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Abstract

A kernelization algorithm for a computational problem is a procedure which compresses an instance
into an equivalent instance whose size is bounded with respect to a complexity parameter. For the Boolean
satisfiability problem (SAT), and the constraint satisfaction problem (CSP), there exist many results
concerning upper and lower bounds for kernelizability of specific problems, but it is safe to say that we
lack general methods to determine whether a given SAT problem admits a kernel of a particular size. This
could be contrasted to the currently flourishing research program of determining the classical complexity
of finite-domain CSP problems, where almost all non-trivial tractable classes have been identified with the
help of algebraic properties. In this paper, we take an algebraic approach to the problem of characterizing
the kernelization limits of NP-hard SAT and CSP problems, parameterized by the number of variables.
Our main focus is on problems admitting linear kernels, as has, somewhat surprisingly, previously been
shown to exist. We show that a CSP problem has a kernel with O(n) constraints if it can be embedded
(via a domain extension) into a CSP problem which is preserved by a Maltsev operation. We also study
extensions of this towards SAT and CSP problems with kernels with O(nc) constraints, c > 1, based on
embeddings into CSP problems preserved by a k-edge operation, k ≤ c+ 1. These results follow via a
variant of the celebrated few subpowers algorithm. In the complementary direction, we give indication
that the Maltsev condition might be a complete characterization of SAT problems with linear kernels,
by showing that an algebraic condition that is shared by all problems with a Maltsev embedding is also
necessary for the existence of a linear kernel unless NP ⊆ co-NP/poly.

1 Introduction
Kernelization is a preprocessing technique based on reducing an instance of a computationally hard
problem in polynomial time to an equivalent instance, a kernel, whose size is bounded by a function
f with respect to a given complexity parameter. The function f is referred to as the size of the kernel,
and if the size is polynomially bounded we say that the problem admits a polynomial kernel. A classical
example is Vertex Cover, which admits a kernel with 2k vertices, where k denotes the size of the
cover [29]. Polynomial kernels are of great interest in parameterized complexity, as well as carrying
practical significance in speeding up subsequent computations (e.g., the winning contribution in the 2016
PACE challenge for Feedback Vertex Set used a novel kernelization step as a key component (see
https://pacechallenge.wordpress.com/).
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When the complexity parameter is a size parameter, e.g., the number of variables n, then such a size
reduction is also referred to as sparsification (although a sparsification is not always required to run in
polynomial time). A prominent example is the famous sparsification lemma that underpins research
into the Exponential Time Hypothesis [17], which shows that for every k there is a subexponential-time
reduction from k-SAT on n variables to k-SAT on O(n) clauses, and hence Õ(n) bits in size. However,
the super-polynomial running time is essential to this result. Dell and van Melkebeek [12] showed that
k-SAT cannot be kernelized even down to size O(nk−ε), and Vertex Cover cannot be kernelized to
size O(n2−ε), for any ε > 0 unless the polynomial hierarchy collapses (in the sequel, we will make this
assumption implicitly). These results suggest that in general, polynomial-time sparsification can give no
non-trivial size guarantees. (Note that a kernel of size O(nk) for k-SAT is trivial.) The first result to the
contrary was by Bart Jansen (unpublished until recently [18]), who observed that 1-in-k-SAT admits a
kernel with at most n constraints using Gaussian elimination. More surprisingly, Jansen and Pieterse [19]
showed that the Not-All-Equal k-SAT problem admits a kernel with O(nk−1) constraints, improving on
the trivial bound by a factor of n and settling an implicit open problem. In later research, they improved
and generalized the method, and also showed that the bound of O(nk−1) is tight [18]. These improved
upper bounds are all based on rephrasing the SAT problem as a problem of low-degree polynomials, and
exploiting linear dependence to eliminate superfluous constraints. Still, it is fair to say that we currently
lack the tools for making a general analysis of the kernelizability of a generic SAT problem.

In this paper we take a step in this direction, by studying the kernelizability of the constraint satisfaction
problem over a constraint language Γ (CSP(Γ)), parameterized by the number of variables n, which can
be viewed as the problem of determining whether a set of constraints over Γ is satisfiable. Some notable
examples of problems of this kind are k-colouring, k-SAT, 1-in-k-SAT, and not-all-equal-k-SAT. We will
occasionally put a particular emphasis on the Boolean CSP problem and therefore denote this problem by
SAT(Γ). Note that CSP(Γ) has a trivial polynomial kernel for any finite language Γ (produced by simply
discarding duplicate constraints), but the question remains for which languages Γ we can improve upon
this. Concretely, our question in this paper is for which languages Γ the problem CSP(Γ) admits a kernel
of O(nc) constraints, for some c ≥ 1, with a particular focus on linear kernels (c = 1).

The algebraic approach in parameterized and fine-grained complexity. For any language Γ, the
classical complexity of CSP(Γ) (i.e., whether CSP(Γ) is in P) is determined by the existence of certain
algebraic invariants of Γ known as polymorphisms [20]. This gave rise to the algebraic approach to
characterizing the complexity of CSP(Γ) by studying algebraic properties. It has been conjectured that
for every Γ, CSP(Γ) is either in P or NP-complete, and that the tractability of a CSP problem can be
characterized by a finite list of polymorphisms [8]. Recently, several independent results appeared,
claiming to settle this conjecture in the positive [6, 30, 34].

However, for purposes of parameterized and fine-grained complexity questions, looking at polymor-
phisms alone is too coarse. More technically, the polymorphisms of Γ characterize the expressive power of
Γ up to primitive positive definitions, i.e., up to the use of conjunctions, equality constraints, and existential
quantification, whereas for many questions a liberal use of existentially quantified local variables is not
allowed. In such cases, one may look at the expressive power under quantifier-free primitive positive
definitions (qfpp-definitions), allowing only conjunctions and equality constraints. This expressive power
is characterized by more fine-grained algebraic invariants called partial polymorphisms. For example,
there are numerous dichotomy results for the complexity of parameterized SAT(Γ) and CSP(Γ) problems,
both for so-called FPT algorithms and for kernelization [23, 24, 25, 28], and in each of the cases listed, a
dichotomy is given which is equivalent to requiring a finite list of partial polymorphisms of Γ. Similarly,
Jonsson et al. [22] showed that the exact running times of NP-hard SAT(Γ) and CSP(Γ) problems in terms
of the number of variables n are characterized by the partial polymorphisms of Γ.

Unfortunately, studying properties of SAT(Γ) and CSP(Γ) for questions phrased in terms of the size
parameter n is again more complicated than for more permissive parameters k. For example, it is known
that for every finite set P of strictly partial polymorphisms, the number of relations invariant under P is
double-exponential in terms of the arity n (hence they cannot all be described in a polynomial number
of bits) [26, Lemma 35]. It can similarly be shown that the existence of a polynomial kernel cannot be
characterized by such a finite set P . Instead, such a characterization must be given in another way (for
example, Lagerkvist et al. [27] provide a way to finitely characterize all partial polymorphisms of a finite
Boolean language Γ).
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Our results. In Section 3 we generalize and extend the results of Jansen and Pieterse [18] in the case
of linear kernels to a general recipe for NP-hard SAT and CSP problems in terms of the existence of a
Maltsev embedding, i.e., an embedding of a language Γ into a tractable language Γ′ on a larger domain
with aMaltsev polymorphism. We show that for any language Γ with a Maltsev embedding into a finite
domain, CSP(Γ) has a kernel with O(n) constraints. More generally, we in Section 4, turn to the problem
of finding kernels with O(nc) constraints (c > 1) where we utilize k-edge embeddings, and a technique
which encompasses the recent results from Jansen and Pieterse, concerning SAT problems representable as
low-degree polynomials over a finite field [18]. Attempting an algebraic characterization, we in Section 5
also show an infinite family of universal partial operations which are partial polymorphisms of every
language Γ with a Maltsev embedding, and show that these operations guarantee the existence of a Maltsev
embedding for Γ, albeit into a language with an infinite domain.

Turning to lower bounds against linear kernels, we show that the smallest of these universal partial
operations is also necessary, in the sense that for any Boolean language Γ which is not invariant under
this operation, SAT(Γ) admits no kernel of size O(n2−ε) for any ε > 0. We conjecture that this can be
completed into a tight characterization – i.e., that at least for Boolean languages Γ, SAT(Γ) admits a linear
kernel if and only if it is invariant under all universal partial Maltsev operations.

2 Preliminaries
In this section we introduce the constraint satisfaction problem, kernelization, and the algebraic machinery
that will be used throughout the paper.

2.1 Operations and Relations
An n-ary function f : Dn → D over a domainD is typically referred to as a operation onD, although we
will sometimes use the terms function and operation interchangeably. We let ar(f) = n denote the arity
of f . Similarly, if R ⊆ Dn is an n-ary relation over D we let ar(R) = n. If t ∈ Dn is a tuple we let t[i]
denote the ith element in t and we let pri1,...,in′ (t) = (t[i1], . . . , t[in′ ]), n′ ≤ n, denote the projection of
t on (not necessarily distinct) coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, if R is an n-ary relation we
let pri1,...,in′ (R) = {pri1,...,in′ (t) | t ∈ R}. We will often represent relations by logical formulas, and if
ψ is a first-order formula with free variables x1, . . . , xk we by R(x1, . . . , xk) ≡ ψ(x1, . . . , xk) denote
the relation R = {(f(x1), . . . , f(xk)) | f is a satisfying assignment to ψ}.

2.2 The Constraint Satisfaction Problem
A set of relations Γ is referred to as a constraint language. The constraint satisfaction problem over a
constraint language Γ over D (CSP(Γ)) is the computational decision problem defined as follows.
Instance: A set V of variables and a set C of constraint applications R(v1, . . . , vk) where R ∈ Γ,
ar(R) = k, and v1, . . . , vk ∈ V .
Question: Is there a function f : V → D such that (f(v1), . . . , f(vk)) ∈ R for eachR(v1, . . . , vk) inC?

In the particular case when Γ is Boolean we denote CSP(Γ) by SAT(Γ), and we let BR de-
note the set of all Boolean relations. As an example, first consider the ternary relation R1/3 =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. It is then readily seen that SAT({R1/3}) can be viewed as an alternative
formulation of the 1-in-3-SAT problem restricted to instances consisting only of positive literals. More
generally, if we let R1/k = {(x1, . . . , xk) ∈ {0, 1}k | x1 + . . .+ xk = 1}, then SAT({R1/k}) is a natural
formulation of 1-in-k-SAT without negation.

2.3 Kernelization
A parameterized problem is a subset of Σ∗ × N where Σ is a finite alphabet. Hence, each instance is
associated with a natural number, called the parameter.
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Definition 1. A kernelization algorithm, or a kernel, for a parameterized problem L ⊆ Σ∗ × N is a
polynomial-time algorithm which, given an instance (x, k) ∈ Σ∗ × N, computes (x′, k′) ∈ Σ∗ × N such
that (1) (x, k) ∈ L if and only if (x′, k′) ∈ L and (2) |x′|+ k′ ≤ f(k) for some function f .

The function f in the above definition is sometimes called the size of the kernel. In this paper, we are
mainly interested in the case where the parameter denotes the number of variables in a given instance.

2.4 Polymorphisms and Partial Polymorphisms
In this section we define the link between constraint languages and algebras that was promised in Section 1.
If f is an n-ary operation and t1, . . . , tn a sequence of k-ary tuples we can in a natural way obtain a k-ary
tuple by applying f componentwise, i.e., f(t1, . . . , tn) = (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])).

Definition 2. An n-ary operation f is a polymorphism of a k-ary relation R if f(t1, . . . , tn) ∈ R for
each sequence of tuples t1, . . . , tn ∈ R.

If f is a polymorphism of R we also say that R is invariant under f , or that f preserves R, and for a
constraint language Γ we let Pol(Γ) denote the set of operations preserving every relation in Γ. Similarly, if
F is a set of functions, we let Inv(F) denote the set of all relations invariant underF . Sets of functions of the
form Pol(Γ) are referred to as clones. It is well known that Pol(Γ) (1) for each n ≥ 1 and each 1 ≤ i ≤ n
contains the projection function πni (x1, . . . , xi, . . . , xn) = xi, and (2) if f, g1, . . . , gm ∈ Pol(Γ), where
ar(f) = m and all gi have the same arity n, then the composition f ◦ g1, . . . , gm(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is included in Pol(Γ). Similarly, sets of the form Inv(F) are
referred to as relational clones, or co-clones, and are sets of relations closed under primitive positive
definitions (pp-definitions), which are logical formulas consisting of existential quantification, conjunction,
and equality constraints. In symbols, we say that a k-ary relation R has a pp-definition over a constraint
language Γ over a domain D if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ . R1(x1) ∧ . . . ∧ Rm(xm), where each
Ri ∈ Γ ∪ {Eq}, Eq = {(x, x) | x ∈ D} and each xi is an ar(Ri)-ary tuple of variables over x1, . . . , xk,
y1, . . . , yk′ . Clones and co-clones are related via the following Galois connection.

Theorem 3 ([3, 4, 14]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ Inv(Pol(Γ′)) if and only if
Pol(Γ′) ⊆ Pol(Γ).

As a shorthand, we let [F ] = Pol(Inv(F)) denote the smallest clone containing F and 〈Γ〉 =
Inv(Pol(Γ)) the smallest co-clone containing Γ. Using Theorem 3 Jeavons et al. proved that if Γ and Γ′
are two finite constraint languages and Pol(Γ) ⊆ Pol(Γ′), then CSP(Γ′) is polynomial-time many-one
reducible to CSP(Γ) [20]. As remarked in Section 1, while this theorem is useful for establishing
complexity dichotomies for CSP and related problems [1, 10], it offers little information on whether a
problem admits a kernel of a particular size. Hence, in order to have any hope of studying kernelizability
of SAT problems, we need algebras more fine-grained than polymorphisms. In our case these algebras will
consist of partial operations instead of total operations. An n-ary partial operation over a setD of values is
a map of the form f : X → D, whereX ⊆ Dn is called the domain of f . As in the case of total operations
we let ar(f) = n, and furthermore let domain(f) = X . If f and g are n-ary partial operations such
that domain(g) ⊆ domain(f) and f(x1, . . . , xn) = g(x1, . . . , xn) for each (x1, . . . , xn) ∈ domain(g),
then g is said to be a subfunction of f .

Definition 4. An n-ary partial operation f is a partial polymorphism of a k-ary relation R if, for
every sequence t1, . . . , tn ∈ R, either f(t1, . . . , tn) ∈ R or there exists i ∈ {1, . . . , k} such that
(t1[i], . . . , tn[i]) /∈ domain(f).

Again, this notion easily generalizes to constraint languages, and if we let pPol(Γ) denote the set
of partial polymorphisms of the constraint language Γ, we obtain a strong partial clone. It is known
that strong partial clones are sets of partial operations which are (1) closed under composition of partial
operations and (2) containing all partial projection functions [31]. More formally, the first condition
means that if f, g1, . . . , gm are included in the strong partial clone, where f is m-ary and every gi is
n-ary, then the function f ◦ g1, . . . , gm(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is also
included in the strong partial clone, and this function will be defined for (x1, . . . , xn) ∈ Dn if and
only if (x1, . . . , xn) ∈

⋂m
i=1 domain(gi) and (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ domain(f). The
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second condition, containing all partial projection functions, is known to be equivalent to closure under
taking subfunctions; a property which in the literature is sometimes called strong.

If F is a set of partial functions we let Inv(F) denote the set of all relations invariant under F , but
this time Inv(F) is in general not closed under pp-definitions, but under quantifier-free primitive positive
definitions (qfpp-definitions). As the terminology suggests, a relation R has a qfpp-definition over Γ if R
is definable via a pp-formula which does not make use of existential quantification. Such formulas are
sometimes simply called conjunctive formulas. We have the following Galois connection.

Theorem 5 ([14, 31]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ Inv(pPol(Γ′)) if and only if
pPol(Γ′) ⊆ pPol(Γ).

As a shorthand we let Inv(pPol(Γ)) = 〈Γ〉 6∃. Jonsson et al. [22] showed the following useful theorem.

Theorem 6. Let Γ and Γ′ be two finite constraint languages. If pPol(Γ) ⊆ pPol(Γ′) then there exists a
polynomial-time many-one reduction from SAT(Γ′) to SAT(Γ) which maps an instance (V,C) of SAT(Γ′)
to an instance (V ′, C ′) of SAT(Γ) where |V ′| ≤ |V | and |C ′| ≤ c|C|, where c depends only on Γ and Γ′.

2.5 Maltsev Operations, Signatures and Compact Representations
A Maltsev operation over D ⊇ {0, 1} is a ternary operation φ which for all x, y ∈ D satisfies the
two identities φ(x, x, y) = y and φ(x, y, y) = x. Before we can explain the powerful, structural
properties of relations invariant under Maltsev operations, we need a few technical definitions from
Bulatov and Dalmau [7]. Let t, t′ be two n-ary tuples over D. We say that (t, t′) witnesses a tuple
(i, a, b) ∈ {1, . . . , n} ×D2 if pr1,...,i−1(t) = pr1,...,i−1(t′), t[i] = a, and t′[i] = b. The signature of an
n-ary relation R over D is then defined as

Sig(R) = {(i, a, b) ∈ {1, . . . , n} ×D2 | ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)},

and we say that R′ ⊆ R is a representation of R if Sig(R) = Sig(R′). If R′ is a representation of R it
is said to be compact if |R′| ≤ 2|Sig(R)|, and it is known that every relation invariant under a Maltsev
operation admits a compact representation. Furthermore, we have the following theorem from Bulatov
and Dalmau, where we let 〈R〉f denote the smallest superset of R preserved under the operation f .

Theorem 7 ([7]). Let φ be a Maltsev operation over a finite domain, R ∈ Inv({φ}) a relation, and R′ a
representation of R. Then 〈R′〉φ = R.

Hence, relations invariant under Maltsev operations are reconstructible from their representations.

3 Maltsev Embeddings and Kernels of Linear Size
In this section we give general upper bounds for kernelization of NP-hard SAT problems based on algebraic
conditions. We begin in Section 3.1 by outlining the polynomial-time algorithm for Maltsev constraints,
and in Section 3.2 this algorithm is modified to construct linear-sized kernels for certain SAT(Γ) problems.

3.1 The Simple Algorithm for Maltsev Constraints
At this stage the connection between Maltsev operations, compact representations and tractability of
Maltsev constraints might not be immediate to the reader. We therefore give a brief description of the
simple algorithm for Maltsev constraints from Bulatov and Dalmau [7], which will henceforth simply be
referred to as theMaltsev algorithm. In a nutshell, the algorithm operates as follows, where φ is a Maltsev
operation over a finite set D.

1. Let (V, {C1, . . . , Cm}) be an instance of CSP(Inv({φ})), and S0 a compact representation ofD|V |.
2. For each i ∈ {1, . . . ,m} compute a compact representation Si of the solution space of the instance

(V, {C1, . . . , Ci}) using Si−1.
3. Answer yes if Sm 6= ∅ and no otherwise.
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The second step is accomplished by removing the tuples from 〈Si−1〉φ that are not compatible with
the constraint Ci. While the basic idea behind the Maltsev algorithm is not complicated, the intricate
details of the involved subprocedures are outside the scope of this paper, and we refer the reader to Bulatov
and Dalmau [7]. We note that although the algorithm applies to infinite languages, it is assumed that
the relations in the input are specified by explicit lists of tuples, i.e., the running time includes a factor
proportional to max |R| over relations R used in the input.

Example 8. Let G = (D, ·) be a group over a finite set D, i.e., · is a binary, associative operator, D is
closed under · and contains an identity element 1G, and each element x ∈ D has an inverse element
x−1 ∈ D such that x · x−1 = 1G. The ternary operation s(x, y, z) = x · y−1 · z is referred to as the coset
generating operation ofG, and is Maltsev since s(x, y, y) = x·y−1 ·y = x and s(x, x, y) = x·x−1 ·y = y.
The problem CSP(Inv({s})) is known to be tractable via the algorithm from Feder and Vardi [13], but
since s is a Maltsev operation CSP(Inv({s})) can equivalently well be solved via the Maltsev algorithm.

Another early class of tractable CSP problems was discovered via the observation that ifR is preserved
by a certain Maltsev operation, it can be viewed as the solution space of a system of linear equations.

Example 9. An Abelian group G = (D,+) is a group where + is commutative. Similar to Example 8 we
can consider the coset generating operation s(x, y, z) = x− y + z, where −y denotes the inverse of the
element y. If |D| is prime it is known that R ∈ Inv({s}) if and only if R is the solution space of a system
of linear equations modulo |D| [21]. Hence, the problem CSP(Inv({s})) can efficiently be solved with
Gaussian elimination, but can also be solved via the Maltsev algorithm.

3.2 Upper Bounds Based on Maltsev Embeddings
In this section we use a variation of the Maltsev algorithm to obtain kernels of SAT problems. First,
observe that Γ is never preserved by a Maltsev operation when SAT(Γ) is NP-hard [32]. However, it is
sometimes possible to find a related constraint language Γ̂ which is preserved by a Maltsev operation. This
will allow us to use the advantageous properties of relations invariant under Maltsev operations in order to
compute a kernel for the original SAT(Γ) problem. We thus begin by making the following definition.

Definition 10. A constraint language Γ over a domain D admits an embedding over the constraint
language Γ̂ over D′ ⊇ D if there exists a bijective function h : Γ→ Γ̂ such that ar(h(R)) = ar(R) and
h(R) ∩Dar(R) = R for every R ∈ Γ.

If Γ̂ is preserved by a Maltsev operation then we say that Γ admits aMaltsev embedding. In general,
we do not exclude the possibility that the domain D′ is infinite. In this section, however, we will only be
concerned with finite domains, and therefore do not explicitly state this assumption. If the bijection h
is efficiently computable and there exists a polynomial p such that h(R) can be computed in O(p(|R|))
time for each R ∈ Γ, then we say that Γ admits a polynomially bounded embedding. In particular, an
embedding over a finite domain of any finite Γ is polynomially bounded.

Example 11. Recall from Section 2.2 thatR1/3 consists of the three tuples (0, 0, 1), (0, 1, 0), and (1, 0, 0).
We claim that R1/3 has a Maltsev embedding over {0, 1, 2}. Let R̂1/3 = {(x, y, z) ∈ {0, 1, 2}3 |
x+ y + z = 1 (mod 3)}. By definition, R̂1/3 ∩ {0, 1}3 = R1/3, so all that remains to prove is that R̂1/3

is preserved by a Maltsev operation. But recall from Example 9 that a relation R is the solution space of
a system of linear equations over D, where |D| is prime, if and only if R is preserved by the operation
x − y + z over D. Hence, R̂1/3 is indeed a Maltev embedding of R1/3. More generally, one can also
prove that R1/k has a Maltsev embedding to a finite domain D where |D| ≥ k and |D| is prime.

Given an instance I = ({x1, . . . , xn}, C) of CSP(Γ) we let ΨI = {(g(x1), . . . , g(xn)) | g satisfies
I}. Ifφ is aMaltsev operation and I = (V, {C1, . . . , Cm}) an instance ofCSP(Inv({φ}))we let Seq(I) =
(S0, S1 . . . , Sm) denote the compact representations of the relationsΨ(V,∅),Ψ(V,{C1}), . . . ,Ψ(V,{C1,...,Cm})
computed by the Maltsev algorithm. We remark that the ordering chosen in the sequence SeqI does not
influence the upper bound in the forthcoming kernelization algorithm.

Definition 12. Let φ be a Maltsev operation, p a polynomial and let ∆ ⊆ Inv({φ}). We say that ∆ and
CSP(∆) have chain length p if |{〈Si〉φ | i ∈ {0, 1, . . . , |C|}}| ≤ p(|V |) for each instance I = (V,C) of
CSP(∆), where Seq(I) = (S0, S1, . . . , S|C|).
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We now have everything in place to define our kernelization algorithm.

Theorem 13. Let Γ be a Boolean constraint language which admits a polynomially bounded Maltsev
embedding Γ̂ with chain length p. Then SAT(Γ) has a kernel with O(p(|V |)) constraints.

Proof. Let φ ∈ Pol(Γ̂) denote the Maltsev operation witnessing the embedding Γ̂. Given an instance
I = (V,C) of SAT(Γ) we can obtain an instance I ′ = (V,C ′) of CSP(Γ̂) by replacing each constraint
Ri(xi) in C by R̂i(xi). We arbitrarily order the constraints as C ′ = (C1, . . . , Cm) wherem = |C ′|. We
then iteratively compute the corresponding sequence Seq(I ′) = (S0, S1, . . . , S|C′|). This can be done in
polynomial time with respect to the size of I via the same procedure as the Maltsev algorithm. For each
i ∈ {1, . . . ,m} we then do the following.

1. Let the ith constraint be Ci = R̂i(xi1 , . . . , xir ) with ar(Ri) = r.
2. For each t ∈ Si−1 determine whether pri1,...,ir (t) ∈ R̂i.
3. If yes, then remove the constraint Ci, otherwise keep it.

This can be done in polynomial time with respect to the size of the instance I ′, since (1) |Si−1|
is bounded by a polynomial in |V | and (2) the test pri1,...,ir (t) ∈ R̂i can naively be checked in linear
time with respect to |R̂i|. We claim that the procedure outlined above will correctly detect whether the
constraint Ci is redundant or not with respect to 〈Si−1〉φ, i.e., whether 〈Si−1〉φ = 〈Si〉φ. First, observe
that if there exists t ∈ Si−1 such that pri1,...,ir (t) /∈ R̂i, then the constraint is clearly not redundant. Hence,
assume that pri1,...,ir (t) ∈ R̂i for every t ∈ Si−1. Then Si−1 ⊆ 〈Si〉φ, hence also 〈Si−1〉φ ⊆ 〈Si〉φ. On
the other hand, 〈Si〉φ ⊆ 〈Si−1〉φ holds trivially. Therefore, equality must hold.

Let I ′′ = (V,C ′′) denote the resulting instance. Since CSP(Inv({φ})) has chain length p it
follows that (1) the sequence 〈S0〉φ, 〈S1〉φ, . . . , 〈S|C′|〉φ contains at most p(|V |) distinct elements, hence
|C ′′| ≤ p(|V |), and (2)ΨI′ = ΨI′′ . Clearly, it also holds thatΨI = (ΨI′∩{0, 1}|V |) = (ΨI′′∩{0, 1}|V |).
Hence, we can safely transform I ′′ to an instance I∗ of SAT(Γ) by replacing each constraint R̂i(xi) with
Ri(xi). Then I∗ is an instance of SAT(Γ) with at most p(|V |) constraints, such that ΨI = ΨI∗ . In
particular, I∗ has a solution if and only if I has a solution.

Clearly, the above algorithm also works for finite-domain CSP. As with the Maltsev algorithm, the
procedure runs in polynomial time with respect to the total size of the instance. For languages with
bounded arity this simply means time polynomial in n, but it is worth noting that if Γ is infinite but
somehow concisely encoded, then we cannot necessarily check whether an n-ary constraint is redundant
in time polynomial in n. All that remains to be proven now is that there actually exist Maltsev embeddings
with bounded chain length.

Definition 14. Let f be an n-ary operation over D. A binary relation R ∈ Inv({f}) is said to be a
congruence of f if it is an equivalence relation over D.

Before we prove Theorem 17, we need two subsidiary lemmas.

Lemma 15. Let φ be aMaltsev operation overD and I an instance ofCSP(Inv({φ})). Then Sig(Si−1) ⊇
Sig(Si) for each Si−1 in Seq(I).

Proof. Let I = (V,C), (j, a, b) ∈ Sig(Si), where j ∈ {1, . . . , |V |} and a, b ∈ D. Then there exists
t, t′ ∈ Si such that (t, t′) witnesses (j, a, b), i.e., pr1,...,j−1(t) = pr1,...,j−1(t′), and t[j] = a, t′[j] = b.
Since 〈Si−1〉φ ⊇ 〈Si〉φ ⊇ Si, it follows that t, t′ ∈ 〈Si−1〉φ, and hence also that (j, a, b) ∈ Sig(〈Si−1〉φ).
But since Si−1 is a representation of 〈Si−1〉φ, Sig(Si−1) = Sig(〈Si−1〉φ), from which we infer that
(j, a, b) ∈ Sig(Si−1).

Lemma 16. Let φ be a Maltsev operation over a finite domain D, and R ∈ Inv({φ}). For every
i ∈ {1, . . . , ar(R)}, the tuples (i, a, b) in Sig(R) define an equivalence relation on pri(R) ⊆ D.

Proof. Define the relation a ∼ b if and only if (i, a, b) ∈ Sig(R). Note that (i, a, a) ∈ Sig(R) if and only
if a ∈ pri(R), and that (i, a, b) /∈ Sig(R) for any b if a /∈ pri(R). Also note that ∼ is symmetric by its
definition. It remains to show transitivity. Let (i, a, b) ∈ Sig(R) be witnessed by (ta, tb) and (i, a, c) ∈
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Sig(R) be witnessed by (t′a, t′c). We claim that tc := φ(ta, t′a, t′c) ∈ R is a tuple such that (tb, tc)witnesses
(i, b, c) ∈ Sig(R). Indeed, for every j < i we have φ(ta[j], t′a[j], t′c[j]) = φ(ta[j], t′a[j], t′a[j]) = ta[j],
whereas φ(ta[i], t′a[i], t′c[i]) = (a, a, c) = c. Since ta[j] = tb[j] for every j < i, it follows that (tb, tc)
witnesses (i, b, c) ∈ Sig(R). Hence ∼ is an equivalence relation on pri(R).

Theorem 17. Let φ be a Maltsev operation over a finite domain D. Then CSP(Inv({φ})) has chain
length O(|D||V |).

Proof. Let I = (V,C) be an instance of CSP(Inv({φ})), with |V | = n and |C| = m, and let
Seq(I) = (S0, S1, . . . , Sm) be the sequence of compact representations computed by the Maltsev
algorithm. By Lemma 15, Sig(Si+1) ⊆ Sig(Si) for every i < m, and by Lemma 16, the sets
(j, a, b) ∈ Sig(Si) induce an equivalence relation on prj(〈Si〉φ) for every i ≤ m, j ≤ n. (Lemma 16
applies here since Sig(Si) = Sig(〈Si〉φ) for every Si in Seq(I), and 〈Si〉φ ∈ Inv({φ}).) We also note
that if Sig(Si+1) = Sig(Si), then 〈Si〉φ = 〈Si+1〉φ since Si+1 is a compact representation of 〈Si〉φ.
Hence, we need to bound the number of times that Sig(Si+1) ⊂ Sig(Si) can hold. Now note that whenever
Sig(Si+1) ⊂ Sig(Si), then either prj(〈Si〉φ) ⊂ prj(〈Si+1〉φ) for some j, or the equivalence relation
induced by tuples (j, a, b) ∈ Sig(Si+1) is a refinement of that induced by tuples (j, a, b) ∈ Sig(Si) for
some j. Both of these events can only occur |D| − 1 times for every position j (unless Sm = ∅). Hence
the chain length is bounded by 2|V ||D|.

This bound can be slightly improved for a particular class of Maltsev operations. Recall from
Example 8 that s(x, y, z) = x · y−1 · z is the coset generating operation of a group G = (D, ·).

Lemma 18. Let G = (D, ·) be a finite group and let s be its coset generating operation. Then
CSP(Inv({s})) has chain length O(|V | log |D|).

Proof. Let I = (V,C) be an instance of CSP(Inv({s})), where |V | = n and |C| = m. Let Seq(I) =
(S0, S1, . . . , Sm) be the corresponding sequence. First observe that S0 is a compact representation of
Dn and that (Dn, ·) is nothing else than the nth direct power of G. It is well-known that R is a coset of
a subgroup of (Dn, ·) if and only if s preserves R [11]. In particular, this implies that S1 is a compact
representation of a subgroup of (Dn, ·), and more generally that each Si is a compact representation of a
subgroup of 〈Si−1〉s. An application of Lagrange’s theorem reveals that |〈Si〉s| divides |〈Si−1〉s|, which
implies that the sequence 〈S0〉s, 〈S1〉s, . . . , 〈Sm〉s contains at most n log2 |D|+ 1 distinct elements.

Note that if the domain |D| is prime in Lemma 18 then the proof can be strengthened to obtain the
boundO(|V |). As an application of this result, let us briefly return to Example 11, where we demonstrated
that R1/k had a Maltsev embedding over the coset generating operation of an Abelian group (D,+) where
|D| is prime. Combining Theorem 13 and Lemma 18 we therefore conclude that SAT({R1/k}) has a
kernel withO(|V |) constraints. More generally, we may interpret the results in this section as follows. If Γ
admits a Maltsev embedding over the coset generating operation of an Abelian group (D,+), where |D|
is prime, then we obtain kernels with O(|V |) constraints, closely mirroring the results from Jansen and
Pieterse [18]. This is in turn a special case of constraint languages admitting Maltsev embeddings over
coset generating operations over arbitrary groups, where we obtain kernels withO(|V | log |D|) constraints.
It is not hard to find examples of groups whose coset generating operations cannot be represented by
the aforementioned Abelian groups. One such example is the group An of all even permutations over
{1, . . . , n} for n ≥ 3. Last, in the most general case, where we obtain kernels with O(|V ||D|) constraints,
we have embeddings over arbitrary Maltsev operations. Furthermore, it is known that a Maltsev operation
φ overD is the coset generating operation of a group (D, ·) if and only if φ(φ(x, y, z), z, u) = φ(x, y, u),
φ(u, z, φ(z, y, x)) = φ(u, y, x) for all x, y, z, u ∈ D [11]. Hence, any Maltsev operation which do not
satisfy any of these two identities cannot be viewed as a coset generating operation of some group.

4 Kernels of Polynomial Size
Section 3.2 gives a description of SAT problems admitting kernels with O(n) constraints. In this section
we study two generalizations which provide kernels with O(nc) constraints for c > 1.
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4.1 Moving Beyond Maltsev: k-Edge Embeddings
It is known that Maltsev operations are particular examples of a more general class of operations called
k-edge operations. Following Idziak et al. [2] we define a k-edge operation e as a (k + 1)-ary operation
satisfying e(x, x, y, y, y, . . . , y, y) = e(x, y, x, y, y, . . . , y, y) = y and for each i ∈ {4, . . . , k + 1},
e(y, . . . , y, x, y, . . . , y) = y, where x occurs in position i. Note that a Maltsev operation is nothing else
than a 2-edge operation with the first and second arguments permuted. A k-edge embedding is then
defined analogously to the concept of a Maltsev embedding, with the distinction that the embedding Γ̂
must be preserved by a k-edge operation for some k ≥ 2. It is known that k-edge operations satisfy many
of the advantageous properties of Maltsev operations, and the basic definitions concerning signatures and
representations are similar. Before the proof of Theorem 21 we need the following theorem from Idziak et
al. [2].

Theorem 19. [2] If e is a k-edge operation over D then [{e}] also contains a binary operation d and a
ternary operation p satisfying

p(x, y, y) = x, p(x, x, y) = d(x, y), d(x, d(x, y)) = d(x, y),

and a k-ary operation s, satisfying s(x, y, y, y, . . . , y, y) = d(y, x) and for each i ∈ {2, . . . , k},
s(y, y, . . . , y, x, y, . . . , y) = y, where x appears in position i.

If e is a k-edge operation over D and d the operation in Theorem 19 then (a, b) ∈ D2 is a minority
pair if d(a, b) = b. Given an n-ary relation R ∈ Inv({e}) and t, t′ ∈ R we then say that the index
(i, a, b) ∈ {1, . . . , n} ×D2 witnesses (t, t′) if (a, b) is a minority pair and pr1,...,i−1(t) = pr1,...,i−1(t′)
and t[i] = a, t′[i] = b. We let Sige(R) denote the set of all indexes witnessing tuples of the relation
R ∈ Inv({e}). Last, R′ ⊆ R is a representation of R if (1) Sige(R) = Sige(R′) and (2) for every
i1, . . . , ik′ ∈ {1, . . . , n}, k′ < k, pri1,...,ik′ (R) = pri1,...,ik′ (R

′). Similar to the Maltsev case we have
the following useful property of representations of relations invariant under k-edge operations.

Theorem 20. [2] Let e be a k-edge operation over a finite domain, R ∈ Inv({e}) a relation, and R′ a
representation of R. Then 〈R′〉e = R.

Moreover, each n-ary relation invariant under a k-edge operation has a compact representation of size
O(nk−1). By this stage it should not come as a surprise to the reader that Maltsev algorithm outlined in
Section 3.1 can be modified to solve CSP(Inv({e})) in polynomial time. We will refer to this algorithm
as the few subpowers algorithm [16]. We then obtain analogous to the Maltsev case from Section 3.2.

Theorem 21. Let Γ be a Boolean constraint language which admits a polynomially bounded k-edge
embedding Γ̂ over a finite domain D. Then SAT(Γ) has a kernel with O(|D|k−1|V |k−1) constraints.

Proof. We only provide a proof sketch since the details are very similar to theMaltsev case. Assume k ≥ 3,
since otherwise the bound follows from Theorem 13 and 17. Given an instance I = (V, {C1, . . . , Cm}),
iteratively compute compact representations S0, S1, . . . , Sm of the solution space of (V, ∅), (V, {C1}), . . .,
(V, {C1, . . . , Cm}). This can be done in polynomial time using the procedures from the few subpowers
algorithm [16]. We then remove the constraint Ci if and only if 〈Si〉e = 〈Si−1〉e. All that remains to be
proven is therefore that {〈S0〉e, 〈S1〉e, . . . , 〈Sm〉e} is bounded by O(|D|k−1|V |k−1). For each Si define

Proj(Si) = {(I, J) | I ∈ {1, . . . , |V |}i, J ∈ Di, i < k,prI(Si) = J}.

If 〈Si〉e ⊃ 〈Si−1〉e then either Sige(Si) ⊃ Sige(Si−1) or Proj(Si) ⊃ Proj(Si−1). This gives the bound
1 + |Sig(Dn)|+ |Proj(Dn)| = O(|D|k−1|V |k−1).

4.2 Degree-c Extensions
We now consider an alternative technique for obtaining kernels with O(nc) constraints, c > 1, which is
useful for classes of languages that do not admit Maltsev or k-edge embeddings. This will generalise the
results on kernelization for constraints defined via non-linear polynomials over finite fields [18].

Definition 22. We make the following definitions.
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1. Let t ∈ {0, 1}r be a tuple of arity r and S1, . . . , Sl an enumeration of all subsets of {1, . . . , r} of
size at most c. A tuple ť ∈ {0, 1}l is a degree-c extension of t if ť[i] =

∏
j∈Si

t[j], i ∈ {1, . . . , l}.

2. A degree-c extension of Γ is a language Γ̌ with a bijection h between relations R ∈ Γ and relations
Ř ∈ Γ̌ such that for every R ∈ Γ and for every tuple t ∈ {0, 1}ar(R), t ∈ R if and only if ť ∈ Ř
where ť is a degree-c extension of t.

Let I = (V,C) be a SAT(Γ) instance for a Boolean constraint languageΓ. Let the degree-c extension of
V be the set V (c) consisting of all subsets of V of size at most c, and from any assignment g : V → {0, 1}
we define an assignment g′ : V (c) → {0, 1} as g′(S) :=

∏
v∈S g(v) for every set S ∈ V (c). Degree-c

extensions, Maltsev embeddings and k-edge embeddings are related by the following lemma.

Theorem 23. Let Γ be a finite Boolean language and Γ̌ a degree-c extension of Γ. If Γ̌ admits a Maltsev
embedding, then SAT(Γ) admits a kernel of O(nc) constraints; if Γ̌ admits a k-edge embedding, then
SAT(Γ) admits a kernel of O(nkc) constraints.

Proof. Since Γ is finite and fixed, we skirt all issues about how to compute the extension and the
embedding. Let I = (V,C), |V | = n, be an instance of SAT(Γ), and let V (c) be the degree-c extension
of V . For each constraint R(x1, . . . , xm), m = ar(R), let X1, . . . , Xl ∈ V (c) denote the subsets of
{x1, . . . , xm} of size at most c, and replace R(x1, . . . , xm) by the constraint Ř(X1, . . . , Xl). Let I ′ be
the instance of SAT(Γ̌) resulting from repeating this for every constraint in the instance. Observe that if g
is a satisfying assignment to I then g′(X) =

∏
x∈X g(x),X ∈ V (c), is a satisfying assignment to I ′. We

now apply the kernelization for languages with Maltsev embeddings, respectively k-edge embeddings, to
I ′, and let I ′′ = (V,C ′) where C ′ ⊆ C is the set of constraints kept by the kernelization. Note that the
contents of the relation ΨI defined by I correspond directly to the relation {ť ∩ΨI′ | t ∈ {0, 1}n}. Since
the kernelizations we use preserve the entire solution space, this kernelization procedure is sound, and the
desired bound for the number of constraints in the output follows.

We observe that this captures the class of SAT problems which can be written as roots of low-degree
polynomials from Jansen and Pieterse [18].

Theorem 24. Let Γ be a Boolean language such that every relation R ∈ Γ can be defined as the set of
solutions in {0, 1} to a polynomial of degree at most d, over some fixed finite field F . Then Γ admits a
degree-d extension with a Maltsev embedding.

Proof. We give a short sketch of the most important ideas. Let G1 = (D, ·) and G2 = (D,+) be the two
Abelian groups representing the field F . For R ∈ Γ, let pR be the polynomial defining R. Then pR can
be written as a sum of monomials over G1 of degree at most d, and each of these monomials corresponds
to a member of V (d). Hence, the extension Ř of R can be written as a linear sum over G2, and similar to
Example 9 it is now clear that the coset generating operation of G2 will preserve the resulting Maltsev
embedding, and the result follows from Theorem 23.

5 Universal Partial Maltsev Operations and Lower Bounds
We have seen that Maltsev embeddings and, more generally, k-edge embeddings, provide an algebraic
criterion for determining that a SAT(Γ) problem admits a kernel of a fixed size. In this section we
demonstrate that our approach can also be used to give lower bounds for the kernelization complexity of
SAT(Γ). More specifically, we will use the fact that if a satisfiability problem SAT(Γ) admits a Maltsev
embedding, then this can be witnessed by certain canonical partial operations preserving Γ. We begin in
Section 5.1 by studying properties of these canonical partial operations, and in Section 5.2 prove that the
absence of these operations can be used to prove lower bounds on kernelizability.
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5.1 Universal Partial Maltsev Operations
Let f : Dk → D be a k-ary operation over D ⊇ {0, 1}. We can then in a natural way associate a
partial Boolean operation f|B with f by restricting f to the Boolean arguments which also result in a
Boolean value. In other words domain(f|B) = {(x1, . . . , xk) ∈ {0, 1}k | f(x1, . . . , xk) ∈ {0, 1}}, and
f|B(x1, . . . , xk) = f(x1, . . . , xk) for every (x1, . . . , xk) ∈ domain(f|B). For Maltsev embeddings we
have the following straightforward lemma.

Lemma 25. Let Γ be a Boolean constraint language admitting a Maltsev embedding Γ̂. Then f|B ∈
pPol(Γ) for every f ∈ Pol(Γ̂).

Proof. Assume, with the aim of reaching a contradiction, that f|B(t1, . . . , tn) /∈ R for some R ∈ Γ
and some n-ary f ∈ Pol(Γ̂). By construction, f|B(t1, . . . , tn) = t is a Boolean tuple. But since
R̂ ∩ {0, 1}ar(R) = R, this implies (1) that t /∈ R̂ and (2) that f|B(t1, . . . , tn) = f(t1, . . . , tn) = t /∈ R̂.
Hence, f does not preserve R̂ or Γ̂, and we conclude that f|B ∈ pPol(Γ).

A Boolean partial operation f is a universal partial Maltsev operation if f ∈ pPol(Γ) for every
Boolean Γ admitting a Maltsev embedding.

Definition 26. Let the infinite domain D∞ be recursively defined to contain 0, 1, and ternary tuples
of the form (x, y, z) where x, y, z ∈ D∞. The ternary Maltsev operation u over D∞ is defined as
u(x, x, y) = y, u(x, y, y) = x, and u(x, y, z) = (x, y, z) otherwise.

In the following theorem we show that if an operation q is included in the clone generated by the
operation u, then the partial Maltsev operation q|B is universal. Before the presenting the proof we need
some additional notation. It is well-known that if [F ] is a clone over a domainD then f ∈ [F ] if and only if
f is definable as a term operation over the algebra (D,F ) [15]. Given a term T (x1, . . . , xn) over an algebra
(D,F ) defining a function g ∈ [F ] and b1, . . . , bn ∈ D, we let Val(T (b1, . . . , bn)) = g(b1, . . . , bn).

Theorem 27. Let q ∈ [{u}]. Then q|B is a universal partial Maltsev operation.

Proof. Let Γ be a Boolean constraint language which admits a Maltsev embedding Γ̂. We will prove
that q|B ∈ pPol(Γ). Let p be the Maltsev operation witnessing the embedding Γ̂, let n denote the
arity of q, and let q(x1, . . . , xn) = Tu(x1, . . . , xn) where Tu is the term over u defining q. Now,
first consider the operation q′ ∈ [{p}] obtained by replacing each occurence of u with p in the term
Tu(x1, . . . , xn). Let T p(x1, . . . , xn) denote this term over p, and for each term Tui (xi) occurring as a
subterm in Tu(x1, . . . , xn) we let T pi (xi) denote the corresponding term over p.

Now observe that the partial operation q′|B is included in pPol(Γ) via Lemma 25. We claim that q|B
can be obtained as a subfunction of q′|B, which implies that q|B ∈ pPol(Γ), since a strong partial clone is
always closed under taking subfunctions. By definition, we have that (b1, . . . , bn) ∈ domain(q|B) if and
only if b1, . . . , bn ∈ {0, 1} and q(b1, . . . , bn) ∈ {0, 1}.

We will prove that for each sequence of Boolean arguments b1, . . . , bn, if q(b1, . . . , bn) = b ∈ {0, 1}
then q′(b1, . . . , bn) = b. First, let us illustrate the intuition behind this by an example. Assume that n = 7
and that Tu(x1, x2, x3, x4, x5, x6, x7) = u(u(x1, x2, x3), u(x4, x5, x6), x7). In this case we will e.g.
have that Val(Tu(0, 1, 0, 0, 1, 0, 1)) = 1 since u(u(0, 1, 0), u(0, 1, 0), 1) = u((0, 1, 0), (0, 1, 0), 1) = 1,
due to the fact that u always respect the Maltsev identities. But since p is also a Maltsev operation it must
also be the case that Val(T p(0, 1, 0, 0, 1, 0, 1)) = 1, even if u(0, 1, 0) and p(0, 1, 0) might differ.

We will now prove the general case by a case inspection of the term Tu. First, assume that Tu
contains a term of the form u(xi1 , xi2 , xi3). If bi1 , bi2 , bi3 ∈ {0, 1} then u(bi1 , bi2 , bi3) ∈ {0, 1} if and
only if bi1 = bi2 or bi2 = bi3 . But this implies that p(bi1 , bi2 , bi3) = u(bi1 , bi2 , bi3) since p is Maltsev.
Second, assume that Tu contains a term of the form u(Tu1 (x1), Tu2 (x2), Tu3 (x3)) where x1,x2 and
x3 are tuples of variables over x1, . . . , xn. Let b1, b2 and b3 be Boolean tuples matching the length
of x1, x2 and x3, and assume that Val(Tu1 (b1)) = Val(T p1 (b1)), Val(Tu2 (b2)) = Val(T p2 (b2)) and
Val(Tu3 (b3)) = Val(T p3 (b3)). Similarly to the first case we have that

u(Val(Tu1 (b1)),Val(Tu2 (b2)),Val(Tu3 (b3))) ∈ {0, 1}
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if and only if Val(Tu1 (b1)) = Val(Tu2 (b2)) or Val(Tu2 (b2)) = Val(Tu3 (b3)), and since p is Maltsev this
implies that

p(Val(T p1 (b1)),Val(T p2 (b2)),Val(T p3 (b3))) = u(Val(Tu1 (b1)),Val(Tu2 (b2)),Val(Tu3 (b3))).

Hence, for each (b1, . . . , bn) ∈ domain(q|B) we have that (b1, . . . , bn) ∈ domain(q′|B) and that
q|B(b1, . . . , bn) = q′|B(b1, . . . , bn). This implies that q|B is a subfunction of q′|B, that q|B ∈ pPol(Γ), and,
finally, that q|B is a universal partial Maltsev operation.

Using Theorem 27 we can now prove that every Boolean language Γ invariant under the universal
partial Maltsev operations admits a Maltsev embedding over D∞.

Theorem 28. Let Γ be a Boolean constraint language. Then pPol(Γ) contains all universal partial
Maltsev operations if and only if Γ has a Maltsev embedding Γ̂ over D∞.

Proof. For the first direction, let u be the Maltsev operation from Definition 26 over the infinite domain
D∞. For each relation R ∈ Γ we let R̂ = 〈R〉u. Let Γ̂ denote the resulting constraint language over D∞.
By definition, u ∈ Pol(Γ̂), and everything that remains to be proven is that R̂ ∩ {0, 1}ar(R) = R for each
R̂ ∈ Γ̂. Hence, assume that there exists at least one tuple t ∈ (R̂ ∩ {0, 1}ar(R)) \ R. This implies that
there exists a term T over u such that Val(T (t1[i], . . . , tm[i])) = t[i] for each i ∈ {1, . . . , ar(R)}, where
R = {t1, . . . , tm}. Let q denote the function corresponding to the term T and observe that q ∈ [{u}].
According to Theorem 27 this implies that q|B is a universal partial Maltsev operation and, furthermore,
that q|B(t1[i], . . . , tm[i]) is defined for each i ∈ {1, . . . , ar(R)}, since q(t1[i], . . . , tm[i]) ∈ {0, 1}. Hence,
q|B(t1, . . . , tm) = t /∈ R, which contradicts the assumption that Γ was invariant under all universal partial
Maltsev operations.

The second direction is trivial since if Γ has a Maltsev embedding over D∞ then Γ by definition is
preserved by every universal partial Maltsev operation.

It is worth remarking that Theorem 27 and Theorem 28 implies that every universal partial Maltsev
operation can be described via Theorem 27.

5.2 Lower Bounds
Define the first partial Maltsev operation φ1 as φ1(x, y, y) = x and φ1(x, x, y) = y for all x, y ∈
{0, 1}, and observe that domain(φ1) = {(0, 0, 0), (1, 1, 1), (0, 0, 1), (1, 1, 0), (1, 0, 0), (0, 1, 1)}. Via
Theorem 27 it follows that φ1 is equivalent to u|B, and is therefore a universal partial Maltsev operation.
In this section we will prove that φ1 ∈ pPol(Γ) is in fact a necessary condition for the existence of a
linear-sized kernel for SAT(Γ), modulo a standard complexity theoretical assumption. A pivotal part of
this proof is that if φ1 /∈ pPol(Γ), then Γ can qfpp-define a relation Φ1, which can be used as a gadget in
a reduction from the Vertex Cover problem. This relation is defined as Φ1(x1, x2, x3, x4, x5, x6) ≡
(x1 ∨ x4) ∧ (x1 6= x3) ∧ (x2 6= x4) ∧ (x5 = 0) ∧ (x6 = 1). Note that the values enumerated by the
arguments of Φ1 is in a one-to-one correspondance with domain(φ1). However, as made clear in the
following lemma, there is an even stronger relationship between φ1 and Φ1.

Lemma 29. If Γ is a Boolean constraint language such that 〈Γ〉 = BR and φ1 /∈ pPol(Γ) thenΦ1 ∈ 〈Γ〉 6∃.

Proof. Before the proof we need two central observations. First, the assumption that 〈Γ〉 = BR is
well-known to be equivalent to that Pol(Γ) consists only of projections [5]. Second, Φ1 consists of
three tuples which can be ordered as s1, s2, s3 in such a way that there for every s ∈ domain(φ1) exists
1 ≤ i ≤ 6 such that s = (s1[i], s2[i], s3[i]). Now, assume that 〈Γ〉 = BR, φ1 /∈ pPol(Γ), but that
Φ1 /∈ 〈Γ〉6∃. Then there exists an n-ary partial operation f ∈ pPol(Γ) such that f /∈ pPol({Φ1}), and
t1, . . . , tn ∈ Φ1 such that f(t1, . . . , tn) /∈ Φ1. Now consider the value k = |{t1, . . . , tn}|, i.e., the
number of distinct tuples in the sequence. If n > k then it is known that there exists a closely related
partial operation g of arity at most k such that g /∈ pPol({Φ1}) [27], and we may therefore assume
that n = k ≤ |Φ1| = 3. Assume first that 1 ≤ n ≤ 2. It is then not difficult to see that there for
every t ∈ {0, 1}n exists i such that (t1[i], . . . , tn[i]) = t. But then it follows that f is in fact a total
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operation which is not a projection, which is impossible since we assumed that 〈Γ〉 = BR. Hence,
it must be the case that n = 3, and that {t1, t2, t3} = Φ1. Assume without loss of generality that
t1 = s1, t2 = s2, t3 = s3, and note that this implies that domain(f) = domain(φ1) (otherwise the
arguments of f can be described as a permutation of the arguments of φ1). First, we will show that
f(0, 0, 0) = 0 and that f(1, 1, 1) = 1. Indeed, if f(0, 0, 0) = 1 or f(1, 1, 1) = 0, it is possible to define
a unary total operation f ′ as f ′(x) = f(x, x, x) which is not a projection since either f ′(0) = 1 or
f ′(1) = 0. Second, assume there exists (x, y, z) ∈ domain(f), distinct from (0, 0, 0) and (1, 1, 1), such
that f(x, y, z) 6= φ1(x, y, z). Without loss of generality assume that (x, y, z) = (a, a, b) for a, b ∈ {0, 1},
and note that f(a, a, b) = a since φ1(a, a, b) = b. If also f(b, b, a) = a it is possible to define a binary
total operation f ′(x, y) = f(x, x, y) which is not a projection, therefore we have that f(b, b, a) = b.
We next consider the values taken by f on the tuples (b, a, a) and (a, b, b). If f(b, a, a) = f(a, b, b)
then we can again define a total, binary operation which is not a projection, therefore it must hold that
f(b, a, a) 6= f(a, b, b). However, regardless of whether f(b, a, a) = b or f(b, a, a) = a, it is not difficult
to verify that f must be a partial projection. This contradicts the assumption that f /∈ pPol({Φ1}), and
we conclude that Φ1 ∈ 〈Γ〉 6∃.

We will now use Lemma 29 to give a reduction from the Vertex Cover problem. It is known that
Vertex Cover does not admit a kernel with O(n2−ε) edges for any ε > 0, unless NP ⊆ co-NP/poly [12].
For each n and k let Hn,k denote the relation {(b1, . . . , bn) ∈ {0, 1}n | b1 + . . .+ bn = k}.

Lemma 30. Let Γ be a constraint language such that 〈Γ〉 = BR. Then Γ can pp-define Hn,k with
O(n+ k) constraints and O(n+ k) existentially quantified variables.

Proof. We first observe that one can recursively design a circuit consisting of fan-in 2 gates which
computes the sum of n input gates as follows. At the lowest level, we split the input gates into pairs and
compute the sum for each pair, producing an output of 2 bits for each pair. This can clearly be done with
O(1) gates. At every level i above that, we join each pair of outputs from the previous level, of i bits each,
into a single output of i+ 1 bits which computes their sum. This can be done with O(i) gates by chaining
full adders. Finally, at level dlog2 ne, we will have computed the sum. The total number of gates will be

dlog2 ne∑
i=1

( n2i ) ·O(i),

and it is a straightforward exercise to show that this sums to O(n). Let z1, . . . , zlog2 n denote the output
gates of this circuit. By a standard Tseytin transformation we then obtain an equisatisfiable 3-SAT instance
with O(n) clauses and O(n) variables [33]. Next, for each 1 ≤ i ≤ log2 n, add the unary constraint
(zi = ki), where ki denotes the ith bit of k written in binary. Each such unary constraint can clearly be
pp-defined with O(1) existentially quantified variables over Γ. We then pp-define each 3-SAT clause in
order to obtain a pp-definition of R over Γ, which in total only requires O(n) existentially quantified
variables. Note that this can be done since we assumed that 〈Γ〉 = BR which implies that Γ can pp-define
every Boolean relation.

Theorem 31. Let Γ be a finite Boolean constraint language such that 〈Γ〉 = BR and φ /∈ pPol(Γ). Then
SAT(Γ) does not have a kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ co-NP/poly.

Proof. We will give a polynomial-time many-one reduction from Vertex Cover parameterized by
the number of vertices to SAT(Γ ∪ {Φ1}), which via Theorem 6 and Lemma 29 has a reduction to
SAT(Γ) which does not increase the number of variables. Let (V,E) be the input graph and let
k denote the maximum size of the cover. First, introduce two fresh variables xv and x′v for each
v ∈ V , and one variable yi for each 1 ≤ i ≤ k. Furthermore, introduce two variables x and y. For
each edge {u, v} ∈ E introduce a constraint Φ1(xu, x′v, x′u, xv, x, y), and note that this enforces the
constraint (xu ∨ xv). Let ∃z1, . . . , zm.φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm) denote the pp-definition
H|V |+k,k over Γ where m ∈ O(k + |V |), and consisting of at most O(k + |V |) constraints. Such a
pp-definition must exist according to Lemma 30. Drop the existential quantifiers and add the constraints
of φ(x1, . . . , x|V |, y1, . . . , yk, z1, . . . , zm). Let (V ′, C) denote this instance of SAT(Γ ∪ {Φ1}). Assume
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first that (V,E) has a vertex cover of size k′ ≤ k. We first assign x the value 0 and y the value 1. For each
v in this cover assign xv the value 1 and x′v the value 0. For any vertex not included in the cover we use
the opposite values. We then set y1, . . . , yk−k′ to 1, and yk−k′+1, . . . , yk to 0. For the other direction,
assume that (V ′, C) is satisfiable. For any xv variable assigned 1 we then let v be part of the vertex cover.
Since x1 + . . .+ x|V | + y1 + . . .+ yk = k, the resulting vertex cover is smaller than or equal to k.

As an example, let Rk = {(b1, . . . , bk) ∈ {0, 1}k | b1 + . . . + bk ∈ {1, 2} (mod 6)} and let
P = {Rk | k ≥ 1}. The kernelization status of SAT(P ) was left open in Jansen and Pieterse [18], and
while a precise upper bound seems difficult to obtain, we can at least prove that this problem does not admit
a kernel of linear size, unless NP ⊆ co-NP/poly. To see this, observe that (0, 0, 1), (0, 1, 1), (0, 1, 0) ∈ R3

but φ1((0, 0, 1), (0, 1, 1), (0, 1, 0)) = (0, 0, 0) /∈ R3. The result then follows from Theorem 31.
At this stage, it might be tempting to conjecture that φ1 ∈ pPol(Γ) is also a sufficient condition for a

Maltsev embedding, and, more ambitiously, that this is also a sufficient condition for a kernel withO(n) con-
straints. We can immediately rule out the first possibility by exhibiting a relation R and a universal partial
Maltsev operation φ such that R is invariant under φ1 but not under φ. For example, first define the opera-
tion φ2 as q|B where q(x1, x2, x3, x4, x5, x6, x7, x8, x9) = u(u(x1, x2, x3), u(x4, x5, x6), u(x7, x8, x9)).
Second, consider the relation R of arity |domain(φ2)| consisting of 9 tuples t1, . . . , t9 such that there for
each t ∈ domain(φ2) exists exactly one 1 ≤ i ≤ |domain(φ2)| such that (t1[i], . . . , t9[i]) = t. Then, by
definition, φ2(t1, . . . , t9) /∈ R (since φ2 is not a partial projejction), and hence does not preserve R, but
one can verify that this relation is preserved by φ1. To rule out the second possibility we have to find a
constraint language Γ such that φ1 preserves Γ but SAT(Γ) does not have a kernel with O(n) constraints.
In fact, we will prove a stronger result, and show that whenever P is a finite set of partial operations
such that 〈Inv(P)〉 = BR (and thus, SAT(Inv(P)) is NP-complete), then SAT(Inv(P)) does not admit a
polynomial kernel, unless NP ⊆ co-NP/poly. This is in contrast to the existing parameterized dichotomy
results for CSP [9, 23, 24, 25, 28], but as noted in the introduction, it is an expected conclusion when the
parameter is n; cf. [26, Lemma 35].

Theorem 32. Let P be a finite set of partial polymorphisms such that 〈Inv(P)〉 = BR. Then SAT(Inv(P))
does not admit a polynomial kernel unless NP ⊆ co-NP/poly.

Proof. We will show a reduction from k-SAT on n variables to SAT(Inv(P)) on O(nc) variables for
some absolute constant c that only depends on P . Since k-SAT admits no kernel of size O(nk−ε) for any
ε > 0 unless NP ⊆ co-NP/poly [12], and since c is independent of k, the result will follow.

The strategy to show the reduction is similar to that of Lemma 35 of [26]). Let c be the largest arity of
a partial polymorphism in P , and let (X,C) be an instance of k-SAT, |X| = n. Create a set of padding
variables Y = {yx̄,f | x̄ ∈ Xd, f : {0, 1}d → {0, 1}}, one for every (x1, . . . , xd) ∈ Xd and every d-ary
function, d = c2. We will constrain so that for every yx̄,f ∈ Y and every satisfying assignment, we have
yx̄,f = f(x̄(1), . . . , x̄(d)). The following is a central observation.

Claim 33. Let R ⊆ {0, 1}r be any r-ary Boolean relation, and let X = {x1, . . . , xr}. Let Y be a set of
padding variables for X as above. Define a relation R′ by

R′(X,Y ) ≡ R(X) ∧
∧

yx̄,f∈Y
(yx̄,f = f(x̄(1), . . . , x̄(c))).

Then R(X) ≡ ∃Y R′(X,Y ) and R′ is invariant under every non-total partial operation of arity at most c.

Proof. Let φ be a non-total partial operation of arity c′ ≤ c, and assume that R′ is not invariant under
φ, i.e., there are tuples t1, . . . , tc′ ∈ R′ such that φ(t1, . . . , tc′) is defined and not contained in R′. We
assume that all tuples ti are distinct, as otherwise the application φ(t1, . . . , tc) defines an operation φ′ of
arity |{t1, . . . , tc′}| for which we can repeat the argument below. Let u1, . . . , uc′ be the projections of
the tuples onto X . Note that the tuples u1, . . . , uc′ are distinct, and that φ(u1, . . . , uc′) is defined. Let
I ⊆ [r] be a minimal set of “witness positions” for the distinctness of u, i.e., for every pair i, j ∈ [c′],
i 6= j, there is a position p ∈ I such that ui[p] 6= uj [p]. Note that |I| ≤ c2. Let t ∈ {0, 1}c′ be a tuple
for which φ is undefined. Then there exists a function f : {0, 1}|I| → {0, 1} such that f(prIui) = t[i]
for each i ∈ [c′], since the projection onto I is distinct for all tuples ui, and since |I| ≤ d2, there exist a
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variable yx̄,f in Y . This implies that φ(t1, . . . , tc) is undefined, since in particular φ is undefined when
applied to the position corresponding to yx̄,f . Since φ was generically chosen, the claim follows.

We can now wrap up the proof as follows. By Theorem 5, the language Inv(P) has a quantifier-free
pp-definition of any relation R such that R is invariant under any partial operation in P . By the above
claim, this in particular includes the padded relation R′ for any given relation R. Now, if (X,C) is an
instance of k-SAT, with |X| = n as above, and if Y is the set of padding variables, then we can output
an instance of SAT(Inv(P)) by replacing every k-clause in the input, defining a relation R(V ) for some
V ⊆ X , by the relation R′(V, YV ) according to the above claim. Note in particular that the padding
variables YV used in this reduction can be chosen from the set XV . Finally, since k is constant, the
relations R′(V, YV ) and hence the output can be enumerated in polynomial time.

6 Concluding Remarks and Future Research
We have studied the kernelization properties of SAT and CSP problems parameterized by the number of
variables with tools from universal algebra. We particularly focused on problems with linear kernels, and
showed that a CSP problem has a kernel with O(n) constraints if it can be embedded into a CSP problem
preserved by a Maltsev operation; thus extending previous results in this direction. On the other hand, we
showed that a SAT problem not preserved by a partial Maltsev polymorphism does not admit such a kernel,
unless NP ⊆ co-NP/poly. This shows that the algebraic approach is viable for studying such fine-grained
kernelizability questions. More generally, we also gave algebraic conditions for the existence of a kernel
with O(nc) constraints, c > 1, generalising previous results on kernels for SAT problems defined via
low-degree polynomials over a finite field. Our work opens several directions for future research.

A dichotomy theorem for linear kernels? Our results suggest a possible dichotomy theorem for
the existence of linear kernels for SAT problems, at least for finite languages. However, two gaps remain
towards such a result. On the one hand, we have proven that any language Γ preserved by the universal
partial Maltsev operations admits a Maltsev embedding over an infinite domain. However, the kernelization
algorithms only work for languages with Maltsev embeddings over finite domains. Does the existence of
an infinite-domain Maltsev embedding for a finite language imply the existence of a Maltsev embedding
over a finite domain? Alternatively, can the algorithms be adjusted to work also for languages with infinite
domains, given that this domain is finitely generated in a simple way? On the other hand, we only have
necessity results for the first partial operation φ1 out of an infinite set of conditions for the positive results.
Is it true that every universal partial Maltsev operation is a partial polymorphism of every language with a
linear kernel, or do there exist SAT problems with linear kernels that do not admit Maltsev embeddings?

Cases of higher degree. Compared to the case of linear kernels, our results on kernels with O(nc)
constraints, c > 1, are more partial. Does the combination of degree extensions and k-edge embeddings
cover all cases, or are there further SAT problems with non-trivial polynomial kernel bounds to be found?

The Algebraic CSP Dichotomy Conjecture. Several solutions to the CSP dichotomy conjecture
have been announced [6, 30, 34]. If correct, these algorithms solve CSP(Γ) in polynomial time whenever
Γ is preserved by a Taylor term. One can then define the concept of a Taylor embedding, which raises
the question of whether the proposed algorithms can be modified to construct polynomial kernels. More
generally, when can an operation f such that CSP(Inv({f})) is tractable be used to construct improved
kernels? On the one hand, one can prove that k-edge operations, which are generalized Maltsev operations,
can be used to construct kernels with O(nk−1) constraints via a variant of the few subpowers algorithm.
On the other hand, it is known that relations invariant under semilattice operations can be described as
generalized Horn formulas, but it is not evident how this property could be useful in a kernelization
procedure.
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