicable to arbitrary equality languages. However, if we fix a finite
equality language Γ, this still leaves the possibility of constructing an O(c|V |) time algorithm for a
constant c depending on Γ. In this section we tackle this problem, and the more general problem of
constructing faster exponential-time algorithms for CSP(Γ) whenever Γ is a finite unary reduct. We
begin in Section 4.1 by constructing an improved algorithm for the case when Γ is a finite equality
language, and in Section 4.2 consider the more involved case of reducts of unary structures.

4.1. An Algorithm for Finite Equality Languages. We begin by describing a novel algorithm
for CSP(Γ), where Γ is a finite equality language with maximum arity α, with a running time

of O∗((α(α−1)
2)|V |). Thus, the algorithm runs in O∗(c|V |) time for a constant c depending on Γ,

which is a significant improvement over the algorithm proposed by [18] which solves CSP(Γ) in

O∗(2|V |·log(
0.792|V |
ln(|V |+1)

)) time.

Theorem 24. The CSP of an arbitrary finite equality language Γ can be solved in O∗
((

α(α−1)
2

)|V |)
time where α = max{ar(R) | R ∈ Γ}.

Proof. Consider the algorithm A for instances of CSP(Γ) presented in Figure 2. We begin by proving
correctness by induction over |V | = n. If n = 1, then the tests in steps (3) and (4) provide the correct
answer. Assume the algorithm is correct when n > 1. Let I = (V,C) be an instance where |V | = n+1.
First, assume that I has an injective solution. Then it is readily verified that f : V → {1, . . . , |V |}
defined as f(xi) = i for each xi ∈ V = {x1, . . . , x|V |}, is a solution to I as well (in technical terms

16 PETER JONSSON AND VICTOR LAGERKVIST

Algorithm A((V,C)):

(1) Assume V = {x1, . . . , xn}.
(2) Define s : V → {1, . . . , n} such that s(xi) = i.
(3) If s is a solution to I, then return ‘yes’.
(4) If s is not a solution to I and |V | = 1, then return ‘no’.
(5) Arbitrarily choose a constraint R(xi1 , . . . , xip) that is not satisfied by s.
(6) For each 1 ≤ j < k ≤ p, let Ij,k denote the instance obtained by identifying xij with xik in I.

If A(Ij,k) = ‘yes’ for some Ij,k, then return ‘yes’.
(7) Return ‘no’.

Figure 2. Algorithm for equality languages.

this follows from the well-known fact that the automorphisms of Γ is the full symmetric group [8]).
Hence, the algorithm answers ‘yes’ via step (3). Otherwise I does not have an injective solution
and at least one constraint c = R(xi1 , . . . , xip) ∈ C is not satisfied by the function s. This implies
that (at least) two variables in {xi1 , . . . , xip} must be assigned the same value. This is systematically
tested in step (6), and the correctness follows from the inductive hypothesis.

Concerning the time complexity, it is bounded from above by the recurrence T (n) = α(α−1)
2 ·

T (n − 1) + poly(||I||) since ip ≤ α for each possible choice of constraint R(xi1 , . . . , xip). Thus,

T (n) ∈ O∗((α(α−1)
2)n), and we get the desired bound on the time complexity. �

4.2. An Algorithm for Finite Reducts of Unary Structures. We recall that a structure
A = (A;U1, U2, . . . , Uk) is unary if U1, U2, . . . , Uk are unary relations. The classical complexity of the
constraint satisfaction problem for finite first-order reducts of unary structures has been thoroughly
analysed by Bodirsky & Mottet [10] and Bodirsky & Bodor [5]: they prove that such problems
are either polynomial-time solvable or NP-complete. We refer the reader to their articles for more
background information about unary structures and their reducts.

Throughout this section we let Θ = (N;U1, . . . , Uk), k ≥ 1, be an arbitrary unary structure where
each Ui ⊆ N, and we let Γ = {R1, . . . , Rm} be a finite first-order reduct of Θ. We can (without loss
of generality) focus on structures with a countably infinite domain since every reduct of a unary
structure has the same CSP as a reduct of a structure on a countably infinite domain. Since Θ
admits quantifier-elimination, and since Γ is finite, we may without loss of generality assume that
each Ri is defined via a DNF formula where an atom consists of either a unary relation from Θ or an
equality constraint. Let α denote the maximum arity of Γ, i.e. α = max{ar(R1), . . . , ar(Rm)}.

Our algorithm for CSP(Γ) is based on the following steps. First, we show that there for each
instance I = (V,C) of CSP(Γ) exists a particular set of functions F with c|V | elements (where c is a
constant that only depends on Γ). These functions can be viewed as “high-level descriptions” of the
solution we are searching for. Second, we prove that for each f ∈ F , one can construct an instance
If of CSP(Γeq) where Γeq is a finite equality language that only depends on the choice of Γ. The
instances If are constructed in such a way that I is satisfiable if and only if If is satisfiable for some
f ∈ F .

We proceed with a few definitions. For every set S ⊆ N we denote the complement N \ S of S by
S̄. Define U(S), S ⊆ {1, . . . , k}, such that

U(S) =
⋂
i∈S

Ui ∩
⋂
i 6∈S

Ūi,

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 17

and let S = {U(S) | S ⊆ {1, . . . , k}}. One may view the set S as a “basis” for U1, . . . , Uk in the sense
that each Ui is the union of some elements in S. Let

K =
⋃
{U(S) | S ⊆ {1, . . . , k} and U(S) is finite}

and

U = {{e} | e ∈ K} ∪ {U(S) | S ⊆ {1, . . . , k} and U(S) is infinite}.
The set U can be viewed as a refinement of S: it is still a basis for U1, . . . , Uk but it contains
more elements. The functions in the set F that we briefly discussed earlier have the set U as their
codomain.

Lemma 25. The following statements are true.

(1) U is a partitioning of N,
(2) U is finite, and
(3) for every Ui, 1 ≤ i ≤ k, there exist S1, . . . , Sp ∈ U such that Ui =

⋃p
j=1 Sj.

Proof. We first make the following claims concerning the set S.

(1) S is a partitioning of N,
(2) S is finite, and
(3) for every Ui, 1 ≤ i ≤ k, there exist S1, . . . , Sp ∈ S such that Ui =

⋃p
j=1 Sj .

We prove each case in turn.

(1) Arbitrarily choose p ∈ N. Let S = {i | p ∈ Ui} and note that p ∈ U(S). In particular, if

S = ∅, then U(∅) =
⋂k
i=1 Ūi and p ∈ U(∅). We conclude that every element in N appears

in at least one of the sets U(S). Assume, with the aim of getting a contradiction, that
p ∈ U(S), p ∈ U(S′), and S 6= S′ where S′ ⊆ {1, . . . , k}. It is clear that the only sets among
U1, . . . , Uk, Ū1, . . . , Ūk that contain p are Ui, i ∈ S, and Ūj , j ∈ {1, . . . , k} \ S. Thus, there
is at least one set in

X = {Ui | i ∈ S′} ∪ {Ūj | j ∈ {1, . . . , k} \ S′}
that does not contain p. We know that U(S′) =

⋂
X so p 6∈ U(S′) and this leads to a

contradiction.
(2) S contains at most 2k elements.
(3) Arbitrarily choose Ui, 1 ≤ i ≤ k. Let T =

⋃
{X | X ⊆ Ui, X ∈ S} and note that T ⊆ Ui.

We show that Ui ⊆ T and conclude that there exists a set of elements in S whose union
equals Ui. Arbitrarily choose e ∈ Ui and assume to the contrary that e 6∈ T . There exists
exactly one set E ∈ S that contains e since S is a partitioning of N. We know that E = U(S)
for some S ⊆ {1, . . . , k} by the definition of S. If i ∈ S, then E ⊆ Ui and {e} ⊆ E ⊆ Ui ⊆ T
which leads to a contradiction. Hence, i 6∈ S and E = E ∩ Ūi by the definition of U(S). This
implies that e 6∈ E since e ∈ Ui and this contradicts the choice of E.

The statements for the set U now become straightforward consequences. The family of sets U
is still a partitioning of N since we have only “refined” the finite sets of S into single-element sets.
Since S is a finite set, U is finite, too. Finally, every Ui, 1 ≤ i ≤ k, can be expressed as a union of
elements in U since this is possible in S. �

Let us remark that a partition where every part is either infinite or one-element (such as U) is
called a stabilised partition in the terminology of Bodirsky & Mottet [10]. We define the algorithm D
(see Figure 3) for instances (V,C) of CSP(Γ) and functions f : V → U. Algorithm D checks whether
a given instance (V,C) has a solution that respects the function f : we say that a solution g : V → N
to (V,C) respects f if g(x) ∈ f(x) for all x ∈ V . If a conjunct becomes empty, then we view it (as
usual) as satisfiable and it can be removed. If a disjunction becomes empty, then it is not satisfiable

18 PETER JONSSON AND VICTOR LAGERKVIST

Algorithm D((V,C), f):

(1) For every (`1 ∨ . . . ∨ `p) ∈ C, where `i = κi1 ∧ . . . ∧ κik :
(a) Remove `i, 1 ≤ i ≤ p, if there exists i1 ≤ ij ≤ ik such that κij = Uq(x) where

f(x) ∩ Uq = ∅,
(b) Remove `i, 1 ≤ i ≤ p, if there exists i1 ≤ ij ≤ ik such that κij = ¬Uq(x) where

f(x) ⊆ Uq.
(c) Remove κij from `i if κij = Uq(x) and f(x) ⊆ Uq.
(d) Remove κij from `i if κij = ¬Uq(x) and f(x) ∩ Uq = ∅.

(2) Let C ′ denote the new set of formulas.
(3) Let C ′′ = C ′ ∪ {x 6= y | f(x) 6= f(y), and x, y ∈ V }

∪ {x = y | f(x) = f(y) = S, |S| = 1, and x, y ∈ V }.
(4) Return A((V,C ′′)).

Figure 3. Algorithm for reducts of unary structures.

and the algorithm can immediately report that the instance is not satisfiable. The algorithm A that
appears within D is the algorithm for equality languages presented in Section 4.1. It will only be
applied to constraints that are based on equality relations with arity at most α. We let Γeq denote
this set of equality relations. The language Γeq is finite so algorithm A solves CSP(Γeq) in time

O∗
((

α(α−1)
2

)|V |)
by Theorem 24.

Our aim is now to prove that an instance I = (V,C) of CSP(Γ) is satisfiable if and only if
there exists a function f : V → U such that D(I, f) answers ‘yes’. First of all, we verify that the
computation of the instance (V,C ′′) is an instance of CSP(Γeq), implying that the call to algorithm
A in step (4) is valid. For this purpose it is sufficient to show that S ⊆ Ui or S ∩ Ui = ∅ for each
Ui ∈ {U1, . . . , Uk} and S ∈ U, since the filtering in step (1) then guarantees that any constraint
involving Ui is replaced by a constraint over Γeq.

Lemma 26. Arbitrarily choose Ui, 1 ≤ i ≤ k, and a set S ∈ U. Either S ⊆ Ui or S ∩ Ui = ∅.

Proof. There exist S1, . . . , Sp ∈ U such that Ui =
⋃p
j=1 Sj by the third statement of Lemma 25.

Since U is a partitioning of N (by the first statement of Lemma 25), this decomposition is unique. If
S ∈ {S1, . . . , Sp}, then S ⊆ Ui. Otherwise, S ∩ Ui = ∅. �

We continue the correctness proof by establishing a close connection between (V,C) and (V,C ′′).

Lemma 27. Let (V,C) be an instance of CSP(Γ), let f : V → U, and let (V,C ′′) be the instance
computed in step (3) of the algorithm D((V,C), f). Then (V,C) has a solution g : V → N that
respects f if and only if the instance (V,C ′′) has such a solution.

Proof. We begin by showing that (V,C) has a solution g : V → N which respects f if and only if the
instance (V,C ′) computed in step 1 of the algorithm has such a solution. Therefore, first assume
that (V,C) has a solution g that respects f . If a formula in C contains the atom Ui(x) (respectively,
¬Ui(x)) and f(x)∩Ui = ∅ (respectively, f(x) ⊆ Ui), then we can safely remove the entire conjunction
containing Ui(x) since it cannot be satisfied by a solution that respects f (such as g). Furthermore,
every atom Ui(x) (respectively, ¬Ui(x)) such that f(x) ⊆ Ui (respectively, f(x)∩Ui = ∅) is vacuously
satisifed by any solution that respects f so such atoms can be removed. We conclude that g is a
solution to (V,C ′).

Second, assume that (V,C ′) has a solution g : V → N that respects f . First note that the atoms
that are removed in step 1(c) and 1(d) are satisfied by the solution f . Since g respects f , these atoms

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 19

are satisfied by g, too. Thus, if we take all constraints in C ′ and extend them with the conjuncts and
atoms that were removed in step 1, then g is a solution to this set of constraints. Note here that
adding back the removed conjuncts only makes the instance easier in the sense that it is satisfied by
a potentially larger set of variable assignments. Clearly, the new set of constraints equals C and we
conclude that g is a solution to (V,C).

Now, assume that g : V → N is a solution to (V,C ′) that respects f . The additional constraints
{x 6= y | f(x) 6= f(y)} are always satisfied when we are only interested in solutions that respect
f—this follows from the fact that U is a partitioning of N by the first statement of Lemma 25. The
constraints {x = y | f(x) = f(y) = S and |S| = 1} are always satisfied when the domain of a variable
consists of a single element. Thus, g is a solution to (V,C ′′).

Last, assume that (V,C ′′) has a solution g : V → N that respects f . Since C ′ ⊆ C ′′, C ′ can be
viewed as a relaxation of C ′′. Consequently, g is a solution to (V,C ′) which respects f . �

Lemma 27 gives us a straightforward way of proving the correctness of algorithm D.

Lemma 28. Let (V,C) be an instance of CSP(Γ), and let f : V → U. Then the algorithm D accepts
((V,C), f) if and only if (V,C) has a solution that respects f .

Proof. For the first direction, assume that D accepts the instance ((V,C), f). This implies that there
exists a solution g : V → N to the instance (V,C ′′). Let DS = {g(x) | f(x) = S, x ∈ V } for every
S ∈ U, i.e. DS contains the values that g assigns to the variables satisfying f(x) = S. We make two
observations concerning the sets DS .

(1) DS ∩DS′ = ∅ whenever S 6= S′. This a consequence of the construction of C ′′: the constraint
x 6= y is in C ′′ whenever f(x) 6= f(y).

(2) |DS | ≤ 1 if |S| = 1. Once again, this a consequence of the construction of C ′′: the constraint
x = y is in C ′′ whenever f(x) = f(y) = S and |S| = 1.

These two observations imply that there exist injective functions hS from DS to S for all S ∈ U
(recall that a set in U is either infinite or one-element). The sets in {DS | S ∈ U} are pairwise
disjoint and so are the sets in U. Hence, there exists an injective function h : N → N such that
{h(d) | d ∈ DS} ⊆ S for all S ∈ U. We see that the function g′ : V → N defined by g′(x) = h(g(x))
is a solution to (V,C ′′) that respects f . By Lemma 27, there is a solution to (V,C) that respects f .

For the other direction, assume that D does not accept the instance ((V,C), f). This implies
that there does not exist any solution to the instance (V,C ′′). By Lemma 27, there is no solution
g : V → N to (V,C) that respects f . �

We can now state and prove the main result by combining the results presented in this section.

Theorem 29. CSP(Γ) can be solved in O∗((|U| · α(α−1)
2)|V |) time.

Proof. We begin by proving that algorithm D runs in O∗((α(α−1)
2)|V |) time. Let I = ((V,C), f)

denote an arbitrary input instance. First of all, each test performed in step 1 can be performed in
constant time since the constraint language Γ is fixed and U is finite: the information needed for
verifying if f(x)∩Ui = ∅ and f(x) ⊆ Ui can be precomputed and stored in a finite table. Furthermore,
the operations in step 1 do not increase the arity of the formulas in I, and the formulas added in step

3 all have arity 2. Thus, the algorithm D runs in O∗(c|V |) time where c = max{2, α(α−1)
2 }. However,

if the arity of the formulas in C are at most 2, then the algorithm runs in polynomial time since C ′′

only contains formulas of arity at most 2—such a formula is either x = y or x 6= y.
We continue by proving the main result. Let I = (V,C) denote an arbitrary instance of CSP(Γ).

Let F denote the set of functions from V to U and note that |F | = |U||V | is finite since U is a finite
set by the second statement of Lemma 25. If (V,C) has a solution g, then there exists an f ∈ F such

20 PETER JONSSON AND VICTOR LAGERKVIST

that g respects f since U is a partitioning of N by the first statement of Lemma 25. We can thus
check the satisfiability of I by applying the algorithm D (which is correct by Lemma 28) to the set of

input instances {((V,C), f) | f ∈ F}. The time complexity is consequently O∗((|U| · α(α−1)
2)|V |). �

5. Concluding Remarks

We have studied the fine-grained complexity of infinite-domain equality CSPs, and have proven
that this class of problems differ from finite-domain CSPs in almost every way conceivable. Despite
the disarray of this complexity landscape, it is possible to outline several concrete future research
directions. First, since we know that all finite equality languages can be solved in O(c|V |) time and
that there exists infinite equality languages not solvable in O(c|V |) time for any c > 1, is it possible
to prove a complete dichotomy separating the equality language CSPs that are solvable in O(c|V |)
time from those that are not?

More generally, one may ask the following question: which infinite-domain CSPs are solvable in
O(c|V |) time? This is naturally a question that is too broad so it needs to be narrowed down. An
interesting starting point is the class of temporal CSPs, i.e., CSPs over first-order reducts of (Q;<).
Temporal languages are well-behaved from a model theoretic viewpoint (they are ω-categorical), admit
a dichotomy between P and NP-complete, and are always solvable in O∗(2|V | log |V |) time, so one
would expect similarities between equality CSPs and temporal CSPs when it comes to fine-grained
complexity. Thus, which temporal CSPs are solvable in O(c|V |) time? Despite the aforementioned
similarities there are still large differences to equality CSPs. For example, there exists a finite
first-order reduct Γ of (Q;<) such that CSP(Γ) is not solvable in 2o(|V | log |V |) time without violating
the r-ETH [19].

Last, we have seen that the class of NP-complete equality CSPs does not admit an “easiest
problem” unless the ETH is violated, contrary to satisfiability problems [21] and finite-domain
CSPs [22]. This discrepancy stems from the constructions in Section 3.3 where we proved that one
can construct NP-hard equality CSPs with arbitrarily low fine-grained complexity. Furthermore, we
gave an algebraic explanation of this difference, namely the non-existence of a weak base for the
set of all equality relations. Here, it is important to stress that whether a set of relations admits a
weak base or not is a purely algebraic property and it can be formulated entirely without mentioning
either CSPs or complexity theory. Interestingly, we first gave a conditional proof under the ETH
(Proposition 19), and later strengthened this to an unconditional proof (Theorem 21). Furthermore,
the conditional proof turned out to be simpler and more straightforward than the algebraic proof.
To the best of our knowledge, proofs of algebraic properties under the ETH are exceedingly rare, if
not non-existent, and this raises the question on whether this is an isolated incidence, or a fragment
of a larger phenomena.

Acknowledgements

The authors are partially supported by the Swedish Research Council (VR) under grants 2017-
04112, 2019-03690, and 2021-04371.

References

[1] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In A. Biere, M. Heule,

H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, pages 825–885. IOS Press, 2009.

[2] L. Barto and M. Pinsker. The algebraic dichotomy conjecture for infinite domain constraint satisfaction problems.

In Proc. 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS-2016), 2016.
[3] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185 of Frontiers in

Artificial Intelligence and Applications. IOS Press, 2009.

GENERAL LOWER BOUNDS AND IMPROVED ALGORITHMS FOR INFINITE-DOMAIN CSPS 21

[4] M. Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University Press, 2021.
[5] M. Bodirsky and B. Bodor. Canonical polymorphisms of Ramsey structures and the unique interpolation property.

In Proc. 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS-2021), pages 1–13, 2021.

[6] M. Bodirsky and M. Grohe. Non-dichotomies in constraint satisfaction complexity. In Proc. 35th International
Colloquium on Automata, Languages and Programming (ICALP-2008), pages 184–196, 2008.

[7] M. Bodirsky and P. Jonsson. A model-theoretic view on qualitative constraint reasoning. Journal of Artificial

Intelligence Research, 58:339–385, 2017.
[8] M. Bodirsky and J. Kára. The complexity of equality constraint languages. Theory of Computing Systems,

43(2):136–158, 2008.

[9] M. Bodirsky and J. Kára. The complexity of temporal constraint satisfaction problems. Journal of the ACM,
57(2):9:1–9:41, 2010.

[10] M. Bodirsky and A. Mottet. A dichotomy for first-order reducts of unary structures. Logical Methods in Computer
Science, 14(2), 2018.

[11] M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. Logical Methods in Computer Science,

10(3), 2014.
[12] M. Bojańczyk, B. Klin, S. Lasota, and S. Toruńczyk. Turing machines with atoms. In Proc. 28th Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS-2013), pages 183–192, 2013.

[13] A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th Annual Symposium on Foundations of
Computer Science (FOCS-2017), 2017.

[14] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control. In Proc. 6th International

Conference on Computer Aided Verification (CAV-1994), pages 68–80, 1994.
[15] F. Dylla, J. H. Lee, T. Mossakowski, T. Schneider, A. V. Delden, J. V. D. Ven, and D. Wolter. A survey of

qualitative spatial and temporal calculi: Algebraic and computational properties. ACM Computing Surveys,

50(1):7:1–7:39, Apr. 2017.
[16] R. V. Freivald. A completeness criterion for partial functions of logic and many-valued logic algebras. Soviet

Physics Doklady, 11:288, 1966.
[17] W. Hodges. A Shorter Model Theory. Cambridge University Press, New York, NY, USA, 1997.

[18] P. Jonsson and V. Lagerkvist. An initial study of time complexity in infinite-domain constraint satisfaction.
Artificial Intelligence, 245:115–133, 2017.

[19] P. Jonsson and V. Lagerkvist. Why are CSPs based on partition schemes computationally hard? In 43rd

International Symposium on Mathematical Foundations of Computer Science (MFCS-2018), pages 43:1–43:15,
2018.

[20] P. Jonsson and V. Lagerkvist. Lower bounds and faster algorithms for equality constraints. In Proc. 29th

International Joint Conference on Artificial Intelligence (IJCAI-2020), pages 1784–1790, 2020.

[21] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones and the time complexity of SAT
problems. Journal of Computer and System Sciences, 84:52–78, 2017.

[22] P. Jonsson, V. Lagerkvist, and B. Roy. Fine-grained time complexity of constraint satisfaction problems. ACM
Transactions on Computation Theory, 13(1):2:1–2:32, 2021.

[23] P. Jonsson, V. Lagerkvist, J. Schmidt, and H. Uppman. The exponential-time hypothesis and the relative
complexity of optimization and logical reasoning problems. Theoretical Computer Science, 892:1–24, 2021.

[24] B. Klin, S. Lasota, J. Ochremiak, and S. Toruńczyk. Turing machines with atoms, constraint satisfaction

problems, and descriptive complexity. In Proc. Joint Meeting of the Twenty-Third EACSL Annual Conference on

Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(CSL-LICS-2014), pages 58:1–58:10, 2014.

[25] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The tractable subalgebras of Allen’s
interval algebra. Journal of the ACM, 50(5):591–640, Sept. 2003.

[26] V. Lagerkvist. Precise upper and lower bounds for the monotone constraint satisfaction problem. In Proc.

Mathematical Foundations of Computer Science (MFCS-2015), pages 357–368, 2015.

[27] V. Lagerkvist and M. Wahlström. Sparsification of SAT and CSP problems via tractable extensions. ACM
Transactions on Compututation Theory, 12(2):13:1–13:29, 2020.

[28] D. Lau. Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone Theory. Springer-Verlag
New York, 2006.

[29] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential parameterized problems. SIAM Journal on

Computing, 47(3):675–702, 2018.
[30] P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, O. Maler, and N. Jain. Verification of timed automata via

satisfiability checking. In Proc. 7th International Symposium on Formal Techniques in Real-Time and Fault-

Tolerant Systems (FTRTFT-2002), pages 225–244, 2002.

22 PETER JONSSON AND VICTOR LAGERKVIST

[31] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the
region connection calculus. Artificial Intelligence, 108(1-2):69–123, 1999.

[32] Y. Rodeh and O. Strichman. Building small equality graphs for deciding equality logic with uninterpreted functions.

Information and Computation, 204(1):26–59, 2006.
[33] B. Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–167, 1981.

[34] B. A. Romov. Extendable local partial clones. Discrete Mathematics, 308(17):3744–3760, 2008.

[35] B. A. Romov. Endpoints of associated intervals for local clones on an infinite set. Algebra Universalis, 79(4):82,
2018.

[36] H. Schnoor and I. Schnoor. Partial polymorphisms and constraint satisfaction problems. In N. Creignou, P. G.

Kolaitis, and H. Vollmer, editors, Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science,
pages 229–254. Springer Berlin Heidelberg, 2008.

[37] A. Schutt and P. J. Stuckey. Incremental satisfiability and implication for UTVPI constraints. INFORMS Journal
on Computing, 22(4):514–527, 2010.

[38] S. A. Seshia, K. Subramani, and R. E. Bryant. On solving Boolean combinations of UTVPI constraints. Journal

on Satisfiability, Boolean Modeling and Computation, 3(1-2):67–90, 2007.
[39] P. Traxler. The time complexity of constraint satisfaction. In Proc. 3rd International Workshop on Parameterized

and Exact Computation (IWPEC-2008), pages 190–201, 2008.

[40] M. Volk, S. Junges, and J. Katoen. Fast dynamic fault tree analysis by model checking techniques. IEEE
Transactions on Industrial Informatics, 14(1):370–379, 2018.

[41] D. Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78, 2020.

(P. Jonsson) Dep. Computer and Information Science,, Linköpings Universitet, Sweden

Email address: peter.jonsson@liu.se

(V. Lagerkvist) Dep. Computer and Information Science,, Linköpings Universitet, Sweden

Email address: victor.lagerkvist@liu.se

