
A Dichotomy Theorem for the Inverse Satisfiability Problem

Victor Lagerkvist∗1 and Biman Roy†2

1Institut für Algebra, TU Dresden, Dresden, Germany
2Department of Computer and Information Science, Linköping University, Linköping, Sweden

Abstract

The inverse satisfiability problem over a set of Boolean relations Γ (Inv-SAT(Γ)) is
the computational decision problem of, given a relation R, deciding whether there exists
a SAT(Γ) instance with R as its set of models. This problem is co-NP-complete in
general and a dichotomy theorem for finite Γ containing the constant Boolean relations
was obtained by Kavvadias and Sideri. In this paper we remove the latter condition
and prove that Inv-SAT(Γ) is always either tractable or co-NP-complete for all finite
sets of relations Γ, thus solving a problem open since 1998. Very few of the techniques
used by Kavvadias and Sideri are applicable and we have to turn to more recently
developed algebraic approaches based on partial polymorphisms. We also consider the
case when Γ is infinite, where the situation differs markedly from the case of SAT.
More precisely, we show that there exists infinite Γ such that Inv-SAT(Γ) is tractable
even though there exists finite ∆ ⊂ Γ such that Inv-SAT(∆) is co-NP-complete.

1 Introduction

A constraint language is a set of Boolean relations. The parameterized satisfiability problem
over a constraint language Γ (SAT(Γ)) is the computational decision problem of determining
whether a conjunctive formula over Γ is satisfiable. In a seminal paper by Schaefer it was
proven that SAT(Γ) is either always tractable or is NP-complete [21]; a property that
should not be taken for granted in light of the NP-intermediate problems constructed
by Ladner [15]. In this paper we will study the computational complexity of the inverse
satisfiability problem over a constraint language Γ (Inv-SAT(Γ)), which, as the name
suggests, is the exact opposite of SAT(Γ). Hence, instead of a SAT(Γ) instance, we are
given a relation R, and the question is then to determine if there exists an instance of
SAT(Γ) with precisely R as it sets of models. In fact, for every problem in NP there
exists a corresponding inverse problem, and we refer the reader to Chen [7] for a survey
on this topic. Contrary to SAT(Γ), Inv-SAT(Γ) is in general co-NP-complete, and its
computational complexity was studied by Kavvadias and Sideri [14]. While a complete
dichotomy theorem was not obtained, Kavvadias and Sideri proved that for finite constraint
languages Γ containing the constant relations {(0)} and {(1)}, Inv-SAT(Γ) is always either
tractable or co-NP-complete. We will strengthen this result and give a complete dichotomy
theorem for Inv-SAT(Γ) for finite constraint languages, and thus solve a long-standing

∗victor.lagerqvist@tu-dresden.de
†biman.roy@liu.se

1

open problem. At a first glance, the condition that Γ contains the constant relations might
only look like a minor technical difficulty, but there are several reasons why Inv-SAT(Γ)
has previously escaped a complete complexity classification. First, for SAT and its multi-
valued generalization CSP, it is known that the introduction of constant relations does not
affect the complexity of the problem, provided that the constraint language satisfies the
algebraic property of being a core. Such a property does not hold a priori for Inv-SAT(Γ),
which increases the number of cases we need to consider. Second, and perhaps most
importantly, the majority of dichotomies for CSP and for Boolean problems parameterized
by constraint languages, have been obtained via the so-called algebraic approach. For
a thorough survey of this approach we refer the reader to Creignou et al. [9] and to
Barto [1]. In short, the algebraic approach allows us to relate the complexity of a problem
parameterized by a set of relations Γ to properties of the polymorphisms of Γ, which we
may think of as a collection of functions preserving the structure of the relations in Γ.
The main applicability of this connection is that sets of polymorphisms are well-studied
and are in fact completely determined in the Boolean domain [19]. Hence, instead of
directly reasoning by properties of constraint languages, we can instead prove complexity
results by exploiting properties of well-known polymorphisms. The Inv-SAT(Γ) problem,
however, is fundamentally incompatible with polymorphisms, and instead we turn to the
more refined concept of partial polymorphisms. Unfortunately, partial polymorphisms are
not nearly as well-studied as total polymorphisms, which makes such classifications more
problematic. To tackle this issue we use the algebraic techniques developed by Schnoor
and Schnoor [23] and Lagerkvist [16] and are able to classify the constraint languages
under consideration according to their expressive power, in an extremely fine-grained way.
These expressibility results turn out to be vital when we prove our dichotomy theorem for
Inv-SAT(Γ) in Section 3. More precisely, our dichotomy result states that Inv-SAT(Γ)
is co-NP-complete for finite Γ if the polymorphisms of Γ can be generated by a set of
unary Boolean operations — a property which in the literature is also sometimes called
non-Schaefer. This complexity classification in fact exactly coincides with the complexity
of enumerating the solutions of SAT(Γ) with polynomial delay [10].

After having proven the dichotomy theorem for Inv-SAT(Γ) for finite Γ we investigate
the case when Γ is infinite in Section 4. For SAT(Γ), Schaefer’s dichotomy theorem remain
valid also for infinite languages, and given the similarity between SAT(Γ) and Inv-SAT(Γ),
one might conjecture that the same is also true for Inv-SAT(Γ). Somewhat surprisingly,
this turns out to be false: we show that there exists an infinite constraint language Γ such
that (1) Inv-SAT(Γ) is tractable, (2) SAT(Γ) is NP-hard, and (3) there exists finite ∆ ⊂ Γ
such that Inv-SAT(∆) is co-NP-complete. Hence, for infinite languages, the complexity
of Inv-SAT(Γ) is markedly different from the complexity of enumeration, even though the
complexity coincides for finite languages. Moreover, we provide an algebraic criterion for
this phenomena based on the expressive power of the partial polymorphisms of Γ, and
conjecture that this property is both necessary and sufficient.

2 Preliminaries

A Boolean relation is a subset of {0, 1}n for some n ≥ 1, and if R is a relation we
write ar(R) to denote its arity. For a tuple t = (x1, . . . , xn) we write t[i] to denote
the ith element xi, and Pri1,...,in′ (t) = (t[i1], . . . , t[in′]) to denote the projection on the
coordinates i1, . . . , in′ ∈ {1, . . . , n}. Similarly, for an n-ary relation R we let Pri1,...,in′ (R) =

2

{Pri1,...,in′ (t) | t ∈ R}. We will typically use first-order logical formulas to define relations,
and write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) to define the relation R = {(f(x1), . . . , f(xn)) | f
is a model of ϕ(x1, . . . , xn)}. Let BR denote the set of all Boolean relations and ΠB the
set of all Boolean projections, i.e., operations of the form πni (x1, . . . , xi, . . . , xn) = xi. A
(not necessarily finite) Γ ⊆ BR is called a Boolean constraint language, or, if there is no
risk for confusion, simply a constraint language. If {(0)}, {(1)} ∈ Γ then we say that Γ
is ultraidempotent. We prefer the term ultraidempotent over idempotent since the latter
typically only requires that the constant relations are primitively positively definable (see
Section 2.2 for a definition of this concept).

2.1 The Inverse Satisfiability Problem

The parameterized satisfiability problem over a constraint language Γ (SAT(Γ)) is the
computational decision problem defined as follows.

Instance: A tuple (V,C) where V is a set of variables and C a set of constraint
applications of the form R(x1, . . . , xar(R)) where R ∈ Γ and x1, . . . , xar(R) ∈ V .
Question: Does there exist a function f : V → {0, 1} such that (f(x1), . . . , xar(R)) ∈ R
for every R(x1, . . . , xar(R)) ∈ C?

Example 1. Let R1/3 be the ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Then SAT({R1/3})
can be viewed as a formulation of the 1-in-3-SAT problem without negation, and is well-
known to be NP-complete.

We will sometimes view a SAT(Γ) instance as a conjunctive formula ϕ and write
Sols(ϕ) to denote its set of models. The inverse satisfiability problem over a constraint
language Γ (Inv-SAT(Γ)) can then be viewed as the problem of, given a relation R,
determining whether there exists a SAT(Γ) instance with precisely R as it set of models.
More formally, we define Inv-SAT(Γ) as follows.

Instance: A Boolean relation R.
Question: Does there exist a SAT(Γ) instance ϕ such that Sols(ϕ) = R?

If this question can be answered in polynomial time with respect to the number of
bits required to represent R then we say that Inv-SAT(Γ) is tractable. In general the
Inv-SAT(Γ) problem is co-NP-complete and a dichotomy theorem is known for finite and
ultraidempotent constraint languages Γ [14].

Theorem 2. Let Γ be a finite and ultraidempotent constraint language. Then Inv-SAT(Γ)
is either co-NP-complete or tractable.

Example 3. Consider the relation R1/3 from Example 1. Then Inv-SAT({R1/3}) is the
problem of, given a relation R, deciding if there exists a 1-in-3-SAT instance without
negation with exactly R as its set of models. Since {R1/3} is not ultraidempotent we cannot
however use Theorem 2 to conclude that Inv-SAT({R1/3}) is co-NP-complete. We will
return to this problem in Section 3 where we prove our dichotomy theorem for Inv-SAT(Γ).

3

2.2 Closure Operators on Relations

In this section we introduce two closure operators on relations that will be important when
explaining the algebraic approach in the forthcoming section. First, if R is an n-ary Boolean
relation and Γ a constraint language we say that R has a primitive positive definition over Γ
if R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ .R1(x1) ∧ . . . ∧Rm(xm), where each Ri ∈ Γ ∪ {(0, 0), (1, 1)}
and each xi is a tuple of variables over x1, . . . , xn, y1, . . . , yn′ of length ar(Ri). In other
words R is definable over Γ by a (possibly) existentially quantified, conjunctive formula of
constraints over Γ and the equality relation {(0, 0), (1, 1)}. Given a constraint language Γ
we now write 〈Γ〉 to denote the smallest set of relations containing Γ and which is closed
under taking pp-definition. Sets of the form 〈Γ〉 are called relational clones or co-clones.

Similarly, say that an n-ary Boolean relation has a quantifier-free primitive positive
definition (qfpp-definition) over a constraint language Γ if R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧
Rm(xm), where each Ri ∈ Γ ∪ {(0, 0), (1, 1)} and each xi is a tuple of variables over
x1, . . . , xn of length ar(Ri). Let 〈Γ〉6∃ denote the smallest set of relations containing Γ and
which is closed under taking qfpp-definitions. These sets are usually called weak systems
or weak partial co-clones. We remark that there is a very strong connection between
Inv-SAT(Γ) and the set 〈Γ〉6∃. To see this, note that an instance of Inv-SAT(Γ) is simply
a relation R, and the question of whether there exists an instance ϕ of SAT(Γ) with
Sols(ϕ) = R, can be rephrased as whether R admits a qfpp-definition over Γ, i.e., R ∈ 〈Γ〉 6∃.
Whenever convenient we will therefore assume that Inv-SAT(Γ) is the problem of checking
whether R ∈ 〈Γ〉6∃. We remark that the related problem of checking whether R admits a
pp-definition over Γ is tractable for Boolean Γ [8] but co-NEXPTIME-hard for sufficiently
large, but finite, domains [24].

2.3 Closure Operators on Operations

Let f : {0, 1}k → {0, 1} be a k-ary Boolean operation and R an n-ary Boolean relation.
We say that f preserves R, that f is a polymorphism of R, or that R is invariant under f ,
if f(t1, . . . , tk) ∈ R for every sequence of tuples t1, . . . , tk ∈ R, where

f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , (f(t1[n], . . . , tk[n]))).

We write Pol(R) for the set of polymorphisms of the relation R and if Γ is a constraint
language we let Pol(Γ) =

⋂
R∈Γ Pol(R). Sets of the form Pol(Γ) are usually called clones and

are known to be sets of operations containing all projections (i.e., ΠB ⊆ Pol(Γ)) and closed
under composition (i.e., if f, g1, . . . , gm ∈ Pol(Γ) where f has arity m and each gi arity n
then the n-ary operation f ? g1, . . . , gm(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))
is included in Pol(Γ)). We let [F] be the smallest clone containing the set F . There is
a powerful connection between clones and co-clones which we will now describe. First,
if we let Inv(F) be the set of all relations invariant under the set of operations F , it is
known that Inv(F) is in fact closed under pp-definitions, i.e., is a co-clone. Second, for
any constraint language Γ it is known that Inv(Pol(Γ)) = 〈Γ〉, and that for any set of
operations F , Pol(Inv(F)) = [F]. We now have the following Galois connection between
Inv(·) and Pol(·).
Theorem 4 ([3, 4, 11]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉 if and
only if Pol(Γ′) ⊆ Pol(Γ).

There is a similar Galois connection between weak systems and sets of partial operations.
Formally, we view a (Boolean) partial operation f of arity k as a mapping X → {0, 1}

4

where X ⊆ {0, 1}k is called the domain of f and denoted by domain(f). We now say
that a k-ary partial operation f is a partial polymorphism of an n-ary relation R if either
f(t1, . . . , tk) ∈ R or there exists 1 ≤ i ≤ n such that (t1[i], . . . , tk[i]) /∈ domain(f), for every
sequence t1, . . . , tk ∈ R. We write pPol(R) for the set of all partial polymorphisms of R
and pPol(Γ) for the set

⋂
R∈Γ pPol(Γ). These sets are usually referred to as strong partial

clones and are known to be sets of partial operations containing all projections, closed
under composition, and closed under taking subfunctions. More precisely, composition of
partial operations is defined in exactly the same way as composition of total operations,
but the resulting partial operation is only defined for a sequence of arguments if every
partial operation in the composition is defined; and by closed under taking subfunctions we
mean that if f ∈ pPol(Γ) then g ∈ pPol(Γ) for every g such that domain(g) ⊆ domain(f)
and g matches the values of f for these arguments. We write [F]s for the smallest strong
partial clone containing F , and say that [F]s is finitely generated if there exists finite
G ⊆ [F]s such that [F]s = [G]s, is infinitely generated otherwise, and in both cases we
say that G is a base of [F]s. The reason why we define these technical concepts will be
explained in Section 4 where we study the complexity of Inv-SAT(Γ) when pPol(Γ) is
finitely generated.

Similar to the total case, if we let Inv(F) be the set of relations invariant under the set
of partial operations F , then it is known that Inv(F) is closed under qfpp-definitions, and
is therefore a weak system. Moreover, 〈Γ〉6∃ = Inv(pPol(Γ)) and [F]s = pPol(Inv(F)). We
then have the following Galois connection between Inv(·) and pPol(·), due to Geiger [11]
and Romov [20].

Theorem 5 ([11, 20]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉6∃ if and
only if pPol(Γ′) ⊆ pPol(Γ).

Using the results in this section we can now present the dichotomy theorem from
Kavvadias and Sideri [14] more precisely as follows.

Theorem 6. Let Γ be a finite and ultraidempotent constraint language. Then Inv-SAT(Γ)
is co-NP-complete if Pol(Γ) = ΠB and is tractable otherwise.

We remark that the tractable cases in Theorem 6 stem from the observation that if one
can enumerate the solutions of SAT(Γ) with polynomial delay, then Inv-SAT(Γ) must
be tractable. To see this, let R be an instance of Inv-SAT(Γ), and begin by computing a
qfpp-definition ϕ over Γ with the property that Sols(ϕ) ⊇ R, according to the strategy in
Kavvadias and Sideri [14]. Then it is sufficient to enumerate at most |R|+ 1 solutions to
ϕ (viewed as an instance of SAT(Γ)) and stop if any of these solutions do not match the
tuples in R.

3 A Dichotomy Theorem for Inv-SAT(Γ)

In this section we will extend Theorem 6 to finite constraint languages that are not neces-
sarily ultraidempotent, in order to obtain a complete dichotomy theorem for Inv-SAT(Γ).
First observe that the tractable cases of Theorem 6 remain valid even if Γ is not ultraidem-
potent since the enumeration algorithms works equivalently well in these cases. To better
describe the remaining cases we will need to define the following Boolean operations.

Definition 7. We define the following Boolean operations.

5

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

coNP-complete

∈ P

Figure 1: The complexity of Inv-SAT(Γ) for finite Γ.

6

1. f0(x) = 0,

2. f1(x) = 1,

3. x = 1− x

Then, using the terminology from Böhler et al. [5, 6], [{f0, f1, x}] = N, [{f0, f1}] = I,
[{f0}] = I0, [{f1}] = I1, [{x}] = N2, and [{π1

1}] = I2 = ΠB. Our aim is now to prove the
following theorem, which is visualized in Figure 1. The intuition behind the theorem is
that one cannot enumerate the solutions of SAT(Γ) with polynomial delay if Pol(Γ) ⊆ [F]
for F ⊆ {f0, f1, x}, unless P = NP [10].

Theorem 8. Let Γ be a finite constraint language. Then Inv-SAT(Γ) is co-NP-complete
if Pol(Γ) ⊆ [F] for F ⊆ {f0, f1, x} and is tractable otherwise.

The theorem will be proved in Lemma 11, Lemma 12, Lemma 14, and Lemma 16. At
this stage it might be helpful to review how dichotomy theorems for problems parameterized
by Boolean constraint languages are usually obtained. Hence, assume that X(Γ) is a
computational decision problem for which it is true that X(Γ) admits a polynomial-time
reduction to X(∆) whenever Pol(∆) ⊆ Pol(Γ). Then, what one needs to do is simply to
take every clone Pol(Γ) in Post’s lattice and determine the complexity of X(Γ), since the
results then automatically carry over to every X(∆) such that Pol(∆) = Pol(Γ). This is e.g.
the case for SAT and many Boolean optimization and logical reasoning problems [9]. For
the Inv-SAT(Γ) problem we do not have such a result, implying that the proof strategy is
more complex. However, we will see that it is possible to overcome this using properties of
weak systems. For this we will need the following lemma.

Lemma 9. Let Pol(Γ) ⊆ [F] for F ⊆ {f0, f1, x}. Then

1. τ01 = {(0, 1)}, τ01
6= = {(0, 1, 0, 1), (1, 0, 0, 1)} ∈ 〈Γ〉6∃ if Pol(Γ) = ΠB,

2. τ6= = {(0, 1), (1, 0)} ∈ 〈Γ〉 6∃ if Pol(Γ) = [{x}],

3. τf0,f1,x = {(0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0)} ∈ 〈Γ〉6∃ if
Pol(Γ) = [{f0, f1, x}],

4. τ→ = {(0, 0), (1, 0), (1, 1)} ∈ 〈Γ〉 6∃ if Pol(Γ) = [{f0, f1}],

5. τ01
6= ∪ {(0, 0, 0, 0)} = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1)} ∈ 〈Γ〉6∃ if Pol(Γ) = [{f0}], and

6. τ01
6= ∪ {(1, 1, 1, 1)} = {(0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 1, 1)} ∈ 〈Γ〉6∃ if Pol(Γ) = [{f1}].

Proof. We consider each case in turn. The various cases follow a similar structure
and make use of the algebraic machinery developed by Schnoor and Schnoor [23] and
Lagerkvist [16]. We first remark that for Pol(Γ) ∈ {[{f0}], [{f1}], [{f0, f1, x}]} the re-
lations follow immediately from Theorem 11 in Lagerkvist [16]. Hence, the remain-
ing cases are when Pol(Γ) = ΠB, Pol(Γ) = [x], and Pol(Γ) = [{f0, f1}]. First as-
sume that Pol(Γ) = ΠB. From Lagerkvist [16] we know that R 6= 6=6=01

1/3 ∈ 〈Γ〉6∃ where
R 6=6=6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}, and using this rela-
tion we can qfpp-define τ01

6= as

τ01
6= (x1, x2, x3, x4) ≡ R 6=6=6=01

1/3 (x1, x2, x3, x2, x1, x4, x3, x4)

7

and τ01 as τ01(x1, x2) ≡ τ01
6= (x1, x2, x1, x2). Now assume that Pol(Γ) = [{x}]. In this case it

is known that the relation R 6=6=6=6=2/4 = R 6=6=6=01
1/3 ∪{t | t ∈ R 6=6=6=01

1/3 } is qfpp-definable by Γ [13, 16].
Using this relation one can verify that τ6=(x1, x2) ≡ R 6=6=6=6=2/4 (x1, x1, x2, x2, x2, x1, x1, x2).
Last, for Pol(Γ) = [{f0, f1}], the relation R = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 1)} ∈
〈Γ〉6∃ [16], and this relation can qfpp-define τ→ by τ→(x1, x2) ≡ R(x1, x1, x2, x2).

The usefulness of this lemma is that we now have a better understanding of the
expressiveness of the languages under consideration. For example, if Pol(Γ) = [{x}] then
we know that Γ is expressive enough to qfpp-define the binary inequality relation τ6=.
Before we begin to prove Theorem 8 we present a lemma that will simplify some of the
forthcoming reductions. If R is an n-ary relation then the ith argument is redundant if
there exists j 6= i such that t[i] = t[j] for every t ∈ R, and R is said to be irredundant
if it does not have any redundant arguments. It is not difficult to see that there for any
R exists an irredundant relation Rirr with the property that 〈{R}〉6∃ = 〈{Rirr}〉6∃, and we
obtain the following lemma.

Lemma 10. Let Γ be a constraint language and R an n-ary relation. Then R ∈ 〈Γ〉6∃ if
and only if Rirr ∈ 〈Γ〉 6∃.

In some of the forthcoming reductions we will need the ability to output an arbitrary
yes- or no-instance of Inv-SAT(Γ). Clearly, a yes-instance can easily be produced by
simply outputting R ∈ Γ, but to find R /∈ 〈Γ〉6∃ requires a bit more work. We will provide a
proof sketch for how such a relation can be constructed. Begin by enumerating all partial
polymorphisms of Γ up to arity k+ 1, where k is the maximum arity of any relation in Γ. It
is well-known that any finite Boolean constraint language containing only relations of arity
k contains a partial polymorphism which is not a partial projection [18]. Hence, let f denote
such a partial polymorphism of arity n ≤ k + 1, and let domain(f) = {t1, . . . , tm}. Now
consider the relation R obtained by for each 1 ≤ i ≤ n adding the tuple (t1[i], . . . , tm[i]).
By construction, f does not preserve R since it is not a subfunction of a projection, which
by Theorem 5 implies that R /∈ 〈Γ〉 6∃. We are now ready to prove our first result, and begin
with the case when Pol(Γ) consists only of projections (which due to Theorem 4 implies
that Γ can pp-define every Boolean relation).

Lemma 11. Let Γ be a finite constraint language such that Pol(Γ) = ΠB. Then Inv-SAT(Γ)
is co-NP-complete.

Proof. First consider the constraint language ∆ = {τ × {(0, 1)}} | τ ∈ Γ} ∪ {{(0)}, {(1)},
i.e., each relation in Γ is adjoined with two constant arguments, and in addition ∆ contains
both {(0)} and {(1)}. Since ∆ is ultraidempotent and Pol(∆) = Pol(Γ) = ΠB it follows
from Theorem 6 that Inv-SAT(∆) is co-NP-complete. Hence, let R be an n-ary relation,
i.e., an instance of Inv-SAT(∆). We now observe that if there exists 1 ≤ i ≤ n such
that Pri(R) = {(0)} but no 1 ≤ j ≤ n such that Prj(R) = {(1)}, then R ∈ 〈∆〉6∃ if and
only if R ∈ 〈{(0)}〉6∃. Similarly, if there exists 1 ≤ i ≤ n such that Pri(R) = {(1)} but no
1 ≤ j ≤ n such that Prj(R) = {(0)}, then R ∈ 〈∆〉6∃ if and only if R ∈ 〈{(1)}〉6∃. In both
these cases we can compute the answer in polynomial time and output an arbitrary yes- or
no-instance to Inv-SAT(Γ).

Hence, assume that there exist both i and j such that Pri(R) = {(0)} and Prj(R) =
{(1)}, and for simplicity assume that R does not contain any redundant arguments, which
is possible by Lemma 10. We then claim that R ∈ 〈∆〉 6∃ if and only if R ∈ 〈Γ〉6∃. Hence, first
assume that R ∈ 〈∆〉6∃, and let R(x1, . . . , xi, . . . , xj , . . . , xn) ≡ ϕ(x1, . . . , xn) ∧ {(0)}(xi) ∧

8

{(1)}(xj) be a qfpp-definition witnessing this, where we without loss of generality assume
that every constraint in ϕ(x1, . . . , xn) is of the form τk×{(0, 1)}(xk, xi, xj) for τ×{(0, 1)} ∈
∆, where xk is a tuple of variables of length ar(τk) not containing xi or xj . Then we
may obtain a qfpp-definition of R over Γ by first replacing {(0)}(xi) ∧ {(1)}(xj) by the
single constraint {(0, 1)}(xi, xj), and then replacing every constraint τk×{(0, 1)}(xk, xi, xj)
in ϕ(x1, . . . , xn) by τk(xk). This is clearly a valid qfpp-definition of R over Γ since
{(0, 1)} ∈ 〈Γ〉6∃ by Lemma 9. For the other direction, assume that R ∈ 〈Γ〉 6∃ and let
R(x1, . . . , xi, . . . , xj , . . . , xn) ≡ ϕ(x1, . . . , xn) be a qfpp-definition of R over Γ, where every
constraint in ϕ(x1, . . . , xn) is of the form τ(x) for τ ∈ Γ. Then we can construct a qfpp-
definition of R over ∆ by first introducing the constraints {(0)}(xi) and {(1)}(xj), and
then replacing every τk(xk) by τk × {(0, 1)}(xk, xi, xj).

Lemma 12. Let Γ be a finite constraint language such that Pol(Γ) = [{x}]. Then
Inv-SAT(Γ) is co-NP-complete.

Proof. We will give a polynomial-time reduction from Inv-SAT(Γ ∪ {(0, 1)}), which is
co-NP-complete by Lemma 11, since Pol(Γ ∪ {(0, 1)}) = ΠB. Hence, let R be an n-ary
relation, i.e, an instance of Inv-SAT(Γ∪ {(0, 1)}}). If there exist neither i nor j such that
Pri(R) = {(0)} and Prj(R) = {(1)} then R ∈ 〈Γ〉6∃ if and only if R ∈ 〈Γ ∪ {(0, 1)}〉6∃, and
the output of the reduction is simply R. Furthermore, if there exists 1 ≤ i ≤ n such that
Pri(R) = {(0)} but no 1 ≤ j ≤ n such that Prj(R) = {(1)}, or vice versa, then it cannot
be the case that R ∈ 〈Γ ∪ {(0, 1)}〉6∃ or R ∈ 〈Γ〉 6∃, which again implies that we may simply
output R. This implies that the only remaining case is when there exist both i and j such
that Pri(R) = {(0)} and Prj(R) = {(1)}. By Lemma 10 we may without loss of generality
assume that R does not contain any other constant arguments.

In this case we claim that R ∈ 〈Γ∪ {(0, 1)}〉6∃ if and only if ¬(R) ∈ 〈Γ〉6∃, where ¬(R) =
R∪{t | t ∈ R}, i.e., R closed under complement. Assume first that R ∈ 〈Γ∪{(0, 1)}〉6∃ and
let R(x1, . . . , xi, . . . , xj , . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj) denote a qfpp-
definition over Γ ∪ {(0, 1)}, where R1, . . . , Rm ∈ Γ. We will construct a qfpp-definition of
¬(R) over Γ as follows. First, we replace {(0, 1)}(xi, xj) by the constraint τ6=(xi, xj), which
is qfpp-definable over Γ by Lemma 9. Then every other constraint is kept unchanged and we
obtain the qfpp-definition R′(x1, . . . , xi, . . . , xj , . . . , xn) ≡ R1(x1)∧. . .∧Rm(xm)∧τ6=(xi, xj)
over Γ. We claim that R′ = ¬(R). It is easy to see that ¬(R) ⊆ R′. Hence, let t ∈ R′,
assume that t /∈ ¬(R), and observe that this also implies that t /∈ ¬(R), since ¬(R) is closed
under complement. Due to the construction of R′ this is clearly not possible. For the other
direction, assume that ¬(R) ∈ 〈Γ〉 6∃ and let ¬(R)(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) be
a qfpp-definition over Γ where R1, . . . , Rm ∈ Γ. We can then qfpp-define R using Γ and
{(0, 1)} as R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj), since this only keeps
t ∈ ¬(R) satisfying t[i] = 0 and t[j] = 1.

For the case when Γ is preserved by a constant operation we will first need to show
co-NP-completeness of the following auxiliary problem. Say that an n-ary Boolean relation
R is complementary saturated if there for every 1 ≤ i ≤ n exists 1 ≤ j ≤ n such that
t[i] 6= t[j] for every t ∈ R. In other words for each argument of the relation there exists an
argument which is its complement. For a finite constraint language Γ by Inv-SAT 6=(Γ)
now we denote the structurally restricted Inv-SAT(Γ) problem defined as follows.

9

Instance: A complementary saturated Boolean relation R.
Question: R ∈ 〈Γ〉6∃?

We will now prove that Inv-SAT 6=(Γ) remains co-NP-complete when Pol(Γ) = ΠB.

Lemma 13. Let Γ be a finite constraint language such that Pol(Γ) = ΠB. Then Inv-SAT 6=(Γ)
is co-NP-complete.

Proof. We will first construct the language Γ6= for every R ∈ Γ by letting R 6= ∈ Γ6=

where R 6= is obtained by adding the minimum number of arguments to R such that R 6= is
complementary saturated. Without loss of generality we assume that the arguments to each
relation R 6= ∈ Γ6= is ordered in such a way that Pr1,...,ar(R)(R

6=) = R, and that the remaining

arguments are the complement of the arguments of R. Observe that Pol(Γ 6=) = ΠB, which
by Lemma 11 implies that Inv-SAT(Γ 6=) is co-NP-complete.

Hence, let R be an n-ary relation. Assume that R is not complementary saturated,
i.e., not a valid instance of Inv-SAT 6=(Γ). Then either R ∈ 〈{(0, 0), (1, 1)}〉6∃ ⊆ 〈Γ6=〉6∃,
in which case we output an arbitrary yes-instance, or R /∈ 〈Γ6=〉6∃, in which case we
output an arbitrary no-instance. Otherwise R is already a valid instance of Inv-SAT 6=(Γ),
and in this case we claim that R ∈ 〈Γ6=〉6∃ if and only if R ∈ 〈Γ〉 6∃. First assume that
R ∈ 〈Γ 6=〉 6∃. Via Lemma 9 we know that τ01

6= ∈ 〈Γ〉6∃, and from this property it follows that

Γ 6= ⊆ 〈Γ〉6∃, implying that R ∈ 〈Γ〉6∃. For the other direction, assume that R ∈ 〈Γ〉6∃. Let
R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) be a qfpp-definition over Γ, and for each tuple of
variables xi let yi denote the corresponding tuple of complementary variables. It then
follows that R(x1, . . . , xn) ≡ R 6=1 (x1,y1) ∧ . . . ∧R 6=m(xm,ym) is a valid qfpp-definition of R
over Γ6=.

Lemma 14. Let Γ be a finite constraint language such that Pol(Γ) = [{f0}] or Pol(Γ) =
[{f1}]. Then Inv-SAT(Γ) is co-NP-complete.

Proof. We present the proof for the case when Pol(Γ = [{f1}] since the other case is
entirely analogous. In order to prove this we will give a polynomial-time reduction
from Inv-SAT 6=(Γ ∪ {(0, 1)}) to Inv-SAT(Γ). The problem Inv-SAT 6=(Γ ∪ {(0, 1)}) is
co-NP-complete by Lemma 13 since Pol(Γ ∪ {(0, 1)}) = ΠB.

Let R be an instance Inv-SAT6=(Γ ∪ {(0, 1)}) of arity n. If there does not exist
i, j ∈ {1, . . . , n} such that Pri(R) = {(0)} and Prj(R) = {(1)} then it is already the
case that R ∈ 〈Γ〉6∃ if and only if R ∈ 〈Γ ∪ {(0, 1)}〉6∃; therefore we assume that such
i and j exist. First construct the relation R′ = R ∪ {(0, . . . , 0)}, i.e., the relation R
adjoined with the constant 0 tuple. We will now prove that R′ ∈ 〈Γ〉6∃ if and only
if R ∈ 〈Γ ∪ {(0, 1)}〉6∃. Hence, first assume that R′ ∈ 〈Γ〉6∃ and let R′(x1, . . . , xn) ≡
R1(x1) ∧ . . . ∧ Rm(xm) be a qfpp-definition over Γ. Then consider the qfpp-definition
R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj). The intuition behind this qfpp-
definition is that the additional constraint {(0, 1)}(xi, xj) will ensure that the constant 0
tuple included in R′ but not in R. For the other direction assume that R ∈ 〈Γ ∪ {(0, 1)}〉6∃
and let R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj) denote a qfpp-definition,
where we without loss of generality assume that R1, . . . , Rm ∈ Γ. Now recall the relation
τ01
6= ∪{(0, 0, 0, 0)} = {(0, 1, 0, 1), (1, 0, 0, 1), (0, 0, 0, 0)} from Lemma 9, and observe that this

relation is nothing else than the binary inequality relation with two constant arguments,
adjoined with the constant 0 tuple. We will use this relation as a gadget in order to enforce

10

that the correct inequalities hold between the complementary variables. Hence, assume
that the arity of R is 2k + 2, that the variables occuring in positions k + 1, . . . , 2k are the
complement of the k first, and that the last two arguments are constant 0 and constant 1,
respectively. We can thus qfpp-define R′ as

R′(x1, . . . , xk, xk+1, . . . , x2k, x2k+1, x2k+2) ≡R1(x1) ∧ . . . ∧Rm(xm)∧
k∧

i=1

τ01
6= ∪ {(0, 0, 0, 0)}(xi, xi+k, x2k+1, x2k+2).

To see that this definition is indeed correct, note that if xi and xi+k are both assigned the
value 0, then this also forces the variable x2k+2 the value 0. But this implies that every
other variable must be assigned 0 as well, yielding the constant 0 tuple which is included
in R′.

Lemma 15. Let Γ be a finite constraint language such that Pol(Γ) = [{f0, f1}]. Then
Inv-SAT(Γ) is co-NP-complete.

Proof. In order to prove the result we will give a polynomial-time reduction from Inv-SAT(Γ∪
{(0, 1)}), which is co-NP-complete since Pol(Γ∪{(0, 1)}) = ΠB. Hence, let R be an n-ary re-
lation. If there does not exist i, j ∈ {1, . . . , n} such that Pri(R) = {(0)} and Prj(R) = {(1)}
then it is already the case that R ∈ 〈Γ〉6∃ if and only if R ∈ 〈Γ ∪ {(0, 1)}〉6∃. Therefore,
assume that such i and j exist, and construct the relation R′ = R ∪ {(0, . . . , 0), (1, . . . , 1)}.
We claim that R ∈ 〈Γ ∪ {(0, 1)}〉6∃ if and only if R′ ∈ 〈Γ〉6∃. For the first direction, assume
that R ∈ 〈Γ ∪ {(0, 1)}〉6∃ and let R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj)
denote a qfpp-definition such that R1, . . . , Rm ∈ Γ. Recall that τ→ = {(0, 0), (0, 1), (1, 1)}
from Lemma 9 is qfpp-definable by Γ. Now construct the qfpp-definition

R′(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧
n∧

k=1

(τ→(xi, xk) ∧ τ→(xk, xj).

To see that this definition is correct, observe that the additional constraints of the form
(τ→(xi, xk) ∧ τ→(xk, xj) ensure that either xi and xj are assigned 0 and 1, respectively,
or every variable is assigned 0 or 1, resulting in the two constant tuples (0, . . . , 0) and
(1, . . . , 1). The other direction (R ∈ 〈Γ∪{(0, 1)}〉6∃ if R′ ∈ 〈Γ〉6∃) can be proven using similar
arguments as in the proof of Lemma 14.

Lemma 16. Let Γ be a finite constraint language such that Pol(Γ) = [{f0, f1, x̄}]. Then
Inv-SAT(Γ) is co-NP-complete.

Proof. As Pol(Γ) = [{f0, f1, x̄}] it follows that Pol(Γ ∪ {(0, 1)}) = ΠB. We will give a
polynomial-time reduction from Inv-SAT6=(Γ ∪ {(0, 1)}) to Inv-SAT(Γ) (Inv-SAT 6=(Γ ∪
{(0, 1)}) is co-NP-complete since Pol(Γ ∪ {(0, 1)}) = ΠB). Let R be an instance of
Inv-SAT 6=(Γ ∪ {(0, 1)}). First we check whether there exists i and j such that Pri(R) =
{(0)} and Prj(R) = {(1)}. If this is not the case then R ∈ 〈Γ〉6∃ if and only if R ∈
〈Γ ∪ {(0, 1)}〉6∃, and we are done. Therefore assume that such i and j exists. For simplicity
we will also assume that R is irredundant, n = 2k + 2, i = 2k + 1, j = 2k + 2, and that
the arguments in positions k + 1, . . . , 2k are the complement of the k first. Construct
the relation R′ = R ∪ {t̄|t ∈ R} ∪ {(0, . . . , 0), (1, . . . , 1)}. We will prove that R′ ∈ 〈Γ〉6∃ if
and only if R ∈ 〈Γ ∪ {(0, 1)}〉6∃. Therefore, first assume that R ∈ 〈Γ ∪ {(0, 1)}〉6∃ and let

11

R(x1, . . . , x2k+2) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(x2k−1, x2k) be a qfpp-definition over
Γ where R1, . . . , Rm ∈ Γ. Now consider the qfpp-definition

R
′′
(x1, . . . x2k+2) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧

∧
l∈{1,...,n}

τf0,f1,x(xl, xl+k, x2k+1, x2k+2),

where τf0,f1,x = {(0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0)} ∈ 〈Γ〉 6∃ is
the relation from Lemma 9. We claim that R′ = R

′′
, i.e., then the above qfpp-definition

defines R′. It is clearly the case that R ⊆ R′′, and this also implies that R′ ⊆ R′′ since
R′′ is closed under f0, f1, and x. For the other direction, assume there exists t ∈ R′′ \R′.
It must then be the case that t is not constant 0 or constant 1, and furthermore also
that t /∈ R′. Assume first that there exists 1 ≤ l ≤ k such that t[l] = t[l + k]. Then,
due to the constraints

∧
l∈{1,...,n} τf0,f1,x(xl, xl+k, x2k+1, x2k+2), it is easy to verify that

this will force t[2k + 1] = t[2k + 2] = t[l], which in turn implies that t[l] = t[l′] for every
1 ≤ l′ ≤ 2k + 2, and also that t ∈ R. This contradicts the assumption, and we conclude
(1) that t[l] 6= t[l + k] for every 1 ≤ l ≤ k and (2) that t[2k + 1] = 0 and t[2k + 2] = 1 or
t[2k + 1] = 1 and t[2k + 2] = 0. In the first case it directly follows that t ∈ R ⊆ R′, and in
the second case that t ∈ R, and hence that t ∈ R′.

To prove the reverse direction we assume that R′(x1, . . . x2k+2) ≡ R1(x1)∧ . . .∧Rm(xm)
where R1, . . . , Rm ∈ Γ. We can then qfpp-define R by R(x1, . . . x2k+2) ≡ R′(x1, . . . x2k+2)∧
{(0, 1)}(x2k+1, x2k+2). This concludes the reduction.

By combining Lemma 11– 12 and Lemma 14– 16 we have thus finally proven Theorem 8.

Example 17. We can now answer the question regarding the complexity of Inv-SAT({R1/3})
from Example 3. It is not hard to verify that R1/3 is only preserved by the projections,
from which it follows that Pol(R1/3) = ΠB. An application of Theorem 8 then reveals that
Inv-SAT({R1/3}) is indeed co-NP-complete.

4 The Inv-SAT(Γ) Problem over Infinite Constraint Lan-
guages

Since we have proven that Inv-SAT(Γ) is always either tractable or co-NP-complete for
finite Γ, it is tempting to investigate the case when Γ is infinite. First, it is important to note
that Schaefer’s dichotomy theorem for SAT(Γ) is also valid for infinite constraint languages,
and in fact that many natural satisfiability problems such as CNF-SAT, Horn-SAT, and
linear equations modulo 2, can only be represented as SAT(Γ) problems over infinite Γ. It
thus makes sense to ask whether it is possible to extend Theorem 8 to infinite constraint
languages. First, note that if SAT(Γ) is NP-complete then SAT(∆) is NP-complete
whenever ∆ ⊆ Γ. This straightforward property does not hold for Inv-SAT(Γ), since, for
example, Inv-SAT({R1/3}) is co-NP-complete but Inv-SAT(BR) is trivially solvable in
polynomial time by always answering “yes”. We will now describe a more general class of
tractable Inv-SAT(Γ) problems based on properties of the partial polymorphisms of Γ.

Theorem 18. Let Γ be a constraint language such that pPol(Γ) admits a finite base F .
Then Inv-SAT(Γ) is solvable in polynomial time.

Proof. Let R be an instance of Inv-SAT(Γ) of arity n. Due to the Galois connection in
Theorem 5 the question R ∈ 〈Γ〉 6∃ is equivalent to checking whether F ⊆ pPol({R}), or,

12

put otherwise, whether R is preserved by every partial operation in F . Now consider the
following algorithm.

1. Let k be the maximum arity among the partial operations in F .

2. For each 1 ≤ i ≤ k enumerate all sequences t1, . . . , ti ∈ R.

3. For each f ∈ F of arity i compute f(t1, . . . , ti) = t. If t /∈ R then answer “no”.

4. Answer “yes”.

As remarked, this algorithm is sound and complete since R ∈ 〈Γ〉6∃ if and only if every
f ∈ F preserves R, and an i-ary partial operation f preserves R if and only if there does
not exist t1, . . . , ti ∈ R such that f(t1, . . . , ti) /∈ R. Regarding the time complexity, we in
the ith iteration enumerate all sequences of tuples from R of length i, which takes O(|R|i)
time, and for each f ∈ F check whether f applied to this sequence results in a tuple
included in R, which takes O(i · n · |R|) time. Put together this gives a running time of
O(k · |F | · |R|k · k · n · |R|) = O(k2 · |F | · |R|k+1 · n) which is bounded by a polynomial since
k is a fixed constant.

It is worth remarking that Γ is always infinite when pPol(Γ) is finitely generated
and Pol(Γ) ⊇ [{f0, f1, x] [17] — hence there is no possible overlap between Theorem 8
and Theorem 18. This result may be seen as surprising since computational problems
parameterized by Boolean constraint languages tend to be rather well-behaved, and to the
best of our knowledge only a variant of the propositional abduction problem exhibits a
similar difference in complexity between finite and infinite constraint languages [12]. At
this stage it is fair to ask if Inv-SAT(Γ) is always tractable when Γ is infinite. This is
however not the case. First take any finite constraint language Γ such that Inv-SAT(Γ)
is co-NP-complete by Theorem 8. Then consider the infinite constraint language 〈Γ〉6∃
obtained by closing Γ under qfpp-definitions. Clearly, Inv-SAT(Γ) and Inv-SAT(〈Γ〉6∃)
are the same computational problem, and in particular Inv-SAT(〈Γ〉6∃) is co-NP-complete
even though 〈Γ〉6∃ is infinite. Based on these observations and Theorem 18, it is natural to
conjecture that the question of whether Inv-SAT(Γ) is co-NP-complete or tractable does
not depend on whether Γ is finite or infinite, but rather whether pPol(Γ) is sufficiently
simple. We thus make the following conjecture.

Conjecture 19. Let Γ be a Boolean constraint language such that Pol(Γ) ⊇ [{f0, f1, x}].
Then Inv-SAT(Γ) is tractable if pPol(Γ) is finitely generated and is co-NP-hard otherwise.

5 Concluding Remarks

We have studied the complexity of Inv-SAT(Γ) and obtained a complete dichotomy
theorem for finite Γ. To prove this we first limited the number of cases we needed to
consider with polymorphisms, and for each such case then used expressibility results based
on partial polymorphisms, in order to proceed with the required reductions. We also
demonstrated that Inv-SAT(Γ) is also a relevant problem for infinite constraint languages,
even though the situation differs drastically from the finite case. These results raise a few
different directions for future research.

13

A Dichotomy Theorem for Infinite Constraint Languages A good starting point
for proving Conjecture 19 is to find examples of infinite Γ such that (1) there does not
exist any finite ∆ ⊂ Γ such that 〈Γ〉6∃ = 〈∆〉 6∃ and (2) pPol(Γ) is infinitely generated. One
candidate for such a language is ΓXSAT = {R1/k | k ≥ 3}, R1/k = {(b1, . . . , bk) ∈ {0, 1}k |
b1 + . . .+ bk = 1}, where both these properties can be proven to hold. Is Inv-SAT(ΓXSAT)
tractable or co-NP-complete?

The Inverse Constraint Satisfaction Problem The constraint satisfaction problem
over a constraint language Γ (CSP(Γ)) is a multi-valued generalization of SAT where Γ
may contain non-Boolean relations. One may then define Inv-CSP(Γ) analogously to
Inv-SAT and ask if a dichotomy theorem can be obtained for finite Γ. This is likely a
good deal harder than the Boolean case and a starting point would be to compare the
complexity of Inv-CSP(Γ) to the complexity of enumerating solutions of Inv-CSP(Γ)
with polynomial delay [22]. In particular it would be interesting to find examples of Γ such
that Inv-CSP(Γ) is tractable even though the enumeration problem is not tractable.

Another tempting problem is to study Inv-CSP(Γ) over infinite domains. In this case
some extra care is needed since the instance R cannot always be represented explicitly
as a list of tuples. However, there exist well-studied, so called ω-categorical, constraint
languages where the Inv-CSP problem could be interesting, since there exist better methods
to represent relations than listing its tuples. However, even the problem of checking if
R ∈ 〈Γ〉 for Γ over infinite domains is in general undecidable [2], so there is little hope in
obtaining a complete dichotomy.

Acknowledgements

The first author has received funding from the DFG-funded project “Homogene Strukturen,
Bedingungserfüllungsprobleme, und topologische Klone” (Project number 622397). The
second author is partially supported by the National Graduate School in Computer Science
(CUGS), Sweden.

References

[1] L. Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG News,
1(2):14–24, October 2014.

[2] M. Bodirsky, M. Pinsker, and T. Tsankov. Decidability of definability. Journal of
Symbolic Logic, 78(4):1036–1054, 2013.

[3] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory
for Post algebras. I. Cybernetics, 5:243–252, 1969.

[4] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois theory
for Post algebras. II. Cybernetics, 5:531–539, 1969.

[5] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part
I: Post’s lattice with applications to complexity theory. ACM SIGACT-Newsletter,
34(4):38–52, 2003.

[6] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part
II: Constraint satisfaction problems. ACM SIGACT-Newsletter, 35(1):22–35, 2004.

14

[7] H. Chen. Inverse NP problems. Computational Complexity, 17(1):94–118, 2008.

[8] N. Creignou, P. Kolaitis, and B. Zanuttini. Structure identification of Boolean
relations and plain bases for co-clones. Journal of Computer and System Sciences,
74(7):1103–1115, November 2008.

[9] N. Creignou and H. Vollmer. Boolean constraint satisfaction problems: When does
Post’s lattice help? In N. Creignou, P. G. Kolaitis, and H. Vollmer, editors, Complexity
of Constraints, volume 5250 of Lecture Notes in Computer Science, pages 3–37. Springer
Berlin Heidelberg, 2008.

[10] Creignou, N. and Hebrard, J.-J. On generating all solutions of generalized satisfiability
problems. RAIRO-Theor. Inf. Appl., 31(6):499–511, 1997.

[11] D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27(1):95–100, 1968.

[12] P. Jonsson, V. Lagerkvist, and G. Nordh. Constructing np-intermediate problems by
blowing holes with parameters of various properties. Theoretical Computer Science,
581:67–82, 2015.

[13] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones and the
time complexity of SAT problems. Journal of Computer and System Sciences, 84:52 –
78, 2017.

[14] D. Kavvadias and M. Sideri. The inverse satisfiability problem. SIAM Journal on
Computing, 28:152–163, 1998.

[15] R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22:155–171, 1975.

[16] V. Lagerkvist. Weak bases of Boolean co-clones. Information Processing Letters,
114(9):462–468, 2014.

[17] V. Lagerkvist and M. Wahlström. The power of primitive positive definitions with
polynomially many variables. Journal of Logic and Computation, 27(5):1465–1488,
2017.

[18] V. Lagerkvist, M. Wahlström, and B. Zanuttini. Bounded bases of strong partial
clones. In Proceedings of the 45th International Symposium on Multiple-Valued Logic
(ISMVL-2015), pages 189–194, 2015.

[19] E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathe-
matical Studies, 5:1–122, 1941.

[20] B.A. Romov. The algebras of partial functions and their invariants. Cybernetics,
17(2):157–167, 1981.

[21] T. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory Of Computing (STOC-78), pages 216–226. ACM
Press, 1978.

15

[22] H. Schnoor and I. Schnoor. Enumerating all solutions for constraint satisfaction
problems. In Proceedings of the 24th Annual Symposium on Theoretical Aspects of
Computer Science (STACS-2007), volume 4393, pages 694–705. Springer, 2007.

[23] H. Schnoor and I. Schnoor. Partial polymorphisms and constraint satisfaction problems.
In N. Creignou, P. G. Kolaitis, and H. Vollmer, editors, Complexity of Constraints,
volume 5250 of Lecture Notes in Computer Science, pages 229–254. Springer Berlin
Heidelberg, 2008.

[24] R. Willard. Testing expressibility is hard. In Proceedings of the 16th International
Conference Principles and Practice of Constraint Programming (CP-2010), volume
6308 of Lecture Notes in Computer Science, pages 9–23. Springer, 2010.

16

