
CSPs with Few Alien Constraints1

Peter Jonsson !2

Department of Computer and Information Science, Linköping University, Linköping, Sweden3

Victor Lagerkvist !4

Department of Computer and Information Science, Linköping University, Linköping, Sweden5

George Osipov !6

Department of Computer and Information Science, Linköping University, Linköping, Sweden7

Abstract8

The constraint satisfaction problem asks to decide if a set of constraints over a relational structure9

A is satisfiable (CSP(A)). We consider CSP(A ∪ B) where A is a structure and B is an alien10

structure, and analyse its (parameterized) complexity when at most k alien constraints are allowed.11

We establish connections and obtain transferable complexity results to several well-studied problems12

that previously escaped classification attempts. Our novel approach, utilizing logical and algebraic13

methods, yields an FPT versus pNP dichotomy for arbitrary finite structures and sharper dichotomies14

for Boolean structures and first-order reducts of (N, =) (equality CSPs), together with many partial15

results for general ω-categorical structures.16

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Math-17

ematics of computing → Discrete mathematics18

Keywords and phrases Constraint satisfaction, parameterized complexity, hybrid theories19

Digital Object Identifier 10.4230/LIPIcs...20

Related Version This is an extended version of CSPs with Few Alien Constraints, appearing in21

Proceedings of the 30th Conference on Principles and Practice of Constraint Programming (CP-2024).22

Funding The first author is partially supported by the Swedish research council under grant VR-23

2021-04371. The second author is partially supported by the Swedish research council under grant24

VR-2022-03214. The first and third author was supported by the Wallenberg AI, Autonomous25

Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.26

© Peter Jonsson, Victor Lagerkvist, and George Osipov;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peter.jonsson@liu.se
mailto:victor.lagerkvist@liu.se
mailto:george.osipov@liu.se
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 CSPs with Few Alien Constraints

1 Introduction27

The constraint satisfaction problem over a structure A (CSP(A)) is the problem of verifying28

whether a set of constraints over A admits at least one solution. This problem framework is29

vast, and, just to name a few, include all Boolean satisfiability problems as well as k-coloring30

problems, and for infinite domains we may formulate both problems centrally related to31

model checking first-order formulas and qualitative reasoning. Notable examples where32

complete complexity dichotomies are known (separating tractable from NP-hard problems)33

include all finite structures [13, 27] and first-order definable relations over well-behaved base34

structures like (N,=) and (Q, <) [2]. While impressive mathematical achievements, these35

dichotomy results are still somewhat unsatisfactory from a practical perspective since we are36

unlikely to encounter instances which are based on purely tractable constraints. Could it37

be possible to extend the reach of these powerful theoretical results by relaxing the basic38

setting so that we may allow greater flexibility than purely tractable constraints while still39

obtaining something simpler than an arbitrary NP-hard CSP?40

We consider this problem in a hybrid setting via problems of the form CSP(A∪B) where41

A is a “stable”, tractable background structure and B is an alien structure. We focus on the42

case when CSP(A ∪ B) is NP-hard (thus, richer than a polynomial-time solvable problem)43

but where we have comparably few constraints from the alien structure B. This problem is44

compatible with the influential framework of parameterized complexity which has been used45

with great effect to study structurally restricted problems (e.g., based on tree-width) but46

where comparably little is known when one simultaneously restricts the allowed constraints.47

We begin (in Section 3) by relating the CSP problem with alien constraints to other48

problems, namely, (1) model checking, (2) the problem of checking whether a constraint in a49

CSP instance is redundant, (3) the implication problem and (4) the equivalence problem. We50

prove that the latter three problems are equivalent under Turing reductions and provide a51

general method for obtaining complexity dichotomies for all of these problems via a complexity52

dichotomy for the CSP problem with alien constraints. Importantly, all of these problems53

are well-known in their own right, but have traditionally been studied with wildly disparate54

tools and techniques, but by viewing them under the unifying lens of alien constraints we55

not only get four dichotomies for the price of one but also open the powerful toolbox based56

on universal algebra. For non-Boolean domains this is not only a simplifying aspect but57

an absolute necessity to obtain general results. We expand upon the algebraic approach in58

Section 4 and relate alien constraints to primitive positive definitions (pp-definitions) and59

the important notion of a core. As a second general contribution we explore the case when60

each relation in B can be defined via an existential positive formula over A. This results in61

a general fixed-parameter tractable (FPT) algorithm (with respect to the number of alien62

constraints) applicable to both finite, and, as we demonstrate later, many natural classes of63

structures over infinite domains.64

In the second half of the paper we attack the complexity of alien constraints more65

systematically. We begin with structures over finite domains where we obtain a general66

tractability result by combining the aforementioned FPT algorithm together with the CSP67

dichotomy theorem [13, 27]. In a similar vein we obtain a general hardness result based68

on a universal algebraic gadget. Put together this yields a general result: if A ∪ B is a69

core (which we may assume without loss of generality) then either CSP≤(A ∪ B) is FPT, or70

CSP≤p(A ∪ B) is NP-hard for some p ≥ 0, i.e., is para-NP-hard (pNP-hard). Thus, from a71

parameterized complexity view we obtain a complete dichotomy (FPT versus pNP-hardness)72

for finite-domain structures. However, to also obtain dichotomies for implication, equivalence,73

P. Jonsson, V. Lagerkvist, and G. Osipov XX:3

and the redundancy problem, we need sharper bounds on the parameter p. We concentrate74

on two special cases. We begin with Boolean structures in Section 5.2 and obtain a complete75

classification which e.g. states that CSP≤(A ∪ B) is FPT if A is in one of the classical76

Schaefer classes, and give a precise characterization of CSP≤p(A ∪ B) for all relevant values77

of p if A is not Schaefer. For example, if we assume that A is Horn, we may thus conclude78

that CSP≤(A ∪ B) is FPT for any alien Boolean structure B. More generally this dichotomy79

is sufficiently sharp to also yield dichotomies for implication, equivalence, and redundancy.80

Compared to the proofs by Schnoor & Schnoor [25] for implication and Böhler [12] for81

equivalence, we do not use an exhaustive case analysis over Post’s lattice.82

In Section 6 we consider structures over infinite domains. If we assume that A and B83

are ω-categorical, then we manage to lift the FPT algorithm based on existential positive84

definability from Section 4 to the infinite setting. Another important distinction is that85

the notion of a core, and subsequently the common trick of singleton expansion, works86

differently for ω-categorical languages. Here we follow Bodirsky [2] and use the notion87

of a model-complete core, which means that all n-ary orbits are pp-definable, where an88

orbit is defined as the action of the automorphism group over a fixed n-ary tuple. This89

allows us to, for example, prove that CSP≤(A ∪ B) is FPT whenever A is an ω-categorical90

model-complete core and CSP(A) is in P such that the orbits of the automorphism group of91

B are included in the orbits of the automorphism group of A. This forms a cornerstone for92

the dichotomy for equality languages since the only remaining cases are when A is 0-valid93

(meaning that each relation contains a constant tuple) but not Horn (defined similarly to94

the Boolean domain), and when B is not 0-valid. The remaining cases are far from trivial,95

however, and we require the algebraic machinery from Bodirsky et al. [4] which provides a96

characterization of equality languages in terms of their retraction to finite domains. We rely97

on this description via a recent classification result by Osipov & Wahlström [21]. Importantly,98

our dichotomy result is sufficiently sharp to additionally obtain complexity dichotomies for99

the implication, equivalence, and redundancy problems. To the best of our knowledge, these100

dichotomies are the first of their kind for arbitrary equality languages.101

We finish the paper with a comprehensive discussion in Section 7. Most importantly, we102

have opened up the possibility to systematically study not only alien constraints, but also103

related problems that have previously escaped complexity classifications. For future research104

the main open questions are whether (1) sharper results can be obtained for arbitrary finite105

domains and (2) which further classes of infinite domain structures should be considered.106

Proofs of statements marked with (?) can be found in the appendix in the end of the107

paper.108

2 Preliminaries109

We begin by introducing the basic terminology and the fundamental problems under consider-110

ation. We assume throughout the paper that the complexity classes P and NP are distinct. We111

letQ denote the rationals, N = {0, 1, 2, . . . } the natural numbers, Z = {. . . ,−2.−1, 0, 1, 2, . . . }112

the integers, and Z+ = {1, 2, 3, . . . } the positive integers. For every c ∈ Z+, we let113

[c] = {1, 2, . . . , c}.114

A parameterized problem is a subset of Σ∗ × N where Σ is the input alphabet, i.e., an115

instance is given by x ∈ Σ∗ of size n and a natural number k, and the running time of116

an algorithm is studied with respect to both k and n. The most favourable complexity117

class is FPT (fixed-parameter tractable), which contains all problems that can be decided118

in f(k) · nO(1) time with f being some computable function. An fpt-reduction from a119

XX:4 CSPs with Few Alien Constraints

parameterized problem L1 ⊆ Σ∗1 ×N to L2 ⊆ Σ∗2 ×N is a function P : Σ∗1 ×N→ Σ∗2 ×N that120

preserves membership (i.e., (x, k) ∈ L1 ⇔ P ((x, k)) ∈ L2), is computable in f(k) · |x|O(1)
121

time for some computable function f , and there exists a computable function g such that122

for all (x, k) ∈ L1, if (x′, k′) = P ((x, k)), then k′ ≤ g(k). It is easy to verify that if L1 and123

L2 are parameterized problems such that L1 fpt-reduces to L2 and L2 is in FPT, then it124

follows that L1 is in FPT, too. There are many parameterized classes with less desirable125

running times than FPT but we focus on pNP-hard problems: a problem is pNP-hard under126

fpt-reductions if it is NP-hard for some constant parameter value, implying such problems127

are not in FPT unless P = NP.128

We continue by defining constraint satisfaction problems. First, a constraint language is129

a (typically finite) set of relations A over a universe A, and for a relation R ∈ Γ we write130

ar(R) = k to denote its arity k. It is sometimes convenient to associate a constraint language131

with a relational signature, and thus obtaining a relational structure: a tuple (A; τ, I) where132

A is the domain, or universe, τ is a relational signature, and I is a function from σ to the133

set of all relations over D which assigns each relation symbol R a corresponding relation134

RA over D. We write ar(R) for the arity of a relation R, and if R = ∅ then ar(R) = 0. All135

structures in this paper are relational and we assume that they have a finite signature unless136

otherwise stated. Typically, we do not need to make a sharp distinction between relations137

and the corresponding relation symbols, so we usually simply write (A;R1, . . . , Rm), where138

each Ri is a relation over A, to denote a structure. We also sometimes do not make a sharp139

distinction between structures and sets of relations when the signature is not important. For140

arbitrary structures A and A′ with domains A and A′, we let A ∪A′ denote the structure141

with domain A ∪A′ and containing the relations in A and A′.142

For a constraint language (or structure) A an instance of the constraint satisfaction143

problem over A (CSP(A)) is then given by I = (V,C) where V is a set of variables and144

C a set of constraints of the form R(x1, . . . , xk) where x1, . . . , xk ∈ V and R ∈ A, and the145

question is whether there exist a function f : V → A that satisfies all constraints (a solution),146

i.e., (f(x1), . . . , f(xk)) ∈ R for all R(x1, . . . , xk) ∈ C. The CSP dichotomy theorem says147

that all finite-domain CSPs are either in P or are NP-complete [13, 27]. Given an instance148

I = (V,C) of CSP(A), we let Sol(I) be the set of solutions to I. We now define CSPs with149

alien constraints in the style of Cohen et al. [15].150

CSP≤(A ∪ B)
Instance: A natural number k and an instance I = (V,C1 ∪ C2) of CSP(A ∪ B), where
(V,C1) is an instance of CSP(A) and (V,C2) is an instance of CSP(B) with |C2| ≤ k.
Question: Does there exist a satisfying assignment to I?

151

Throughout the paper, we assume without loss of generality that the structures A and B152

can be associated with disjoint signatures. The parameter in CSP≤(A ∪ B) is the number153

of alien constraints (abbreviated #ac). We let CSP≤k(A ∪ B) denote the CSP≤(A ∪ B)154

problem restricted to a fixed value k of parameter #ac. Note that if CSP(A) is not in P,155

then CSP≤0(A ∪ B) is not in P; moreover, if CSP(A ∪ B) is in P, then CSP≤(A ∪ B) is in156

P. Thus, it is sensible to always require that CSP(A) is in P and CSP(A∪B) is not in P. In157

many natural cases (e.g., all finite-domain CSPs), CSP(A ∪ B) not being polynomial-time158

solvable implies that CSP(A ∪ B) is NP-hard.159

A k-ary relation R is said to have a primitive positive definition (pp-definition) over a160

constraint language A if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ : R1(x1) ∧ . . . ∧Rm(xm) where each161

Ri ∈ A ∪ {=A} and each xi is a tuple of variables over x1, . . . , xk, y1, . . . , yk′ matching the162

arity of Ri. Here, and in the sequel, =A is the equality relation over A, i.e. {(a, a) | a ∈ A}.163

If A is a constraint language, then we let 〈A〉 be the inclusion-wise smallest set of relations164

P. Jonsson, V. Lagerkvist, and G. Osipov XX:5

containing A closed under pp-definitions.165

I Theorem 1 ([18]). Let A and B be structures with the same domain. If every relation of166

A has a primitive positive definition in B, then there is a polynomial-time reduction from167

CSP(A) to CSP(B).168

When working with problems of the form CSP≤k(A ∪ B) we additionally introduce the169

following simplifying notation: 〈A ∪ B〉≤k denotes the set of all pp-definable relations over170

A∪B using at most k atoms from B. We now describe the corresponding algebraic objects. An171

operation f : Dm → D is a polymorphism of a relation R ⊆ Dk if, for any choice of m tuples172

(t11, . . . , t1k), . . . , (tm1, . . . , tmk) from R, it holds that (f(t11, . . . , tm1), . . . , f(t1k, . . . , tmk))173

is in R. An endomorphism is a polymorphism with arity one. If f is a polymorphism of174

R, then we sometimes say that R is invariant under f . A constraint language A has the175

polymorphism f if every relation in A has f as a polymorphism. We let Pol(A) and End(A)176

denote the sets of polymorphisms and endomorphisms of A, respectively. If F is a set of177

functions over D, then Inv(F) denotes the set of relations over D that are invariant under178

every function in F . There are close algebraic connections between the operators 〈·〉, Pol(·),179

and Inv(·). For instance, if A has a finite domain (or, more generally, if A is ω-categorical;180

see below), then we have a Galois connection 〈A〉 = Inv(Pol(A)) [9, Theorem 5.1].181

Polymorphisms enable us to compactly describe the tractable cases of Boolean CSPs.182

I Theorem 2 ([24]). Let A be a constraint language over the Boolean domain. The problem183

CSP(A) is decidable in polynomial time if A is invariant under one of the following six184

operations: (1) the constant unary operation 0 (A is 0-valid), (2) the constant unary operation185

1 (A is 1-valid), (3) the binary min operation u (A is Horn), (4) the binary max operation t186

(A is anti-Horn), (5) the ternary majority operation M(x, y, z) = (x u y) t (x u z) t (y u z)187

(A is 2-SAT), or (6) the ternary minority operation m(x, y, z) = x⊕ y ⊕ z where ⊕ is the188

addition operator in GF(2) (A is affine). Otherwise, the problem CSP(A) is NP-complete.189

A Boolean constraint language that satisfies condition (3), (4), (5), or (6) is called190

Schaefer.191

A finite-domain structure A is a core if every e ∈ End(A) is a bijection. We let192

f(R) = {(f(t1), . . . , f(tn)) | (t1, . . . , tn) ∈ R} when f : A → A and R ∈ A. If e ∈ End(A)193

has minimal range, then e(A) = {e(R) | R ∈ A} is a core and this core is unique up to194

isomorphism. We can thus speak about the core Ac of A. It is easy to see that CSP(A) and195

CSP(Ac) are equivalent under polynomial-time reductions (indeed, even log-space reductions196

suffice). Another useful equivalence concerns constant relations. Let A+ denote the structure197

A expanded by all unary singleton relations {(a)}, a ∈ A. If A is a core, then CSP(A) and198

CSP(A+) are equivalent under polynomial-time reductions [1].199

We will frequently consider ω-categorical structures. An automorphism of a structure A is200

a permutation α of its domain A such that both α and its inverse are homomorphisms. The set201

of all automorphisms of a structure A is denoted by Aut(A), and forms a group with respect202

to composition. The orbit of (a1, . . . , an) ∈ An in Aut(A) is the set {(α(a1), . . . , α(an)) |203

α ∈ Aut(A)}. Let Orb(A) denote the set of orbits of n-tuples in Aut(A) (for all n ≥ 1). A204

structure A with countable domain is ω-categorical if and only if Aut(A) is oligomorphic,205

i.e., it has only finitely many orbits of n-tuples for all n ≥ 1.206

Two important classes of ω-categorical structures are equality languages (respectively,207

temporal languages) where each relation can be defined as the set of models of a first-order208

formula over (N; =) (respectively, (Q;<)). Importantly, Aut(A) is the full symmetric group209

if A is an equality language. A relation in an equality language is said to be 0-valid if it210

XX:6 CSPs with Few Alien Constraints

contains any constant tuple. This is justified since if the relation is invariant under one211

constant operation, then it is invariant under all constant operations.The computational212

complexity of CSP for equality languages was classified by Bodirsky and Kára [7, Theorem 1]:213

for any equality language A, CSP(A) is solvable in polynomial time if A is 0-valid or invariant214

under a binary injective operation, and is NP-complete otherwise.215

3 Applications of Alien Constraints216

We will now demonstrate how alien constraints can be used for studying the complexity of217

CSP-related problem: Section 3.1 contains an example where we analyse the complexity of218

redundancy, equivalence, and implication problems, and we consider connections between the219

model checking problem and CSPs with alien constraints in Section 3.2. To relate problem220

complexity we use Turing reductions: a problem L1 is polynomial-time Turing reducible to221

L2 (denoted L1 ≤pT L2) if it can be solved in polynomial time using an oracle for L2. Two222

problems L1 and L2 are polynomial-time Turing equivalent if L1 ≤pT L2 and L2 ≤pT L1.223

3.1 The Redundancy Problem and its Relatives224

We will now study the complexity of a family of well-known computational problems. We225

begin by some definitions. Let A denote a constraint language and assume that I = (V,C)226

is an instance of CSP(A). We say that a constraint c ∈ C is redundant in I if Sol((V,C)) =227

Sol((V,C \ {c})). We have the following computational problems.228

Redundant(A)
Instance: An instance (V,C) of CSP(A) and a constraint c ∈ C.
Question: Is c redundant in (V,C)?

229

Impl(A)
Instance: Two instances (V,C1), (V,C2) of CSP(A).
Question: Does (V,C1) imply (V,C2), i.e., is it the case that Sol((V,C1)) ⊆ Sol((V,C2))?

230

Equiv(A)
Instance: Two instances (V,C1), (V,C2) of CSP(A).
Question: Is it the case that Sol((V,C1)) = Sol((V,C2))?

231

Before we start working with alien constraints, we exhibit a close connection between232

Redundant(·), Equiv(·), and Impl(·).233

I Lemma 3. Let A be a structure. The problems Equiv(A), Impl(A), and Redundant(A)234

are polynomial-time Turing equivalent.235

Proof. We show that (1) Equiv(A) ≤pT Impl(A), (2) Impl(A) ≤pT Redundant(A), and236

(3) Redundant(A) ≤pT Equiv(A).237

(1). Let ((V,C1), (V,C2)) be an instance of Equiv(A). We need to check whether238

Sol((V,C1)) = Sol((V,C2)). This is true if and only if the two Impl instances ((V,C1), (V,C2))239

and ((V,C2), (V,C1)) are yes-instances.240

(2). Let ((V,C1), (V,C2)) be an instance of Impl(A). For each constraint c ∈ C2, first241

check whether C1 implies {c} by (a) checking if c ∈ C1, in which case C1 trivially implies242

{c}, (b) if not, then check whether c is redundant in C1 ∪ {c}, in which case we answer yes,243

and otherwise no. If C1 implies {c} for every c ∈ C2 then C1 implies C2 and we answer yes,244

and otherwise no.245

P. Jonsson, V. Lagerkvist, and G. Osipov XX:7

(3). Let I = ((V,C), c) be an instance of Redundant(A). It is obvious that I is a246

yes-instance if and only if the instance ((V,C), (V,C \{c})) is a yes-instance of Equiv(A). J247

Next, we show how the complexity of Redundant(A) can be analysed by exploiting248

CSPs with alien constraints. If R is a k-ary relation over domain D, then we let R̄ denote249

its complement, i.e. R̄ = Dk \R.250

I Theorem 4. (?) Let A be a structure with domain A. If CSP(A) is not in P, then251

Redundant(A) is not in P. In particular, Redundant(A) is NP-hard (under polynomial-252

time Turing reductions) whenever CSP(A) is NP-hard. Otherwise, Redundant(A) is in P253

if and only if for every relation R ∈ A, CSP≤1(A ∪ {R̄}) is in P.254

Combining Theorem 4 with the forthcoming complexity classification of Boolean CSPs255

with alien constraints (Theorem 14) shows that Boolean Redundant(A) is in P if and only256

if A is Schaefer. We have not found this result in the literature but we view it as folklore257

since it follows from other classification results (start from [12] or [25] and transfer the results258

to Redundant(A) with the aid of Lemma 3). However, we claim that our proof is very259

different when compared to the proofs in [12] and [25]): Böhler et al. use a lengthy case260

analysis while Schnoor & Schnoor in addition uses the so-called weak base method, which261

scales poorly since not much is known about this construction for non-Boolean domains. We262

do not claim that our proof is superior, but we do not see how to generalize the classifications263

by Böhler et al. and Schnoor & Schnoor to larger (in particular infinite) domains since they264

are fundamentally based on Post’s classification of Boolean clones. Such a generalization,265

on the other hand, is indeed possible with our approach. We demonstrate in Section 6.2266

that we can obtain a full understanding of the complexity of CSPs with alien constraints for267

equality languages. This result carries over to Redundant(·) via Theorem 4, implying that268

we have a full complexity classification of Redundant(·) for equality languages. This result269

can immediately be transferred to Impl(·) and Equiv(·) by Lemma 3.270

3.2 Model Checking271

We follow [20] and view the model checking problem as follows: given a logic L , a structure272

A, and a sentence φ of L , decide whether A |= φ. The main motivation for this problem is its273

connection to databases [26]. From the CSP perspective, we consider a slightly reformulated274

version: given an instance I = (V,C) of CSP(A) and a formula φ with free variables in V ,275

we ask if there is a tuple in Sol(I) that satisfies φ. If φ can be expressed as an instance I ′276

of CSP(B) for some structure B, then this is the same thing as if asking whether I ∪ I ′ has277

a solution or not. In the model-checking setting, we want to check whether φ is true in all278

solutions of I. If ¬φ can be expressed as an instance I ′ of CSP(B) for some structure B,279

then we are done: every solution to I satisfies φ if and only if CSP(I ∪ I ′) is not satisfiable,280

and this clarifies the connection with CSPs with alien constraints. For instance, one may281

view Impl(A) (and consequently the underlying CSP≤1(A ∪ R̄) problems by Lemma 3282

and Theorem 4) as the model checking problem restricted to queries that are A-sentences283

constructed using the operators ∀ and ∨. Naturally, one wants the ability to use more284

complex queries such as (1) queries extended with other relations, i.e. queries constructed285

over an expanded structure, or (2) queries that are built using other logical connectives.286

In both cases, it makes sense to study the fixed-parameter tractability of CSP≤(A ∪ B)287

with parameter #ac since the query is typically much smaller than the structure A. The288

connection is quite obvious in the first case (one may view #ac as measuring how “complex”289

the given query is) while it is more hidden in the second case. Let us therefore consider the290

XX:8 CSPs with Few Alien Constraints

negation operator. From a logical perspective, one may view a constraint R̄(x1, . . . , xk) as291

the formula ¬R(x1, . . . , xk). Needless to say, the relation R̄ is often not pp-definable in a292

structure A containing R but it may be existential positive definable in A. Assume that293

the preconditions of the example hold and that CSP(A) is in P. We know that R̄ has an294

existential positive definition in A for every R ∈ A. Let Ā = {R̄ | R ∈ A} and consider the295

problem CSP≤(A ∪ Ā). The forthcoming Theorem 15 is applicable so this problem is in296

FPT parameterized by #ac. Now, the corresponding model checking problem is to decide if297

A |= φ where φ is an A-sentence constructed using the operators ∀ and ∨ and where we are298

additionally allowed to use negated relations ¬R(x1, . . . , xm). It follows that this problem is299

in FPT parameterized by the number of negated relations.300

4 General Tools for Alien Constraints301

We analyze the complexity of CSP≤k(A ∪ B), starting in Section 4.1 by investigating which302

of the classic algebraic tools are applicable to the alien constraint setting, and continuing in303

Section 4.2 by presenting a general FPT result. We will use these observations for proving304

various results but also for obtaining a better understanding of alien constraints.305

4.1 Alien Constraints and Algebra306

First, we have a straightforward generalization of Theorem 1 in the alien constraint setting.307

I Theorem 5. (?) Let A and B be two structures with disjoint signatures. There exists308

a polynomial time many-one reduction f from CSP≤(A∗ ∪ B∗) to CSP≤(A ∪ B) for any309

finite A∗ ⊆ 〈A〉 and B∗ ⊆ 〈A ∪ B〉. If I = (V,C, k) is an instance of CSP≤(A∗ ∪ B∗) and310

f(I) = (V ′, C ′, k′), then k′ only depends on k, A, B, and B∗, so f is an fpt-reduction.311

This claim is, naturally, in general not true for CSP≤k(A∗ ∪ B) for finite A∗ ⊆ 〈A ∪ B〉.312

The idea underlying Theorem 5 can be used in many different ways and we give one example.313

I Proposition 6. If A,B are structures and R ∈ 〈A∪B〉≤1, then CSP≤k(A ∪ (B ∪ {R})) is314

polynomial-time reducible to CSP≤k(A ∪ B).315

We proceed by relating CSP≤k(A ∪ B) to the important idea of reducing to a core (recall316

Section 2). Recall that Ac denotes the (unique up to isomorphism) core of a finite-domain317

structure A. For two structures A∪B we similarly write (A∪B)c for the core. Specifically, if318

e ∈ End(A∪B) has minimal range, then the core consists of {e(R) | R ∈ A}∪{e(R) | R ∈ B}319

of the same signature as A and B, and the problem CSP≤((A ∪ B)c) is thus well-defined.320

I Theorem 7. (?) Let A and B be two structures over a finite universe A. Then CSP≤(A ∪ B)321

and CSP≤((A ∪ B)c) are interreducible under both polynomial-time and fpt reductions.322

In general, it is not possible to reduce from CSP≤k(A ∪ B) to CSP≤k(Ac ∪ B) or from323

CSP≤k(A ∪ B) to CSP≤k(A ∪ Bc). This can be seen as follows. Consider the Boolean324

relation R(x1, x2, x3) ≡ x1 = x2∨x2 = x3, and let A = {R}, B = {6=}. Then, CSP≤1(A ∪ B)325

is NP-hard (see e.g. Exercise 3.24 in [14]) so CSP≤(A ∪ B) is pNP-hard. However, A is326

0-valid, so Ac = {{(0, 0, 0)}}, implying that CSP≤(Ac ∪ B) is in P.327

4.2 Fixed-Parameter Tractability328

We present an algorithm in this section that underlies many of our fixed-parameter tractability329

results and it is based on a particular notion of definability. The existential fragment of330

P. Jonsson, V. Lagerkvist, and G. Osipov XX:9

first-order logic consists of formulas that only use the operations negation, conjunction,331

disjunction, and existential quantification, while the existential positive fragment additionally332

disallows negation. We emphasize that it is required that the equality relation is allowed333

in existential (positive) definitions. We can view existential positive in a different way334

that is easier to use in our algorithm. Let A be a structure with domain A and assume335

that R ⊆ Am is defined via a existential positive definition over A, i.e., R(x1, . . . , xm) ≡336

∃y1, . . . , yn : φ(x1, . . . , xm, y1, . . . , yn) where φ is a quantifier-free existential positive A-337

formula. Since φ can be written in disjunctive normal form without introducing negation or338

quantifiers, it follows that R is a finite union of relations in 〈A〉.339

I Theorem 8. Assume the following.340

1. A,B are structures with the same domain A,341

2. every relation in B is existential positive definable in A, and342

3. CSP(A) is in P.343

Then CSP≤(A ∪ B) is in FPT parameterized by #ac.344

Proof. Assume B = {A;B1, . . . , Bm}. Condition 2. implies that Bi, i ∈ [m], is a finite union345

of relations Bi = R1
i ∪ · · · ∪R

ci
i where R1

i , . . . , R
ci
i are in 〈A〉. Let the structure A∗ contain346

the relations in A ∪ {Rji | i ∈ [m] and j ∈ [ci]}. Clearly, A∗ has a finite signature and the347

problem CSP(A∗) is in P by Theorem 1 since every relation in A∗ is a member of 〈A〉. Let348

b = max{ci | i ∈ [m]}.349

Let ((V,C), k) denote an arbitrary instance of CSP≤(A ∪ B)). The satisfiability of (V,C)350

can be checked via the following procedure. If C contains no B-constraint, then check the351

satisfiability of (V,C) with the polynomial-time algorithm for CSP(A). Otherwise, pick352

one constraint c = Bi(x1, . . . , xq) with Bi ∈ B and check recursively the satisfiability of the353

following instances:354

(V, (C \ {c}) ∪ {R1
i (x1, . . . , xq)}), . . . , (V, (C \ {c}) ∪ {Rci

i (x1, . . . , xq)}).355

If at least one of the instances is satisfiable, then answer "yes" and otherwise "no". This is356

clearly a correct algorithm for CSP≤(A ∪ B).357

We continue with the complexity analysis. Note that the leaves in the computation tree358

produced by the algorithm are CSP(A∗) instances and they are consequently solvable in359

polynomial time. The depth of the computation tree is at most k (since (V,C) contains360

at most k B-constraints) and each node has at most b children. Thus, the problem can be361

solved in bk · poly(|I|) time. We conclude that CSP≤(A ∪ B) is in FPT parameterized by362

#ac since b is a fixed constant that only depends on the structures A and B. J363

5 Finite-Domain Languages364

This section is devoted to CSPs over finite domains. We begin in Section 5.1 by studying365

how the definability of constants affect the complexity of finite-domain CSPs with alien366

constraints, and we use this as a cornerstone for a parameterized FPT versus pNP dichotomy367

result for of CSP≤(A ∪ B). We show a sharper result for Boolean structures in Section 5.2.368

5.1 Parameterized Dichotomy369

We begin with a simplifying result. For a finite set A, let CA be the structure whose relations370

are the constants over A.371

XX:10 CSPs with Few Alien Constraints

I Lemma 9. (?) Let A be a structure over a domain A. For every C ⊆ CA, CSP(A ∪ C) is372

polynomial-time reducible to CSP≤|C|(A ∪ C).373

Lemma 9 together with the basic algebraic results from Section 4.1 allows us to prove the374

following result that combines a more easily formulated fixed-parameter result (compared to375

Theorem 8) with a powerful hardness result.376

I Theorem 10. (?) Let A,B be structures with finite domain D. Assume that A ∪ B is a377

core. If CSP(A∪ CA) is in P, then CSP≤(A ∪ B) is in FPT with parameter #ac. Otherwise,378

CSP≤p(A ∪ B) is NP-hard for some p that only depends on the structures A and B.379

Proof. We provide a short proof sketch, the full proof is in Appendix E. Using the dichotomy380

of finite domain CSPs [13, 27], we first assume CSP(A ∪ CD) is in P. One can prove that381

every tuple over D is pp-definable over A∪CD and then that each relation in B is existential382

positive definable over A ∪ CD. We can now apply Theorem 8, and CSP≤(A ∪ B) is in FPT.383

For the NP-hard case, we assume CSP(A ∪ CD) is NP-hard and construct a polynomial-384

time reduction from CSP(A ∪ CD) to CSP≤p(A ∪ B). We use the endomorphisms of A ∪ B385

to construct a pp-definable relation E which allow us to simulate the constant relations, and386

a reduction to CSP≤1(A ∪ {E}) to establish the claim via Lemma 9 and Theorem 5. J387

Theorem 10 has broad applicability. Let us, for instance, consider a structure A with388

finite domain A and containing a finite number of relations from Inv(f) where f : Am → A389

is idempotent (f : Am → D is idempotent if f(a, . . . , a) = a for all a ∈ A.) If CSP(A)390

is in P, then CSP(A ∪ CA) is in P since constant relations are invariant under f . Hence,391

CSP≤(A ∪ B) is in FPT parameterized by #ac for every finite structure B with domain A392

by Theorem 10. Idempotent functions that give rise to polynomial-time solvable CSPs are393

fundamental and well-studied in the literature; see e.g. the survey by Barto et al. [1].394

Via Theorem 7 we obtain the following parameterized complexity dichotomy separating395

problems in FPT from pNP-hard problems.396

I Corollary 11. Let A,B be structures over the finite domain A. Then, CSP≤(A ∪ B) is397

either in FPT or pNP-hard (in parameter #ac).398

Proof. Let e ∈ End(A ∪ B) have minimal range and let A′ = {e(R) | R ∈ A} and B′ = {R |399

R ∈ B} be the two components of the core (A ∪ B)c, and let A′ = {e(a) | a ∈ A} be the400

resulting domain. The problems CSP≤(A ∪ B) and CSP≤(A′ ∪ B′) are fpt-interreducible by401

Theorem 7. The problem CSP(A′ ∪ CA′) is either in P or is NP-hard by the CSP dichotomy402

theorem [13, 27]. In the first case, CSP≤(A′ ∪ B′) (and thus CSP≤(A ∪ B)) is in FPT403

with parameter #ac. Otherwise, CSP≤(A′ ∪ B′) is pNP-hard, and the fpt-reduction from404

CSP≤(A′ ∪ B′) to CSP≤(A ∪ B) establishes pNP-hardness for the latter. J405

Corollary 11 must be used with caution: it does not imply that CSP≤1(A ∪ B) is NP-hard406

and results such as Theorem 4 may not be applicable. This encourages the refinement of407

coarse complexity results based on Theorem 10. We use Boolean relations as an example of408

this in the next section.409

5.2 Classification of Boolean Languages410

We present a complexity classification of CSP≤(A ∪ B) when A and B are Boolean structures411

(Theorem 14). We begin with two auxiliary results and we define relations c0 = {(0)} and412

c1 = {(1)}.413

P. Jonsson, V. Lagerkvist, and G. Osipov XX:11

I Lemma 12. (?) Let A be a Boolean structure where c0 ∈ 〈A〉. If an n-ary Boolean R 6= ∅414

is not 0-valid then c1 ∈ 〈A ∪ {R}〉≤1.415

We say that a Boolean relation R is invariant under complement if it is invariant416

under the operation {0 7→ 1, 1 7→ 0}. This is equivalent to (t1, . . . , tk) ∈ R if and only if417

(1− t1, . . . , 1− tk) ∈ R.418

I Lemma 13. (?) Let A be a Boolean structure with finite signature. If A is invariant under419

complement, then CSP(A ∪ {c0, c1}) is polynomial-time reducible to CSP≤1(A ∪ {6=}).420

We are now ready for analysing the complexity of CSP≤(A ∪ B) when A and B are421

Boolean structures. We use a simplifying concept: a 0/1 -pair (R0, R1) contains two Boolean422

relations where R0 is 0-valid but not 1-valid and R1 is 1-valid but not 0-valid.423

I Theorem 14. Let A and B be Boolean structures such that CSP(A) is in P and CSP(A∪B)424

is NP-hard. Then the following holds.425

1. If A is Schaefer, then CSP≤(A ∪ B) is in FPT with parameter #ac.426

2. If (i) A is not Schaefer, (ii) A is both 0- and 1-valid, (iii) B contains a 0/1-pair, and427

(iv) B is 0- or 1-valid, then CSP≤2(A ∪ B) is NP-hard and CSP≤1(A ∪ B) is in P.428

3. Otherwise, CSP≤1(A ∪ B) is NP-hard.429

Proof. Assume A is Schaefer and let A+ = A ∪ {c0, c1}. The structure A+ is clearly a core430

and A+ ∪ B is a core, too. The problem CSP(A+) is in P by Theorem 2 so Theorem 10431

implies that CSP≤(A+ ∪ B) (and naturally CSP≤(A ∪ B)) is in FPT parameterized by #ac.432

Since CSP(A) is in P, we know from Theorem 2 that A is 0-valid, 1-valid or Schaefer. We433

assume henceforth that A is 0-valid and not Schaefer; the other case is analogous. If B is434

0-valid, then CSP(A ∪ B) is trivially in P and this is ruled out by our initial assumptions.435

We assume henceforth that B is not 0-valid and consider two cases depending on whether c0436

is pp-definable in A or not.437

Case 1. c0 is pp-definable in A. We know that CSP(A ∪ {c0, c1}) is NP-hard by Theorem 2438

since A is not Schaefer. We can thus assume that CSP(A ∪ {c1}) is NP-hard. Lemma 9439

implies that CSP≤1(A∪ {c1}) is NP-hard. The relation c1 is in 〈A ∪ B〉B≤1 by Lemma 12 so440

we conclude that CSP≤1(A ∪ B) is NP-hard.441

Case 2. c0 is not pp-definable in A. This implies that every relation in A is simultaneously 0-442

and 1-valid. To see this, assume to the contrary that A contains a relation that is not 1-valid.443

Then, x = 0⇔ R(x, . . . , x) and c0 is pp-definable in A. This implies that B contains (a) a444

relation that is not invariant under any constant operation or (b) every relation is closed445

under a constant operation and B contains a 0/1-pair. Note that if (a) and (b) does not hold,446

then B is invariant under a constant operation and CSP(A ∪ B) is trivially in P.447

Case 2(a). There is a a relation R in B that is not invariant under any constant operation, i.e.448

(0, . . . , 0) 6∈ R and (1, . . . , 1) 6∈ R. The relation R has arity a ≥ 2. Let t be the tuple in R that449

contains the maximal number b of 0:s. Clearly, b < a. We assume that the arguments are450

permuted so that t begins with b 0:s and continues with a− b 1:s. Consider the pp-defintion451

S(x, y) ≡ R(x, . . . , x︸ ︷︷ ︸
b occ.

, y, . . . , y︸ ︷︷ ︸
a−b occ.

).452

There are two possibilities: either S(x, y)⇔ x = 0 ∧ y = 1 or S(x, y)⇔ x 6= y. In the first453

case we are done since CSP(A ∪ {c0, c1}) is NP-hard (recall that A is not Schaefer) and454

CSP≤1(A ∪ B) is easily seen to be NP-hard by Lemma 9. Let us consider the second case.455

XX:12 CSPs with Few Alien Constraints

If A is invariant under complement, then CSP≤1(A ∪ B) is NP-hard by Lemma 13. If A is456

not invariant under complement, then we claim that c0 and c1 can be pp-defined with the457

aid of 6=. Arbitrarily choose a relation T in A that contains a tuple t = (t1, . . . , ta) such that458

(1 − t1, . . . , 1 − ta) 6∈ T—note that t cannot be a constant tuple since both (0, . . . , 0) and459

(1, . . . , 1) are in T . Assume that t contains b 0:s and that the arguments are permuted so460

that t begins with b 0:s followed by a− b 1:s. Consider the pp-definition461

U(x, y) ≡ x 6= y ∧ T (x, . . . , x︸ ︷︷ ︸
b occ.

, y, . . . , y︸ ︷︷ ︸
a−b occ.

).462

The relation U contains the single tuple (0, 1). We know that CSP(A ∪ {c0, c1}) is NP-hard463

(recall that A is not Schaefer) and Lemma 9 implies that CSP≤2(A ∪ {c0, c1}) is NP-hard,464

too. It is now easy to see that CSP≤1(A ∪ B) is NP-hard via the definition of U .465

Case 2(b). Every relation in B is closed under at least one constant operation and B contains466

a 0/1-pair (R0, R1). Since A is both 0- and 1-valid, it follows that CSP≤1(A ∪ B) is in P.467

The constant relations c0 and c1 are pp-definable in {R0, R1} since x = 0 ⇔ R0(x, . . . , x)468

and x = 1 ⇔ R1(x, . . . , x). This implies with the aid of Lemma 9 that CSP≤2(A ∪ B) is469

NP-hard since A is not Schaefer. J470

Theorem 14 carries over to Boolean Redundant(·), Equiv(·) and Impl(·) by Lemma 3471

combined with Theorem 4, so these problems are in P if and only if A is Schaefer (case 2.472

in Theorem 14 is not applicable when analysing these problems since it requires |B| ≥ 2).473

Otherwise, they are NP-complete under polynomial-time Turing reductions. The meta-474

problem for Boolean CSPs with alien constraints is decidable, i.e., there is an algorithm475

that decides for Boolean structures A,B whether CSP≤(A ∪ B) is in case 1., 2., or 3. of476

Theorem 14. This is obvious since we have polymorphism descriptions of the Schaefer477

languages.478

6 Infinite-Domain Languages479

We focus on infinite-domain CSPs in this section. We begin Section 6.1 by discussing480

certain problems when CSPs with alien constraints are generalized to infinite domains.481

Our conclusion is that restricting ourselves to ω-categorical structures is a viable first step:482

ω-categorical structures constitute a rich class of CSPs and we can generalize at least some483

of the machinery from Section 5 to this setting. We demonstrate this in Section 6.2 where484

we obtain a complete complexity classification for equality languages.485

6.1 Orbits and Infinite-Domain CSPs486

It is not straightforward to tranfer the results in Section 5 to the infinite-domain regime. First,487

let us consider Theorem 8. In contrast to finite domains, relations in B may not be finite488

unions of relations in 〈A〉 or, equivalently, not being definable with an existential positive489

formula. Second, let us consider Theorem 10: the proof is based on structures expanded490

with symbols for each domain value and this leads to problematic structures with infinite491

signatures. The proof is also based on the assumption that CSPs are either polynomial-time492

solvable or NP-complete, and this is no longer true [5]. It is thus necessary to restrict our493

attention to some class of structures with sufficiently pleasant properties. A natural choice is494

ω-categorical structures that allows us to reformulate Theorem 8 as follows.495

I Theorem 15. (?) Assume the following.496

P. Jonsson, V. Lagerkvist, and G. Osipov XX:13

1. A,B are structures with the same countable (not necessarily infinite) domain A,497

2. A and B are ω-categorical,498

3. every relation in Orb(B) is existential primitive definable in 〈A〉, and499

4. CSP(A) is in P500

Then CSP≤(A ∪ B) is in FPT parameterized by #ac.501

I Example 16. Results related to Theorem 15 have been presented in the literature. Recall502

that RCC5 and RCC8 are spatial formalism with binary relations that are disjunctions of503

certain basic relations [23]. Li et al. [19] prove that if A is a polynomial-time solvable RCC5504

or RCC8 constraint language containing all basic relations, then Redundant(A) is in P.505

This immediately follows from combining Theorem 4 and Theorem 15 since RCC5 and RCC8506

can be represented by ω-categorical constraint languages [3, 11] and every RCC5/RCC8507

relation is existential primitive definable in the structure of basic relations by definition. This508

result can be generalized to a much larger class of relations in the case of RCC5 since the509

orbits of k-tuples are pp-definable in the structure of basic relations [6, Proposition 35].510

A general hardness result based on the principles behind Theorem 10 does not seem511

possible in the infinite-domain setting, even for ω-categorical structures. The hardness proof512

in Theorem 10 utilizes variables given fixed values and a direct generalization would lead513

to groups of variables that together form an orbit of an n-tuple. Such gadgets behave very514

differently from variables given fixed values: in particular, they do not admit a result similar515

to Lemma 9. Thus, hardness results needs to be constructed in other ways.516

We know from Section 4.1 that CSP≤(A ∪ B) and CSP≤((A ∪ B)c) are the same when517

A and B has the same finite domain. We now consider a generalisation of cores to infinite518

domains from Bodirsky [2]: an ω-categorical structure A with countable domain is a519

model-complete core if every relation in Orb(A) is pp-definable in A. There is an obvious520

infinite-domain analogue of Theorem 7: if A′ ∪B′ is the model-complete core of A∪B (where521

A,B are ω-categorical structures over a countable domain A), then CSP≤(A ∪ B) polynomial-522

time reduces to CSP≤(A′ ∪ B′). Model-complete cores share many other properties with523

cores, too. With this said, it is interesting to understand model-complete cores in the context524

of CSP≤(A ∪ B), simply because they are so well-studied and exhibit useful properties. We525

merely touch upon this subject by making an observation that we use in Section 6.2.526

I Lemma 17. (?) Let A and B denote ω-categorical structures with a countable domain A.527

Assume that A is a model-complete core and CSP(A) is in P. Then, CSP≤(A ∪ B) is in528

FPT parameterized by #ac for every structure B such that Orb(B) ⊆ Orb(A).529

6.2 Classification of Equality Languages530

We present a complexity classification of CSP≤(A ∪ B) for equality languages A, B. Essen-531

tially, there are two interesting cases: when A is Horn, and when A is 0-valid and not Horn.532

In the former case, CSP≤(A ∪ B) is in FPT parameterized by #ac, while in the second case533

it is pNP-hard. It turns out that the ability to pp-define the arity-c disequality relation,534

where c depends only on A, using at most k alien constraints, determines the complexity. A535

dichotomy for Redundant(·), Impl(·), and Equiv(·) follows: these problems are either in536

P or NP-hard under polynomial-time Turing reductions.537

Recall that CSP(A) for a finite equality constraint language A is in P if A is 0-valid or538

preserved by a binary injective operation, and NP-hard otherwise, and that the automorphism539

group for equality languages is the symmetric group Σ on N, i.e. the set of permutations on N.540

It is easy to see that an orbit of a k-tuple (a1, . . . , ak) is pp-definable in {=, 6=}. For instance,541

XX:14 CSPs with Few Alien Constraints

the orbit of (0, 0, 1, 2) is defined by O(x1, x2, x3, x4) ≡ x1 = x2 ∧x2 6= x3 ∧x2 6= x4 ∧x3 6= x4.542

Observe that 6= is invariant under every binary injective operation, so if A is Horn, then543

6=∈ 〈A〉 and every orbit of n-tuples under Σ is pp-definable in A. Thus, A is a model-complete544

core as pointed out in Section 6.1. Lemma 17 now implies the following.545

I Corollary 18. Let A and B be equality languages. If A is Horn, then CSP≤(A ∪ B) is in546

FPT parameterized by #ac.547

Thus, we need to classify the complexity of CSP≤k(A ∪ B) for every k, where A is548

0-valid and not Horn, and B is not 0-valid. We will rely on results about the complexity549

of singleton expansions of equality constraint languages. Let A be a constraint language550

over the domain N. By A+
c we denote the expansion of A with c singleton relations, i.e.551

A+
c = A ∪ {{1}, . . . , {c}}. The complexity of CSP(A+

c) for equality constraint languages A552

and all constants c was classified by Osipov & Wahlström [21, Section 7], building on the553

detailed study of polymorphisms of equality constraint languages by Bodirsky et al. [4].554

The connection between CSP≤k(A ∪ B) and CSP(A+
c) is the following. In one direction,555

we can augment every instance of CSP(A) with c fresh variables z1, . . . , zc and, assuming k556

is large enough and B is not 0-valid, use B-constraints to ensure that z1, . . . , zc attain distinct557

values in every satisfying assignment. Given that A is invariant under every permutation558

of N, we can now treat z1, . . . , zc as constants, e.g. as 1, . . . , c, and transfer hardness559

results from the singleton expansion to our problem. In the other direction, if the relation560

NEQc+1 /∈ 〈A ∪ B〉≤k, then every satisfiable instance of CSP≤k(A ∪ B) has a solution561

with range [c], and A+
c is tractable: indeed, a satisfiable instance without such a solution562

would be a pp-definition of NEQc′ for some c′ > c. These connections are formalized in563

Lemmas 23 and 24. We will leverage the following hardness result.564

I Lemma 19 (Follows from Theorem 54 in [21]). Let A be a finite equality language. If A is565

not Horn, then CSP(A+
c) is NP-hard for some c = c(A).566

Our main tool for studying singleton expansions are retractions.567

I Definition 20. Let A be an equality language. An operation f : N→ [c] is a retraction of568

A to [c] if f is an endomorphism of A where f(i) = i for all i ∈ [c]. If A admits a retraction569

f to [c], then we say that A retracts to [c], and Af is a retract (of A to [c]).570

We obtain a useful characterization of retracts.571

I Lemma 21. Let A be an equality language and f be a retraction from A to [c]. Then572

f(R) = R ∩ [c]ar(R) for all R ∈ A.573

Proof. First, observe that f(R) ⊆ R ∩ [c]ar(R): indeed, f is an endomorphism, so f(R) ⊆ R,574

and f(R) ⊆ [c]ar(R) because the range of f is [c]. Moreover, we have R ∩ [c]ar(R) ⊆ f(R)575

because f is constant on [c], so it preserves every tuple in [c]ar(R). J576

The finite-domain language {R ∩ [c]ar(R) : R ∈ A} is called a c-slice of A in [21, Section577

7]. Lemma 21 shows that a c-slice of A is the retract Af under any retraction f from A to [c].578

Note that the definition of the c-slice does not depend on f , so we can talk about the retract579

of A to [c]. We will use this fact implicitly when transferring results from Theorem 57 in [21].580

I Lemma 22 (Follows from Theorem 57 in [21]). Let A be an equality language that is 0-valid581

and not Horn, and let c be a positive integer. Then exactly one of the following holds:582

A does not retract to [c], and CSP(A+
c) is NP-hard.583

A retracts to [c], and CSP(A+
c) is NP-hard for all c ≥ 2.584

P. Jonsson, V. Lagerkvist, and G. Osipov XX:15

A retracts to [c], and both CSP(∆+
c) for the retract ∆ and CSP(A+

c) are in P.585

Let NEQr = {(t1, . . . , tr) ∈ Nr : |{t1, . . . , tr}| = r}, i.e. the relation that contains every586

tuple of arity r with all entries distinct.587

I Lemma 23. (?) Let A and B be equality languages and c ∈ Z+. If NEQc+1 /∈ 〈A ∪ B〉≤k,588

then every satisfiable instance of CSP≤k(A ∪ B) has a solution whose range is in [c].589

I Lemma 24. (?) Let A, B be two equality constraint languages, and let c ∈ Z+ be an integer.590

CSP(A+
c) is polynomial-time reducible to CSP≤k(A ∪ B) whenever NEQc ∈ 〈A ∪ B〉≤k.591

We are ready to present the classification.592

I Theorem 25. Let A and B be equality languages such that CSP(A) is in P and CSP(A∪B)593

is NP-hard.594

1. If A is Horn, CSP≤(A ∪ B) is in FPT parameterized by #ac.595

2. If A is not Horn, CSP≤(A ∪ B) is pNP-hard parameterized by #ac. Moreover, there596

exists an integer c = c(A) such that CSP≤k(A ∪ B) is in P whenever NEQc /∈ 〈A∪B〉≤k,597

and is NP-hard otherwise.598

Proof. CSP(A) is in P so A is Horn or 0-valid. If A is Horn, then Corollary 18 applies,599

proving part 1 of the theorem. Suppose A is 0-valid and not Horn. By applying Lemma 19 to600

A, we infer that there is a minimum positive integer c such that CSP(A+
c) is NP-hard. Since601

A is 0-valid, we have c ≥ 2. Using Lemma 24, we can reduce CSP(A+
c) to CSP≤k(A ∪ B)602

in polynomial time whenever NEQc ∈ 〈A ∪ B〉B≤k, proving that the latter problem is NP-603

hard. Observe that B is not 0-valid because CSP(A ∪ B) is NP-hard, so 6= ∈ 〈B〉 and604

NEQc ∈ 〈A ∪ B〉B≤k for some finite k ≤
(
c
2
)
. This show the pNP-hardness result in part 2.605

To complete the proof of part 2, it suffices to show that we can solve CSP≤k(A ∪ B) in606

polynomial time whenever NEQc /∈ 〈A ∪ B〉B≤k. To this end, observe that, by the choice of607

c, if c′ < c, then CSP(A+
c′) is in P. Then, by Lemma 22, A retracts to the finite domain [c′],608

and the retract ∆ is such that CSP(∆+
c′) is in P. We will use the algorithm for CSP(∆+

c′) in609

our algorithm for CSP≤k(A ∪ B) that works for all k such that NEQc /∈ 〈A ∪ B〉≤k610

Let I be an instance of CSP≤k(A ∪ B). Since NEQc /∈ 〈A ∪ B〉B≤k, Lemma 23 implies611

that I is satisfiable if and only if it admits a satisfying assignment with range [c−1]. Let X be612

the set of variables in I that occur in the scopes of the alien constraints. Note that |X| ∈ O(k).613

Enumerate all assignments α : X → [c− 1], and check if it satisfies all B-constraints in I. If614

not, reject it, otherwise remove the B-constraints and add unary constraints x = α(x) for615

all x ∈ X instead. This leads to an instance of CSP(∆+
c−1), which is solvable in polynomial616

time. If we obtain a satisfiable instance for some α, then accept I, and otherwise reject it.617

Correctness follows by Lemma 23 and the fact that the algorithm considers all assignments618

from X to [c]. We make 2O(k) calls to the algorithm for CSP(∆+
c−1), where k is a fixed619

constant, and each call runs in polynomial time. This completes the proof. J620

Theorem 14 implies that CSP≤(A ∪ B) is pNP-hard if and only if CSP≤k(A ∪ B) is621

NP-hard for some k, and it is in FPT parameterized by #ac otherwise. Theorem 25 now622

implies a dichotomy for Redundant(·), Impl(·), and Equiv(·) over finite equality languages.623

I Theorem 26. (?) Let A be a finite equality language. Then Redundant(A), Impl(A),624

and Equiv(A) are either in P or NP-hard (under polynomial-time Turing reductions).625

Algebraically characterizing the exact borderline between tractable and hard cases of626

the problem seems difficult. In particular, given a 0-valid non-Horn equality language A,627

XX:16 CSPs with Few Alien Constraints

answering whether CSP≤1(A ∪ Ā) is in P, i.e. whether NEQc ∈ 〈A ∪ R̄〉≤1 for some R ∈ A628

and large enough c, requires a deeper understanding of such languages. However, one can629

show that the answer to this, and even a more general question is decidable.630

I Proposition 27. (?) There is an algorithm that takes two equality constraint languages A631

and B and outputs minimum k ∈ N ∪ {∞} such that CSP≤k(A ∪ B) is NP-hard.632

7 Discussion633

We have focused on structures with finite signatures in this paper. This is common in the CSP634

literature since relational structures with infinite signature cause vexatious representational635

issues. It may, though, be interesting to look at structures with infinite signatures, too.636

Zhuk [28] observes that the complexity of the following problem is open: given a system of637

linear equations mod 2 and a single linear equation mod 24, find a satisfying assignment over638

the domain {0, 1}. The equations have unbounded arity so this problem can be viewed as a639

CSP≤1(A ∪ B) problem where A,B have infinite signatures. This question is thus not directly640

answered by Theorem 14. Second, let us also remark that when considering CSP≤(A ∪ B),641

we have assumed that both A and B are taken from some nice “superstructure”. For example,642

in the equality language case we assume that both structures are first-order reducts of (N; =).643

One could choose structures more freely and, for example, let A be an equality language and644

B a finite-domain language. This calls for modifications of the underlying theory since (for645

instance) the algorithm that Theorem 8 is based on breaks down.646

For finite domains we obtained a coarse parameterized dichotomy for CSP≤(A ∪ B)647

separating FPT from pNP-hardness. Sharper results providing the exact borderline between648

P and NP-hardness for the pNP-hard cases are required for classifying implication, equivalence,649

and redundancy. Via Theorem 7 and Theorem 10 the interesting case is when CSP(A) is in650

P, A ∪ B is core but A is not core. This question may be of independent algebraic interest651

and could be useful for other problems where the core property is not as straightforward as652

in the CSP case. For example, in surjective CSP we require the solution to be surjective,653

and this problem is generally hardest to analyze when the template is not a core [8].654

Any complexity classification of the first-order reducts of a structure includes by necessity655

a classification of equality CSPs. Thus, our equality language classification lay the foundation656

for studying first-order reducts of more expressive structures. A natural step is to study657

temporal languages, i.e. first-order reducts of (Q;<). Our classification of equality constraint658

languages relies on the work in [4] via [21], who studied the clones of polymorphisms of659

equality constraint languages in more detail. One important result, due to Haddad &660

Rosenberg [16], is that after excluding several easy cases, every equality constraint language661

we end up with is only closed under operations with range [c] for some constant c. Then,662

pp-defining the relation NEQc+1 brings us into pNP-hard territory. Similar characterizations663

of the polymorphisms for reducts of other infinite structures, e.g. (Q;<), would imply664

corresponding pNP-hardness results, and this appear to be a manageable way forward.665

References666

1 Libor Barto, Andrei A. Krokhin, and Ross Willard. Polymorphisms, and how to use them. In667

The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl668

Follow-Ups, pages 1–44. 2017.669

2 Manuel Bodirsky. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University670

Press, 2021.671

P. Jonsson, V. Lagerkvist, and G. Osipov XX:17

3 Manuel Bodirsky and Hubie Chen. Qualitative temporal and spatial reasoning revisited.672

Journal of Logic and Computation, 19(6):1359–1383, 2009.673

4 Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equality up to primitive674

positive interdefinability. The Journal of Symbolic Logic, 75(4):1249–1292, 2010. doi:10.675

2178/jsl/1286198146.676

5 Manuel Bodirsky and Martin Grohe. Non-dichotomies in constraint satisfaction complexity. In677

Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP-2008),678

pages 184 –196, 2008.679

6 Manuel Bodirsky and Peter Jonsson. A model-theoretic view on qualitative constraint reasoning.680

Journal of Artificial Intelligence Research, 58:339–385, 2017.681

7 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of682

Computing Systems, 43(2):136–158, 2008.683

8 Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homomorphism684

problems - a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012.685

9 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogeneous686

templates. In Proc. 17th International Workshop on Computer Science Logic (CSL-2003),687

pages 44–57, 2003.688

10 Manuel Bodirsky, Michael Pinsker, and Todor Tsankov. Decidability of definability. The689

Journal of Symbolic Logic, 78(4):1036–1054, 2013.690

11 Manuel Bodirsky and Stefan Wölfl. RCC8 is polynomial on networks of bounded treewidth.691

In Proc. 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pages692

756–761, 2011.693

12 Elmar Böhler, Edith Hemaspaandra, Steffen Reith, and Heribert Vollmer. Equivalence and694

isomorphism for Boolean constraint satisfaction. In Proc. 16th International Workshop on695

Computer Science Logic (CSL-2002), pages 412–426, 2002.696

13 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th IEEE Annual697

Symposium on Foundations of Computer Science (FOCS-2017), pages 319–330, 2017.698

14 Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM SIGACT News, 37(4):85–114,699

2006.700

15 David A. Cohen, Peter Jeavons, Peter Jonsson, and Manolis Koubarakis. Building tractable701

disjunctive constraints. Journal of the ACM, 47(5):826–853, 2000.702

16 Lucien Haddad and Ivo G. Rosenberg. Finite clones containing all permutations. Canadian703

Journal of Mathematics, 46(5):951–970, 1994.704

17 Wilfrid Hodges. A shorter model theory. Cambridge University Press, Cambridge, 1997.705

18 Peter G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer706

Science, 200:185–204, 1998.707

19 Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan Both. On redundant708

topological constraints. Artificial Intelligence, 225:51–76, 2015.709

20 Florent R. Madelaine and Barnaby Martin. On the complexity of the model checking problem.710

SIAM Journal on Computing, 47(3):769–797, 2018.711

21 George Osipov and Magnus Wahlström. Parameterized complexity of equality MinCSP. arXiv712

preprint arXiv:2305.11131, 2023. This is the report version of a paper that appears in Proc.713

31st Annual European Symposium on Algorithms (ESA-2023), pp. 86:1-86:17.714

22 George Osipov and Magnus Wahlström. Parameterized complexity of equality MinCSP. arXiv715

preprint arXiv:2305.11131, 2023. This is the report version of a paper that appeared at the716

31st Annual European Symposium on Algorithms (ESA-2023).717

23 David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on regions and718

connection. In Proc. 3rd International Conference on Principles of Knowledge Representation719

and Reasoning (KR-1992), pages 165–176, 1992.720

24 Thomas J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Annual ACM721

Symposium on Theory of Computing (STOC-1978), pages 216–226, 1978.722

https://doi.org/10.2178/jsl/1286198146
https://doi.org/10.2178/jsl/1286198146
https://doi.org/10.2178/jsl/1286198146

XX:18 CSPs with Few Alien Constraints

25 Henning Schnoor and Ilka Schnoor. Partial polymorphisms and constraint satisfaction problems.723

In Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl724

Seminar], pages 229–254. Springer, 2008.725

26 Moshe Y. Vardi. The complexity of relational query languages (extended abstract). In Proc.726

14th Annual ACM Symposium on Theory of Computing (STOC-1982), pages 137–146, 1982.727

27 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78,728

2020.729

28 Dmitriy Zhuk. Constraint satisfaction problem: what makes the problem easy. In Proc.730

International Conference of Mathematicians 2022 (ICM-2022), pages 1530–1553, 2022.731

P. Jonsson, V. Lagerkvist, and G. Osipov XX:19

APPENDIX732

A Proof of Theorem 4733

Proof. Let I = (V,C) be an arbitrary instance of CSP(A) with domain A.734

CSP(A) is not in P. We show that Redundant(A) is not in P. Choose a relation R ∈ A of735

arity p > 0 that satisfies ∅ (R (Ap. Note that A must contain at least one such relation R736

since otherwise we can trivially determine whether an instance is a yes-instance or not, and737

this contradicts that CSP(A) is not in P. Let (t1, . . . , tp) be an arbitrary tuple in R. We738

construct another instance I ′ = (V ′, C ′) such that a certain constraint c ∈ C ′ is redundant739

in I ′ if and only if I is not satisfiable.740

1. Introduce p fresh variables y1, . . . , yp and define V ′ = V ∪ {y1, y2, ..., yp}.741

2. Define the constraint c = R(y1, y2, ..., yp) and let C ′ = C ∪ {c}.742

These steps describe a polynomial time reduction from the CSP(A) instance I to the743

Redundant(A) instance (I ′, c). We prove that I is a yes-instance if and only if (I ′, c) is a744

no-instance.745

If I is satisfiable, then there exists a satisfying assignment f : V → A that satisfies746

all constraints in C. We show that I ′ is satisfiable by extending the assignment f to747

f ′ : V ′ → A: let f ′(x) = f(x) when x ∈ V and f ′(yi) = ti, i ∈ [p]. Note that Sol((V ′, C ′)) 6=748

Sol((V ′, C ′ \ {c})) since R (Dp so c is not a redundant constraint in I ′.749

If I is not satisfiable, then I ′ is not satisfiable since C ⊆ C ′. Thus, Sol((V ′, C ′)) =750

Sol((V ′, C ′ \ {c})) and (I ′, c) is a yes-instance of Redundant(A).751

We conclude that this is a polynomial-time Turing reduction and the lemma follows.752

Note that Redundant(Γ) is NP-hard (under polynomial-time Turing reductions) whenever753

CSP(Γ) is NP-hard.754

CSP(A) is in P. We show that Redundant(A) is in P if and only if for every relation R ∈ A,755

CSP≤1(A ∪ {R̄}) is in P.756

Right-to-left direction. Assume CSP≤1(A ∪ {R̄}) is in P for every R ∈ A. For an instance757

I = ((V,C), c) of Redundant(A), let c = R(x1, . . . , xk) and define c̄ = R̄(x1, . . . , xk).758

Observe that I ′ = (V, (C \ {c}) ∪ c̄) an instance of CSP≤1(A ∪ R̄) and check whether it759

is satisfiable. We claim that I is a no-instance if and only I ′ is satisfiable. Indeed, I is a760

no-instance if and only if Sol(V,C \ {c}) 6= Sol(V,C). Clearly, Sol(V,C) ⊆ Sol(V,C \ {c}),761

so I is a no-instance if and only if there is an assignment α that satisfies C \ {c} and does762

not satisfy c. Note that such an assignment α satisfies I ′ = (V, (C \ {c}) ∪ c̄), so it exists if763

and only if I ′ is satisfiable.764

Left-to-right direction. Assume that Redundant(A) is in P. We show CSP≤1(A ∪ R̄)765

is in P as well. Let I = (V,C) be an instance of the former problem, where c = R̄(x1, . . . , xk)766

is in C, and let c̄ = R(x1, . . . , xk). Observe that I ′ = (V, (C \ {c}) ∪ c̄, c̄) is an instance of767

Redundant(A), and check whether it is a yes-instance. We claim that I is satisfiable if768

and only if I ′ is a no-instance. Indeed, I ′ is no-instance if and only if Sol(V, (C \ {c}) ∪ c̄) 6=769

Sol(V,C \ {c}). Clearly, Sol(V, (C \ {c}) ∪ c̄) ⊆ Sol(V,C \ {c}), so I ′ is a no-instance if and770

only if there exists an assignment α that satisfies C \ {c} and does not satisfy c̄. Note that771

such an assignment α satisfies both (C \ {c}) and c, and hence satisfies I = (V,C), so α772

exists if and only if I is satisfiable. J773

XX:20 CSPs with Few Alien Constraints

B Proof of Theorem 5774

Proof. We only sketch the proof since the details are very similar to the classical reduction775

for CSPs in Theorem 1. The structures A and B have finite signatures so we can (without loss776

of generality) assume that we have access to the following information: (1) the pp-definitions777

in A for the relations in A∗ \ A, and (2) for every R ∈ B∗ \ B, a pp-definiton of R in A ∪ B778

with kR B-constraints.779

Let I = (V,C, k) be an arbitrary instance of CSP≤(A∗ ∪ B∗). We begin by replacing780

each (A∗ \ A)-constraint by its precomputed pp-definition in A. This does not increase the781

parameter. We similarly replace every (B∗ \ B)-constraint by its pp-definition over A ∪ B.782

There are at most k such constraints in C, and each of them is replaced by at most kR783

constraints over B for a fixed constant kR. This reduction is obviously correct and can be784

computed in polynomial time. The bound on the parameter follows since kR only depends785

on the chosen pp-definition over the fixed and finite language A ∪ B. J786

C Proof of Theorem 7787

Proof. Let e be an endomorphism with minimal range in End(A∪B), letA′ = {e(R) | R ∈ A}788

and B′ = {e(R) | R ∈ B}, of the same signature as A and B. First, let (V,C, k) be an instance789

of CSP≤(A ∪ B). For each constraint R(x) ∈ C we simply replace it by e(R)(x). It is then790

easy to verify, and well-known, that the resulting instance is satisfiable if and only if (V,C)791

is satisfiable. Furthermore, observe that if (1) R ∈ A then e(R) ∈ A′, and (2) if R ∈ B then792

e(R) ∈ B′. Hence, (V,C) has k alien constraints R1(x1), . . . , Rk(xk) then the new instance793

has k alien constraints e(R1)(x1), . . . , e(Rk)(xk), too. Hence, it is an fpt-reduction.794

The other direction is similar: let (V,C1 ∪ C2, k) be an instance of CSP≤(A′ ∪ B′). For795

each constraint e(R)(x) ∈ C1 we replace it by R(x) for R ∈ A, and for each constraint796

e(R)(x) ∈ C2 we replace it by R(x) for R ∈ B. Clearly, the number of alien constraints797

remains unchanged, and the reduction is an fpt-reduction which exactly preserves #ac. J798

D Proof of Lemma 9799

Proof. Let (V,C) be an instance of CSP(A∪C). Pick c ∈ C and consider the set of constraints800

Cc = {c(x) | c ∈ C}. Pick an arbitrary c(v) ∈ Cc and consider the instance (V ′, C ′) obtained801

by (1) identifying v′ with v for any c(v′) ∈ Cc throughout the instance and (2) replacing802

Cc from the set of constraints with the single constraint c(v). If we repeat this for every803

c ∈ C we obtain an instance of CSP≤|C|(A ∪ C) which is satisfiable if and only if (V,C) is804

satisfiable. J805

E Proof of Theorem 10806

Proof. We use the fact that every structure with finite domain has a CSP that is either807

polynomial-time solvable or NP-hard [13, 27]. Assume that CSP(A ∪ CD) is in P. First,808

we claim that every tuple over D is pp-definable over A ∪ CD. Thus, let n ≥ 1 and pick809

t = (d1, . . . , dn) ∈ Dn. It follows that {t}(x1, . . . , xn) ≡ {d1}(x1) ∧ . . . ∧ {dn}(xn) since each810

{di} ∈ CD. Second, pick an n-ary relation R = {t1, . . . , tm} ∈ B. Since each {ti} ∈ 〈A ∪ CD〉,811

R is a finite union of relations in 〈A ∪ CD〉, and every relation in B is existential positive812

definable over A ∪ CD. We conclude that Theorem 8 is applicable and that CSP≤(A ∪ B) is813

in FPT parameterized by #ac.814

P. Jonsson, V. Lagerkvist, and G. Osipov XX:21

For the second statement, we assume that CSP(A∪ CD) is NP-hard. We show that there815

is a polynomial-time reduction from CSP(A ∪ CD) to CSP≤p(A ∪ B) for some p that only816

depends on B. First, let D = {a1, . . . , ad} and consider the relation E = {(e(a1), . . . , e(ad)) |817

e ∈ End(A∪B)}, i.e., the set of endomorphisms of A viewed as a d-ary relation. It is known818

that E ∈ 〈A∪B〉 [1, proof of Theorem 17] since A∪B is a core. Let I = (V,C) be an instance819

of CSP(A∪CD). By Lemma 9 we can without loss of generality assume that I is an instance820

of CSP≤d(A ∪ CD), and we will produce a polynomial-time reduction to CSP≤1(A ∪ {E})821

which is sufficient to prove the claim under Theorem 5.822

Let v1, . . . , vd ∈ V such that ci(vi) ∈ C, i.e., the variables being enforced constant values823

via the constraints in CD. We remove the constraints c1(v1), . . . , cd(vd) and replace them824

with E(v1, . . . , vd). We claim that the resulting instance (V,C ′) is satisfiable if and only825

if (V,C) is satisfiable. First, assume that f : V → D is a satisfying assignment to (V,C).826

We see that f(vi) = ci for each i ∈ [d] and thus that (f(v1) . . . , f(vd)) ∈ E. For the other827

direction, assume that g : V → D is a satisfying assignment to (V,C ′) and consider the828

function defined by π(ai) = g(vi) for every i ∈ [d]. Clearly, (π(v1), . . . , π(vd)) ∈ E, and829

it follows that π ∈ Aut(A ∪ B). Since Aut(A ∪ B) is an automorphism group it follows830

that π−1 ∈ Aut(A ∪ B), too, and the function h(x) = π−1(g(x)) then gives us the required831

satisfying assignment. J832

F Proof of Lemma 12833

Proof. By assumption, c0 ∈ 〈A〉, and to simplify the notation we assume that c0 ∈ A. This834

can be done without loss of generality since in the pp-definition below we can replace any835

occurrence of c0 by its pp-definition. Fix a tuple (a1, . . . , an) ∈ R which is not constantly836

0. This is possible since R 6= ∅ and since R is not 0-valid. We then use the definition837

c1(x) ≡ ∃y : c0(y) ∧R(x1, . . . , xn) where xi = x if ai = 1 and xi = y if ai = 0. J838

G Proof of Lemma 13839

Proof. Let (V,C) denote an instance of CSP(A∪{c0, c1}). Assume (without loss of generality840

by Lemma 12) that the constant relations c0 and c1 appear at most one time, respectively,841

in C and that they restrict the variables z0 and z1 as follows: c0(z0) and c1(z1). Let (V,C ′)842

denote the instance of CSP≤1(A ∪ {6=}) where C ′ = (C \ {c0(z0), c1(z1)}) ∪ {z0 6= z1}. It is843

not difficult to verify that (V,C ′) is satisfiable if and only if (V,C) is satisfiable since A is844

invariant under complement. J845

H Proof of Theorem 15846

Proof. Condition 3. says that every relation in Orb(B) is a finite union of relations in 〈A〉847

(as pointed out in Section 4.2). Condition 2. together with the well-known characterization848

of ω-categorical structures by Engeler, Svenonius, and Ryll-Nardzewski [17, Theorem 6.3.1]849

imply that every relation in B is a finite union of relations in 〈A〉. We can now apply850

Theorem 8. J851

I Proof of Lemma 17852

Proof. The structure B is a model-complete core so every relation in Orb(A) is pp-definable853

in A. Pick an arbitrary relation R ∈ B. The structure B is ω-categorical so R is a finite854

XX:22 CSPs with Few Alien Constraints

union of relations in Orb(B). We have assumed that Orb(B) ⊆ Orb(A) so R is existential855

positive definable in A. The result follows from Theorem 15. J856

J Proof of Lemma 23857

Proof. We prove the contrapositive: if there is a satisfiable instance of CSP≤k(A ∪ B) with858

every satisfying assignment taking at least c values, then A ∪ B admits a pp-definition of859

NEQc with k constraints from B. We will use the fact that for every d,860

NEQc(x1, . . . , xc) ≡ ∃xc+1, . . . , xc+d : NEQd(x1, . . . , xc+d),861

so it is enough to pp-define a relation NEQc′ with c′ ≥ c to prove the lemma.862

Consider a satisfiable instance I of CSP≤k(A ∪ B) as a quantifier-free primitive-positive863

formula φ(x1, . . . , xn). Note that I contains at most k constraints from B. Let α be a864

satisfying assignment to I with minimum range, and assume without loss of generality that865

the range is [c] for some c ∈ Z+. We claim that I ′ = φ(yα(x1), . . . , yα(xn)) is a pp-definition866

of NEQc. First, note that every injective assignment satisfies I ′. Moreover, every satisfying867

assignment to I ′ also satisfy I, so it must take at least r values (i.e. be injective) by the868

choice of α. Finally, note that I ′ contains at most k constraints from B, hence it is an869

instance of CSP≤k(A ∪ B). J870

K Proof of Lemma 24871

Proof. Let I be an instance of CSP(A+). We construct an equivalent instance I ′ of872

CSP≤k(A ∪ B) starting with all constraints in I except for the applications of singleton873

relations, i.e. unit assignments. Assume without loss of generality that I does not contain two874

contradicting unit assignments. To simulate c constants, create variables x1, . . . , xc and add875

the pp-definitions of NEQc(x1, . . . , xc) to I ′. This requires k applications of B-constraints.876

Now, replace every variable v in I ′ such that the constraint v = i is in I with the new variable877

xi. Clearly, the reduction requires polynomial time. The correctness follows since we are878

using a pp-definition to simulate relation NEQc, and it can be verified using Theorem 5. J879

L Proof of Theorem 26880

Proof. The problems under consideration are equivalent under polynomial-time Turing reduc-881

tions by Lemma 3. By Theorem 4, Redundant(A) is in P if and only if CSP≤1(A ∪ Ā) is in P,882

where Ā = {R̄ : R ∈ A} is the language of complements of A-relations. Clearly, if A is neither883

Horn nor 0-valid, then even CSP≤0(A ∪ Ā) is NP-hard, implying that Redundant(A) is884

coNP-hard as pointed out after Lemma ??. If A is Horn, then then CSP≤(A ∪ B) is in FPT885

parameterized by #ac so CSP≤1(A ∪ Ā) is in P, and hence Redundant(A) is in P. If A is886

0-valid and not Horn, then Ā is not 0-valid and CSP(A ∪ Ā) is NP-hard. Now, Case 2 of887

Theorem 25 applies. J888

M Proof of Proposition 27889

Proof. We will assume that the relations are represented by their defining formulas. This890

way, we can use the results of [10] immediately. We can also test inclusion of a tuple in a891

relation compute a representative set of tuples, i.e. a set such that every tuple in the relation892

is isomorphic to one member of this set.893

P. Jonsson, V. Lagerkvist, and G. Osipov XX:23

We first check whether A and B are 0-valid and whether they are Horn. For the first,894

check whether the all-0 tuple is in the relation. For the second, recall from [7, Lemma 8] that895

a relation is Horn if and only if it is closed under any binary injective operation. Choose896

an arbitrary binary injective function f and check that, for every pair of tuples in the897

representative set, the result of applying f to them componentwise is also in the relation. To898

see that this is sufficient, consider an equality relation R, two arbitrary tuples a, b ∈ R and899

their representatives a′, b′, i.e. tuples in the representative set such that ai = aj ⇐⇒ a′i = a′j900

and bi = bj ⇐⇒ b′i = b′j . Then (ai, bi) = (aj , bj) ⇐⇒ (a′i, b′i) = (a′j , b′j), so f(a′, b′) ∈901

R =⇒ f(a, b) ∈ R. If A is Horn or both A and B are 0-valid, then k =∞ by Corollary 18.902

Otherwise, k <∞. If A is neither Horn nor constant, then CSP(A) is NP-hard, and k = 0.903

The case we are left with is when A is constant and not Horn, while B is not constant.904

By Lemma 22, there exists c ∈ N such that CSP(A+
c) is NP-hard, and CSP(A+

c′) is in P905

for all c′ < c. We show that c can be computed. Note that CSP(A+
1) is in P because every906

instance is satisfiable by a constant assignment. Now consider c = 2. By Theorem 54 in [22]907

and Lemma 21, CSP(A+
2) is in P if the 2-slice of A is preserved by an affine operation, and908

NP-hard otherwise. We can compute the 2-slice and check whether it is closed under an affine909

operation in polynomial time. If CSP(A+
2) is NP-hard, then k = 1 because NEQ2 ∈ 〈∅∪B〉≤k.910

Otherwise, proceed to c ≥ 3. Again, using Theorem 54 in [22] and Lemma 21, we have that911

CSP(A+
c) for c ≥ 3 is in P if the c-slice of A is trivial (contains only empty or complete912

relations), and NP-hard otherwise. This can also be checked in polynomial time.913

Now that c is determined, by Theorem 25, k is the minimum integer such that NEQc ∈914

〈A ∪ B〉≤k. Note that k ≤
(
c
2
)
since NEQ2 ∈ 〈∅ ∪ B〉≤k. We can find minimum k by915

considering every value 1 ≤ t ≤
(
c
2
)
in increasing order and checking whether NEQc ∈916

〈A ∪ B〉≤t. Thus, it remains to show that pp-definability of NEQc in A ∪ B with at most917

t constraints from B is decidable. To see this, we can view a pp-definition as a relation918

R ∈ 〈A ∪ B〉≤t such that the projection of R onto first c indices is NEQc. Furthermore,919

R(x1, . . . , xn) ≡ RA(x1, . . . , xn) ∧ RB(x1, . . . , xn), where RA ∈ 〈A〉 and RB ∈ 〈∅ ∪ B〉≤t.920

Note that RB can only depend on ` ≤ r(B) · t arguments, where r(B) is the maximum arity921

of a relation in B, which is constant. The relation RA projected onto these ` arguments922

is an equality relation of arity `. We can guess `, enumerate all equality relations R′A of923

arity ` pp-definable in A using [10] and enumerate all relations R′B in 〈B〉 definable using t924

constraints, and check whether R′A(x1, . . . , xc) ∧R′B(x1, . . . , xc) projected onto x1, . . . , xc is925

NEQc. This completes the proof. J926

	1 Introduction
	2 Preliminaries
	3 Applications of Alien Constraints
	3.1 The Redundancy Problem and its Relatives
	3.2 Model Checking

	4 General Tools for Alien Constraints
	4.1 Alien Constraints and Algebra
	4.2 Fixed-Parameter Tractability

	5 Finite-Domain Languages
	5.1 Parameterized Dichotomy
	5.2 Classification of Boolean Languages

	6 Infinite-Domain Languages
	6.1 Orbits and Infinite-Domain CSPs
	6.2 Classification of Equality Languages

	7 Discussion
	A Proof of Theorem 4
	B Proof of Theorem 5
	C Proof of Theorem 7
	D Proof of Lemma 9
	E Proof of Theorem 10
	F Proof of Lemma 12
	G Proof of Lemma 13
	H Proof of Theorem 15
	I Proof of Lemma 17
	J Proof of Lemma 23
	K Proof of Lemma 24
	L Proof of Theorem 26
	M Proof of Proposition 27

