
Lower Bounds and Faster Algorithms for Equality
Constraints

Peter Jonsson∗1 and Victor Lagerkvist†2

1Department of Computer and Information Science, Linköping University,
Linköping, Sweden

Abstract

We study the fine-grained complexity of NP-complete, infinite-
domain constraint satisfaction problems (CSPs) parameterised by a
set of first-order definable relations (with equality). Such CSPs are of
central importance since they form a subclass of any infinite-domain
CSP parameterised by a set of first-order definable relations. We prove
that under the randomised exponential-time hypothesis it is not possible
to find c > 1 such that a CSP over an arbitrary finite equality language
is solvable in O(cn) time (n is the number of variables). Stronger
lower bounds are possible for infinite equality languages where we rule
out the existence of 2o(n logn) time algorithms; a lower bound which
also extends to satisfiability modulo theories solving for an arbitrary
background theory. Despite these lower bounds we prove that for each
c > 1 there exists an NP-hard equality CSP solvable in O(cn) time.
Lower bounds like these immediately ask for closely matching upper
bounds, and we prove that a CSP over a finite equality language is
always solvable in O(cn) time for a fixed c.

1 Introduction
The constraint satisfaction problem (CSP) is the problem of determining
whether a set of constraints has at least one satisfying assignment.
Depending on the set of allowed constraints Γ, called a template or a
constraint language, it is possible to formulate many natural problems
as CSP(Γ) problems. This is especially true if we allow templates

∗peter.jonsson@liu.se
†victor.lagerkvist@liu.se

1

1 INTRODUCTION 2

over an infinite universe, which increases the expressive power of CSPs
and e.g. makes it possible to formulate many problems from artificial
intelligence [4, 9]. The complexity of CSPs have also been the subject
of intense theoretical research: for each constraint language Γ over a
finite domain CSP(Γ) is always either polynomial-time solvable or is
NP-complete [7, 21]. Infinite-domain CSPs are in general undecidable,
but there exists a wealth of results when additional restrictions are
imposed. Early examples include the CSP formulation of Allen’s interval
algebra [14], the region connection calculus [16], CSPs over first-order
definable relations with equality [5] (equality CSPs), and temporal
CSPs [6]. More generally, it is common to consider first-order reducts of a
fixed relational structure A, i.e., languages that are first-order definable
(with equality) over A. Equality CSPs then correspond to CSP(Γ)
when Γ is a first-order reduct of (A; ∅) for some universe A (an equality
language) while temporal CSPs correspond to CSP(Γ) when Γ is a first-
order reduct of (Q;<). Equality CSPs have previously been intensively
studied due to their fundamental importance for understanding more
complex CSPs, since any classification of a larger relational structure
A necessarily also needs to include a classification of equality CSPs (an
equality language Γ is a reduct of any countably infinite structure A).
Let us also remark that CSPs in this setting are very similar to reasoning
problems occuring in artificial intelligence, where one fixes a set of
“base relations” A, typically binary, and then consider a satisfiability
problem where constraints are taken from e.g. the relation algebra
generated by A, or the set of all disjunctive clauses over A [9]. A recent
comparison may also be found in satisfiability modulo theories (SMT)
where a background theory A is fixed, and where one considers the
satisfiability problem of first-order formulas (with equality) restricted
to interpretations agreeing with A [2].

While theoretical CSP research has concentrated on classical com-
plexity, complexity theory itself has partially shifted towards parame-
terised complexity and fine-grained complexity, which e.g. encompasses
constructing improved exponential-time algorithms, and proving lower
bounds with stronger assumptions than P 6= NP such as the (strong)
exponential-time hypothesis (S)ETH (see, e.g., [8]). In this paper we
study the fine-grained complexity of NP-hard infinite-domain CSPs,
with a particular focus on equality CSPs using the number of variables,
n, as the complexity parameter. As remarked, equality CSPs consti-
tute a natural starting point for questions of fine-grained complexity,
since if we cannot even overcome this obstacle there is little hope of
understanding fine-grained complexity questions for larger classes of
CSPs. Assume, for example, that we prove that there exists an equality
language Γ such that CSP(Γ) is not solvable in O(f(n)) time, for some
function f . Then, regardless of which relational structure A that we
choose, we cannot hope to construct an algorithm with a running time

1 INTRODUCTION 3

of O(f(n)) which is applicable to CSP(∆) for every first-order reduct ∆
of A. Under this viewpoint it is therefore crucial to prove lower bounds
for equality CSPs before moving on to construct faster exponential-time
algorithms for broader classes of infinite-domain CSPs.

Thus, among the class of NP-hard equality CSPs, how does the
choice of Γ affect the fine-grained complexity of CSP(Γ)? For example,
it is known that CSP(Γ) is solvable in O∗(2n·log(0.792n

ln(n+1))) time when Γ is
an arbitrary equality language [10] (the O∗ notation is used to suppress
polynomial factors). Concerning lower bounds it is known that no NP-
complete equality CSP(Γ) problem is solvable in subexponential time
without violating the ETH [13], and if Γ is the full first-order reduct
of (A; ∅) then there cannot exist an O∗(cn) time algorithm for CSP(Γ)
for any constant c without violating the SETH [10]. Despite bounds
like these, there are still large gaps in our understanding of fine-grained
complexity of infinite-domain CSPs in general, and of equality CSPs
in particular. For example, is it possible to find an equality language
Γ such that CSP(Γ) is NP-complete but solvable in O(cn) time for a
constant c > 1? Is it possible to solve CSP(Γ) in O(cn) time whenever Γ
is a finite equality language, and in that case, does c depend on Γ or is
it possible to find a uniform value? Furthermore, since no NP-complete
equality CSP is solvable in subexponential time without violating the
ETH, does there exist a c > 1 such that no NP-complete equality CSP
is solvable in O(cn) time? After defining the necessary preliminaries (in
Section 2) we in Section 3 begin to answer these questions by a careful
study of lower bounds. First, we prove that under the randomised
ETH for each c > 1 there exists a finite equality language Γc such
that CSP(Γc) is not solvable in O(cn) time. Second, we showcase a
striking difference between finite and infinite languages and prove the
existence of an infinite equality language Γ such that CSP(Γ) is not
solvable in 2o(n logn) time (under the ETH). In particular this lower
bound rules out a uniform O(cn) time algorithm, c > 1, applicable
to arbitrary equality CSPs (which previously was only known to hold
under the much stronger SETH). We also manage to lift this lower
bound to SMT, where little is known about the fine-grained complexity,
despite being a framework with a wide range of applications due to
the success of efficient SAT solvers. We provide the first known lower
bound under the ETH and show that regardless of the background
theory it is not possible to solve the resulting SMT in 2o(n logn) time
without violating the ETH. Furthermore, we are able to prove this as a
straightforward consequence of our general bounds for equality CSPs,
indicating yet another advantage of studying fine-grained complexity in
this setting. Third, we prove that for each constant c > 1 there exists
an NP-complete equality CSP which is solvable in O(cn) time, and thus
rule out the existence of an “easiest NP-complete equality CSP”. Such
CSPs are known to exist for finite-domain CSPs [13] so we see a clear

2 PRELIMINARIES 4

dividing line between finite and infinite-domain CSPs.
In light of these lower bounds, what is the best possible exponential-

time algorithm for equality CSPs that we could hope for? We tackle
this question in Section 4 and construct an O∗(cn) time algorithm for
CSP(Γ) whenever Γ is a finite equality language, where c is a constant
depending only on the arities of relations in Γ. Note that while the
constant c likely can be improved, we have already established (under
the randomised ETH) that it is not possible to find a uniform value.
Similarly, it appears difficult to extend the algorithm to non-trivial
classes of infinite equality languages since we have already proved that
there is an infinite equality language that cannot be solved in 2o(n logn)

time (and the ETH). Here, it is also interesting to note that certain
classes of infinite-domain CSPs do not admit an O(cn) algorithm even if
the template is finite. For instance, there is a finite temporal language
whose CSP (under the randomised ETH) cannot be solved in 2o(n logn)

time [11].
These results paint a peculiar picture of the fine-grained complexity

of equality CSPs (and all classes of infinite-domain CSPs over first-order
reducts of relational structures). On the one hand, equality CSPs are
incredibly hard to solve (no uniform O(cn) time algorithm for finite
languages under the randomised ETH, and no 2o(n logn) time algorithm
for infinite languages), but on the other hand one for any c > 1, say,
c = 1.00001, can find an NP-hard equality CSP solvable in O(cn) time.
These conflicting messages indicate that a complete understanding of
fine-grained complexity of equality CSPs is well out of reach, but we
have simultaneously unravelled several interesting research directions.
We discuss some of these in Section 5.

2 Preliminaries
A relational structure is a tuple (A;σ, I) where A is a set typically
called a domain, or a universe, σ is a relational signature, and I is a
function from σ to the set of all relations over A which assigns each
relation symbol a corresponding relation over A. For simplicity, we will
typically write a relational structure as (A;R1, . . . , Rk) where each Ri
is a relation over A, and will not make a sharp distinction between
relations and their corresponding signatures. A set of relations Γ over
A is a first-order reduct of a relational structure (A;R1, . . . , Rk) if each
R ∈ Γ is the set of models of a σ-formula (with equality) interpreted
in (A;R1, . . . , Rk). In symbols, we write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn)
if R is the set of models of the first-order formula ϕ(x1, . . . , xn) with
respect to the free variables x1, . . . , xn.

2 PRELIMINARIES 5

2.1 The Constraint Satisfaction Problem
Let Γ be a set of finitary relations over some set A of values, occasionally
called a constraint language. The constraint satisfaction problem over Γ
(CSP(Γ)) is defined as follows.

Instance: A set V of variables and a set C of constraints of the
form R(x1, . . . , xk), where k is the arity of R, x1, . . . , xk ∈ V and
R ∈ Γ.
Question: Is there a function f : V → A such that
(f(x1), . . . , f(xk)) ∈ R for every R(x1, . . . , xk) ∈ C?

Concerning representation, we take a simple approach and only
consider the case when Γ is a first-order reduct of a relational structure,
and represent each relation R ∈ Γ by a first-order formula. However,
the exact representation is only important if Γ is infinite, since any
reasonable representation can be chosen and precomputed if Γ is finite.

2.2 Primitive Positive Definitions and Interpreta-
tions
Let Γ be a constraint language over a domain A. A k-ary relation
R is said to have a primitive positive definition (pp-definition) over
Γ if R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ : R1(x1) ∧ . . . ∧Rm(xm) where each
Ri ∈ Γ ∪ {EqA} and each xi is a tuple of variables over x1, . . . , xk,
y1, . . . , yk′ matching the arity of Ri. Here, and in the sequel, EqA is
the equality relation {(a, a) | a ∈ A)} over A. Thus, R is definable by
a first-order formula consisting only of existential quantification and
conjunction over positive atoms from Γ and equality constraints. If
Γ is a constraint language we let 〈Γ〉 be the smallest set of relations
containing Γ closed under pp-definitions. Pp-definitions are typically
only useful for comparing similar languages over the same domain, but
can be generalised as follows.

Definition 1. Let A and B be two domains and let Γ and ∆ be
two constraint languages over A and B, respectively. A primitive
positive interpretation (pp-interpretation) of ∆ over Γ consists of a
d-ary relation F ⊆ Ad and a surjective function f : F → B such that
F, f−1(EqB) ∈ 〈Γ〉 and f−1(R) ∈ 〈Γ〉 for every k-ary R ∈ ∆, where
f−1(R) denotes the (k · d)-ary relation {(x1

1, . . . , x
d
1, . . . , x

1
k, . . . , x

d
k) ∈

Ak·d | (f(x1
1, . . . , x

d
1), . . . , f(x1

k, . . . , x
d
k)) ∈ R}.

Hence, pp-interpretations are generalisations of pp-definitions, and
can be used to obtain polynomial-time reductions between CSPs (cf.
Theorem 5.5.6 in [3]).

2 PRELIMINARIES 6

2.3 Equality Languages
We say that Γ is an equality language if each R ∈ Γ admits a first-order
definition over a relational structure (A; ∅), i.e. the empty structure.
Recall here that the equality relation is always accessible in first-order
logic. Without loss of generality we henceforth assume that A = N,
write Eq (or = in infix notation) for the equality relation over N, and R 6=

or 6= (in infix notation) for the inequality relation {(x, y) ∈ N2 | x 6= y}
over N. The computational problem we consider is then CSP(Γ) when
Γ is an equality language. This problem is easily seen to belong to NP
for any finite language, and its classical complexity has been completely
classified [5].

Theorem 2. Let Γ be an equality language. Then either CSP(Γ) is
(1) polynomial-time solvable or (2) there exists a finite ∆ ⊆ Γ such
that CSP(∆) is NP-complete since ∆ pp-interprets every finite-domain
relation.

Example 1. Let S = {(x, x, y), (x, y, y) | x, y ∈ N, x 6= y}, and observe
that S(x, y, z) ≡ (x = y ∧ y 6= z) ∨ (x 6= y ∧ y = z). Thus, {S} is an
equality language, and it is known that {S} pp-interprets a language ∆
where CSP(∆) is NP-hard, which implies that CSP({S}) is NP-hard,
too. For tractability, if we take {Eq,R6=} then CSP({Eq,R 6=}) is well-
known to be polynomial-time solvable. This can be proven via Theorem 2,
but CSP({Eq,R 6=}) can also be solved by propagation methods.

2.4 Fine-Grained Complexity and the Exponential-
Time Hypothesis
Assume that CSP(Γ) is NP-complete. How fast can we solve CSP(Γ),
and is it possible to prove stronger lower bounds than an expected
superpolynomial running time (under P 6= NP)? Such questions, es-
pecially when the complexity parameter is the number of variables
|V | or the number of constraints |C|, fall under the umbrella of fine-
grained complexity. To prove non-trivial lower bounds for NP-complete
problems we typically need stronger assumptions than P 6= NP. Say
that CSP(Γ) is solvable in subexponential time if CSP(Γ) is solvable in
O(2ε|V |) for each ε > 0. The conjecture that 3-SAT is not solvable in
subexponential time is called the exponential-time hypothesis (ETH).
There exists several stronger variants of the ETH. First, an algorithm
A is said to be a 2c·|V |-randomised algorithm if its running time is
bounded by 2c·|V | · poly(||I||) and its error probability is at most 1/3
(||I|| is the number of bits required to represent a CSP instance I).
For k, d ≥ 1 we then define (1) ck = inf{c | ∃ a deterministic 2c·|V |
algorithm for k-SAT} and (2) cd,k = inf{c | ∃ a 2c·|V |-randomised
algorithm for CSP(Γd,k)}, where Γd,k is the set of all relations over the

3 LOWER BOUNDS ON THE COMPLEXITY OF EQUALITY CONSTRAINTS7

set {0, . . . , d− 1} of arity at most k. The randomised exponential-time
hypothesis (r-ETH) is then the conjecture that c2,3 > 0, i.e., that 3-SAT
is not solvable in subexponential time even with randomised algorithms,
and the strong exponential-time hypothesis (SETH) is the conjecture
that the limit of the sequence c3, c4, . . . is equal to 1.

3 Lower Bounds on the Complexity of Equal-
ity Constraints
In this section we investigate lower bounds for equality CSPs. As
remarked in Section 1, such lower bounds are valuable since if it is
possible to prove that CSP(Γ) is not solvable in O(f(|V |)) time (for
some function f) then we cannot in general expect to solve CSP(∆) in
O(f(|V |)) time when ∆ is a first-order reduct of an arbitrary relational
structure. Let us recapitulate two known lower bounds.

Theorem 3. (1) If CSP(Γ) for an equality language Γ is NP-hard then
it is not solvable in subexponential time unless the ETH is false [13,
Thm. 9]) and (2) if Γ is the full first-order reduct of (N; ∅) then CSP(Γ)
is not solvable in O(c|V |) time for any c > 1 unless the SETH is false.
(Theorem 19 in [10].)

3.1 Finite Versus Infinite Equality Languages
We begin by proving that for every c > 1 there exists a finite equality
language Γc such that CSP(Γc) is not solvable in O(2c|V |) time without
contradicting the r-ETH. We first require the following result [20, Thm.
1].

Theorem 4. If r-ETH holds, then there exists a universal constant
α > 0 such that for all d ≥ 3, α · log(d) ≤ cd,2.

Theorem 5. For every c > 1, there exists a finite equality language
Γc such that CSP(Γc) cannot be solved in O(2c·|V |) (randomised) time
unless the r-ETH is false.

Proof. For 1 ≤ a, b ≤ d define Rd,a,b(c1, . . . , cd, x, y) ≡
∨d
i=1 x =

ci ∧
∨d
i=1 y = ci ∧ (x 6= ca ∨ y 6= cb) . For arbitrary d then define the

finite equality language Θd = {6=} ∪ {Rd,a,b | 1 ≤ a, b ≤ d}. We
present a polynomial-time reduction from CSP(Γd,2) to CSP(Θd) only
introducing a constant number of fresh variables. Let (V,C) be an
instance of CSP(Γd,2). Introduce d fresh variables c1, . . . , cd together
with constraints {ci 6= cj | 1 ≤ i < j ≤ d}. For each R(x, y) ∈ C,
add the constraints Rd,a,b(c1, . . . , cd, x, y) for every 1 ≤ a, b ≤ d such
that (a, b) 6∈ R. The resulting instance (V ∪ {c1, . . . , cd}, C ′) can be
constructed in polynomial time, and is clearly satisfiable if and only if

3 LOWER BOUNDS ON THE COMPLEXITY OF EQUALITY CONSTRAINTS8

(V,C) is satisfiable. Furthermore, d is fixed so only a constant number
of fresh variables are introduced. By Theorem 4, CSP(Θd) cannot be
solved in 2(cd,2−ε)·|V | time for any ε > 0 unless r-ETH is false, and
the result follows by choosing d such that cd,2 ≥ c. We know that
α · log(d) ≤ cd,2 so it is sufficient to choose a d such that α · log(d) ≥ c,
e.g. d = 2d cα e.

Thus, assuming the r-ETH, there cannot exist an algorithm solving
CSP(Γ) in O(c|V |) time for every finite equality language Γ. This
can be strengthened even further for infinite equality languages, and
we will show the existence of Γ such that CSP(Γ) is not solvable
in O(2o(|V | log |V |)) time without contradicting the ETH. In contrast,
the second statement of Theorem 3 is only valid under the much
stronger SETH, and only if Γ consists of all first-order definable relations
over (N; ∅). For this lower bound we provide a reduction from the
k × k Independent Set problem: given a graph G over the vertex
set {1, . . . , k} × {1, . . . , k} (where k is part of the input), is there an
independent set of size k in G with exactly one element from each row?
The following lower bound is known under the ETH [15].

Theorem 6. k×k Independent Set is not solvable in 2o(k log k) time
unless the ETH is false.

For n ≥ 1 define Rn(y, x1, . . . , xn) ≡ y = x1 ∨ y = x2 ∨ · · · ∨ y = xn,
and let R(x, y, z, w) ≡ x 6= y ∨ z 6= w. Let Γinf be the infinite equality
language {6=, R,R1, R2, . . .}.

Theorem 7. CSP(Γinf) cannot be solved in 2o(|V | log |V |) time unless
the ETH is false.

Proof. To prove the result, we present a polynomial-time reduction
from k × k Independent Set to CSP(Γinf) such that the resulting
CSP(Γinf) instance only contains 2k variables. Let G = (V,E) denote
an arbitrary graph where V = {1, . . . , k} × {1, . . . , k}. We then begin
by introducing k variables a1, . . . , ak together with the constraints
ai 6= aj ,1 ≤ i < j ≤ k. Second, for each row 1 ≤ i ≤ k in G, introduce
a variable xi and the constraint Rk(xi, a1, . . . , ak). This constraint
ensures that xi equals one of the variables a1, . . . , ak. Third, for each
edge e = ((a, b), (c, d)) ∈ E, introduce the constraint R(xa, ab, xc, ad).
This constraint guarantees that both endpoints of an edge are not put
into the independent set simultaneously.

Hence, we cannot even hope to solve CSP(Γ) in O(c|V |) time for any
c when Γ is allowed to be infinite. Furthermore, since an equality CSP
is always solvable in 2O(|V | log |V |) time [10], the bound in Theorem 7 is
asymptotically tight. Last, let us consider a problem which is related
to equality CSPs, for which we rather effortlessly can obtain lower

3 LOWER BOUNDS ON THE COMPLEXITY OF EQUALITY CONSTRAINTS9

bounds by reducing from CSP(Γinf). Satisfiability modulo theories is a
decision problem for logical formulas with respect to combinations of
background theories expressed in classical first-order logic with equality.
Let SMT(T) be the problem of determining whether a first-order
formula (with respect to a background theory T) is satisfiable, and
let SMT6∀(T) be the subproblem where universal quantifiers are not
allowed. We can then readily prove a matching lower bound valid for
any background theory T .

Lemma 8. SMT6∀(∅) cannot be solved in 2o(|V | log |V |) time unless the
ETH is false.

Proof. We present a polynomial-time reduction from CSP(Γinf) which
does not introduce any fresh variables. Let (V,C) be an instance
of CSP(Γinf), where V = {x1, . . . , xk} and C = {c1, . . . , cp}. Define
F = ∃x1 . . . ∃xk : F1 ∧ · · · ∧ Fp where Fi = (¬(x = y)) if ci = x 6= y,
Fi = (y = x1 ∨ y = x2 ∨ . . . ∨ y = xn) if ci = Rn(y, x1, . . . , xn), and
Fi = (¬(x = y)∨¬(z = w)) if ci = S(x, y, z, w). It is obvious that F is
true if and only if (V,C) has a solution, that F can easily be constructed
in polynomial time, and that F contains as many variables as there are
variables in V . The result then follows from Theorem 7.

To exemplify this, we consider the well-known unit two variable
per inequality (UTVPI) class of constraints, i.e., SMT6∀(UTVPI) where
UTVPI for each integer b and coefficients c1, c2 ∈ {−1, 1} contains
c1 ·x+c2 ·y ≥ b. The UTVPI class has many applications in, for instance,
abstract interpretation, spatial databases, and theorem proving (cf.
Schutt and Stuckey [18] and the references therein). It is known [19] that
SMT6∀(UTVPI) can be solved in 2O(|V | log d) time where d = 2|V |(bmax +
1) + 1 and bmax is the maximum over the absolute values of constant
terms in the constraints. Using Lemma 8 we can prove that this
algorithm is close to optimal.

Theorem 9. SMT over UTVPI constraints, SMT6∀(UTVPI), cannot
be solved in 2o(n log d) time unless the ETH is false.

Proof. Assume there is an algorithm A that solves SMT6∀(UTVPI) in
2o(|V | log d) time. The formulas constructed in Lemma 7 are SMT6∀(UTVPI)
formulas (degenerated ones, though, since they do not contain UTVPI
constraints). Thus, bmax for this class X of formulas is 0, implying
that A can solve SMT 6∀(UTVPI) restricted to X in 2o(n logn) time,
contradicting Lemma 8.

3.2 No Easiest NP-Hard Infinite-Domain CSP
Our lower bounds suggest that equality CSPs are rather different
from finite-domain CSPs when viewed under the lens of fine-grained

3 LOWER BOUNDS ON THE COMPLEXITY OF EQUALITY CONSTRAINTS10

complexity. In this section we prove yet another differentiating factor.
For each finite A it is known that there exists ΓA such that CSP(ΓA)
is NP-complete, but if an NP-complete CSP(∆)1 over A is solvable in
O(c|V |) time, then CSP(ΓA) is solvable in O(c|V |) time, too [13]. More
generally, if G is a set of constraint languages over A, say that CSP(Γ)
for Γ ∈ G is the easiest CSP problem in G if CSP(Γ) is solvable in
O∗(c|V |) time whenever CSP(∆) for ∆ ∈ G is solvable in O∗(c|V |) time.

Contrary to the finite-domain case we will prove that there does
not exist an easiest NP-complete equality CSP, unless the ETH is
false. To prove this we for every c > 1 show the existence of an
equality language Γc such that CSP(Γc) is NP-complete but solvable
in O(c|V |) time. First, recall from Example 1 that the ternary relation
S = {(x, x, y), (x, y, y) | x, y ∈ N, x 6= y} has an NP-complete CSP. We
will show how S can be extended with additional arguments in order to
decrease the time complexity of the resulting CSP. If v = (v1, . . . , vk)
and w = (w1, . . . , wk) are two k-ary tuples of variables, x a variable,
and R is a binary relation, then we write R(x,v) for

∧
1≤i≤k R(x, vi),

R(v,w) for
∧

1≤i,j≤k R(vi, wj), and R(v) for
∧

1≤i,j≤k,i 6=j R(vi, vj). For
each k ≥ 1 now define Sk(x, y, z,v,w) as

∧
s∈{x,y,z},t∈{v,w}R 6=(s, t) ∧

R 6=(v,w) ∧ (x = y ∧ y 6= z ∧ Eq(v) ∧ R 6=(w)) ∨ (x 6= y ∧ y = z ∧
R 6=(v) ∧ Eq(w)) where v = (v1, . . . , vk) and w = (w1, . . . , wk) are two
distinct k-ary tuples of variables. The problem CSP({Sk}) is clearly NP-
complete since S ∈ 〈{Sk}〉, and we will now prove that the fine-grained
complexity of CSP({Sk}) decreases, in the following sense.

Theorem 10. Let c > 1. Then there exists a k such that CSP({Sk})
is solvable in O∗(c|V |) time.

Proof. We will present an algorithm for CSP({Sk}) which runs in
O∗(2nk) time. The claim then follows when choosing sufficiently large
k ≥ 1

log c . Thus, choose k ≥ 1 and let (V,C) be an instance of
CSP({Sk}), where |V | = n. Say that a set of inequality constraints L is
consistent if L, viewed as an instance of CSP({R6=}), is satisfiable, and
inconsistent otherwise. The consistency of a set of inequality constraints
can be determined in polynomial time since CSP({R6=}) is in P (from
Example 1). Consider the following algorithm for CSP({Sk}), where
the set L is used to keep track of inequality constraints induced by the
constraints in the instance.

1. Let L = ∅.
2. If L is inconsistent, return no.
3. If L is consistent and C = ∅, return yes.

1For technical reasons ∆ contains all unary relations over A.

3 LOWER BOUNDS ON THE COMPLEXITY OF EQUALITY CONSTRAINTS11

4. Pick a constraint Sk(xi, yi, zi,vi,wi) ∈ C where vi = (v1
i , . . . , v

k
i)

and wi = (w1
i , . . . , w

k
i).

5. Return no if:
(a) |{xi, yi, zi}| = 1,
(b) {xi, yi, zi} ∩ {v1

i , . . . , v
k
i , w

1
i , . . . , w

k
i } 6= ∅,

(c) {v1
i , . . . , v

k
i } ∩ {w1

i , . . . , w
k
i } 6= ∅, or if

(d) |{v1
i , . . . , v

k
i }| < k and |{w1

i , . . . , w
k
i }| < k.

6. If |{v1
i , . . . , v

k
i }| < k and |{w1

i , . . . , w
k
i }| = k then we identify yi

with xi, v1
i with every variable in {v1

i , . . . , v
k
i } \ {v1

i }, remove
Sk(xi, yi, zi,vi,wi), add

R6=(wi),R6=(xi,vi),R 6=(xi,wi),R6=(zi,vi),R 6=(zi,wi),R 6=(xi, zi)

to L, and jump to step (2).
7. The case |{v1

i , . . . , v
k
i }| = k, |{w1

i , . . . , w
k
i }| < k, is handled analo-

gously.
8. If none of the above cases apply we proceed as follows.

(a) If |{xi, yi, zi}| = 2 then no branching is necessary, and de-
pending on whether xi = yi or xi 6= yi we jump to step (b)
or step (c) below.

(b) Identify yi with xi, vji (2 ≤ j ≤ k) with v1
i , add

R6=(wi),R6=(xi,vi),R 6=(xi,wi),R6=(zi,vi),R6=(zi,wi),
and R 6=(xi, zi)} to L, remove Sk(xi, yi, zi,vi,wi), and jump
to step (2).

(c) Identify zi with yi, wji (2 ≤ j ≤ k) with w1
i , add

R6=(vi),R6=(xi,vi),R 6=(xi,wi),R6=(yi,vi),R6=(yi,wi),
and R6=(xi, yi) to L, remove Sk(xi, yi, zi,vi,wi), and jump
to step (2).

9. Answer yes if any of the two recursive branches return yes, and
otherwise no.

For correctness, the algorithm branches on a constraint Sk(xi, yi, zi,vi,wi) ∈
C, and either identifies xi with yi, or yi with zi, and in the process
identifies variables and introduces inequality constraints according to
the definition of Sk. Furthermore, the algorithm answers ’yes’ if and
only if it for each constraint Sk(xi, yi, zi,vi,wi) ∈ C is possible to iden-
tify xi with yi, or yi with zi, in a non-contradictory way, and answers
’no’ if and only if this is not possible. Concerning time complexity,
note first that all variables in vi and wi are distinct, once step (8) is
reached. This follows from the tests undertaken in step 5 where we
systematically verify that {w1

i , . . . , w
k
i } and {v1

i , . . . , v
k
i } are disjoint

and that |{w1
i , . . . , w

k
i }| = |{v1

i , . . . , v
k
i }| = k. Furthermore, if (8)(b)

or (8)(c) is reached then |{xi, yi, zi}| = 3, as otherwise the current

4 UPPER BOUNDS FOR EQUALITY CSPS 12

instance is unsatisfiable (|{xi, yi, zi}| = 1) or no branching was required
(|{xi, yi, zi}| = 2). Thus, in each branch we eliminate k variables
via variable identification, which implies that the time complexity is
bounded by the recurrence T (n) = 2T (n− k) + poly(||I||). Thus, the
total running time is O∗(2nk), which solves CSP({Sk}) in O∗(cn) time
for sufficiently large k.

We immediately obtain the following corollary.

Corollary 11. Let A = (A;R1, . . . , Rk) be a relational structure over
a countably infinite A, such that CSP(Γ) for a first-order reduct of A
is NP-complete if and only if Γ pp-interprets 3-SAT. Let G = {Γ | Γ
is a first-order reduct of A and CSP(Γ) is NP-complete}. If G has an
easiest CSP problem then the ETH is false.

Proof. For each c > 1 there exists a constraint language Γc ∈ G such
that CSP(Γc) is NP-complete and solvable in O∗(c|V |) time (Theo-
rem 10). If G has an easiest NP-complete problem CSP(Γ) then (1)
CSP(Γ) pp-interprets 3-SAT, and (2) CSP(Γ) is solvable in O∗(c|V |)
time for each c > 1. Thus, CSP(Γ) is solvable in subexponential time,
but this violates the ETH by Corollary 10 in [13].

This captures the NP-hard cases of the CSP dichotomy conjecture
over finitely bounded homogeneous structures [1].

4 Upper Bounds for Equality CSPs
The lower bounds established in Section 3 suggest that we cannot con-
struct an O(c|V |) time algorithm (c > 1) which is applicable to arbitrary
equality languages. However, if we fix a finite equality language Γ, this
still leaves the possibility of constructing an O(c|V |) time algorithm for
a constant c depending on Γ. We manage to construct a novel algorithm
for CSP(Γ), where Γ is a finite equality language with maximum arity
α, with a running time of O∗((α(α−1)

2)|V |). Thus, the algorithm runs
in O∗(c|V |) time for a constant c depending on Γ, which is a significant
improvement over the algorithm proposed by [10] which solves CSP(Γ)
in O∗(2|V |·log(0.792|V |

ln(|V |+1))) time.

Theorem 12. Let Γ be a finite equality language and let α = max{ar(R) | R ∈

Γ}. Then, CSP(Γ) can be solved in O∗(
(
α(α−1)

2

)|V |
) time.

Proof. Consider the following algorithm A(I) for an instance I of
CSP(Γ).

1. Let I = (V,C) and let V = {x1, . . . , xn}.

5 CONCLUDING REMARKS 13

2. Define s : V → {1, . . . , n} such that s(xi) = i.
3. If s is a solution to I, then return ’yes’.
4. If s is not a solution to I and |V | = 1, then return ’no’.
5. Arbitrarily choose a constraint R(xi1 , . . . , xip) that is not satisfied

by s.
6. For each 1 ≤ j < k ≤ p, let Ij,k denote the instance obtained by

identifying xij with xik in I.
(a) If A(Ij,k) = ’yes’ then return ’yes’.

7. Return ’no’.

We begin by proving correctness by induction over |V | = n. If n = 1,
then the tests in steps (3) and (4) provide the correct answer. Assume
the algorithm is correct when n = m > 1. Let I = (V,C) be an instance
where |V | = n = m+ 1. First, assume that I has an injective solution.
Then it is readily verified that f : {1, . . . , |V |} defined as f(xi) = i for
each xi ∈ V = {x1, . . . , x|V |}, is a solution to I as well (in technical
terms this follows from the well-known fact that the automorphisms
of Γ is the full symmetric group [5]). Hence, the algorithm answers
’yes’ via step (3). Otherwise I does not have an injective solution and
at least one constraint c = R(xi1 , . . . , xip) ∈ C is not satisfied by the
function s. This implies that (at least) two variables in {xi1 , . . . , xip}
must be assigned the same value. This is systematically tested in step
(6), and the correctness follows from the inductive hypothesis.

Concerning the time complexity, it is bounded from above by the
recurrence T (n) = α(α−1)

2 ·T (n−1)+poly(||I||) since ip ≤ α for each pos-
sible choice of constraint R(xi1 , . . . , xip). Thus, T (n) ∈ O∗((α(α−1)

2)n),
and we get the desired bound on the time complexity.

5 Concluding Remarks
We have studied fine-grained complexity of infinite-domain equality
CSPs, and have proven that this class of problems differ from finite-
domain CSPs in almost every way conceivable. Despite the disarray
of this complexity landscape, it is possible to outline several concrete
future research directions. First, since we know that all finite equality
languages can be solved in O(c|V |) time and that there exists infinite
equality languages not solvable in O(c|V |) time for any c > 1, is it
possible to prove a dichotomy separating the problems solvable in
O(c|V |) time to those that are not?

More generally, which infinite-domain CSPs are solvable in O(c|V |)
time? Is this strictly a property of finite first-order reducts (disregarding
trivial examples of infinite language which can be constructed by adding
an infinite number of relations which do not affect the complexity)? An

REFERENCES 14

interesting continuation is the class of temporal CSPs, i.e., CSPs over
first-order reduct of (Q;<). Temporal languages are well-behaved from
a model theoretic viewpoint (ω-categorical), admit a dichotomy between
P and NP-complete, and are always solvable in O∗(2|V | log |V |) time, so
one would expect similarities between equality CSPs and temporal CSPs
when it comes to fine-grained complexity. Thus, which temporal CSPs
are solvable in O(c|V |) time? Despite the aforementioned similarities
there are still large differences to equality CSPs. For example, there
exists a finite first-order reduct Γ of (Q;<) such that CSP(Γ) is not
solvable in 2o(|V | log |V |) time without violating the r-ETH [11].

Last, we have seen that the class of NP-complete equality CSPs does
not admit an “easiest problem” without violating the ETH, contrary to
satisfiability problems [12] and finite-domain CSPs [13]. The existence
of easiest problems of this form can be explained by so-called weak
bases. We brush aside the technical definition and simply remark that
a weak base is a constraint language Γ implying that CSP(Γ) is the
easiest CSP problem with respect to the set of constraint languages
that can pp-define (and be pp-defined by) Γ. A weak base Γ such that
〈Γ〉 is the full first-order reduct E of (N; ∅) would therefore be a great
surprise since it, in the light of Theorem 10, would contradict the ETH.
However, it is in fact possible to unconditionally prove that E does
not have a weak base, using techniques from partial clone theory. In
general, both positive and negative examples of infinite-domain weak
bases exist [17], but the resulting CSPs are not of practical interest.
Thus, does there exist 〈Γ〉 over a countably infinite domain admitting
a weak base, and where CSP(Γ) is NP-hard?

Acknowledgements
The authors are partially supported by the Swedish Research Council
(VR) under grant 2017- 04112. In addition, Victor Lagerkvist is partially
supported by the Swedish Research Council (VR) under grant 2019-
03690.

References
[1] L. Barto and M. Pinsker. The algebraic dichotomy conjecture for

infinite domain constraint satisfaction problems. In Proceedings
of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS 2016), pages 615–622, New York, NY, USA, 2016.
ACM.

[2] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Hand-
book of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press, 2009.

REFERENCES 15

[3] M. Bodirsky. Complexity classification in infinite-domain con-
straint satisfaction. Mémoire d’habilitation à diriger des recherches,
Université Diderot – Paris 7. Available at arXiv:1201.0856, 2012.

[4] M. Bodirsky and P. Jonsson. A model-theoretic view on qualitative
constraint reasoning. Journal of Artificial Intelligence Research,
58:339–385, 2017.

[5] M. Bodirsky and J. Kára. The complexity of equality constraint
languages. Theory of Computing Systems, 43(2):136–158, 2008.

[6] M. Bodirsky and J. Kára. The complexity of temporal constraint
satisfaction problems. Journal of the ACM, 57(2):9:1–9:41, 2010.

[7] A. Bulatov. A dichotomy theorem for nonuniform CSPs. In
Proceedings of the 58th Annual Symposium on Foundations of
Computer Science (FOCS-2017). IEEE Computer Society, 2017.

[8] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algo-
rithms. Springer Publishing Company, Incorporated, 1st edition,
2015.

[9] F. Dylla, J. H. Lee, T. Mossakowski, T. Schneider, A. Van Delden,
J. Van De Ven, and D. Wolter. A survey of qualitative spatial and
temporal calculi: Algebraic and computational properties. ACM
Computing Surveys, 50(1):7:1–7:39, April 2017.

[10] P. Jonsson and V. Lagerkvist. An initial study of time complexity
in infinite-domain constraint satisfaction. Artificial Intelligence,
245:115–133, 2017.

[11] P. Jonsson and V. Lagerkvist. Why are CSPs based on partition
schemes computationally hard? In 43rd International Symposium
on Mathematical Foundations of Computer Science (MFCS-2018),
pages 43:1–43:15, 2018.

[12] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong
partial clones and the time complexity of SAT problems. Journal
of Computer and System Sciences, 84:52 – 78, 2017.

[13] P. Jonsson, V. Lagerkvist, and B. Roy. Time complexity of con-
straint satisfaction via universal algebra. In Proceedings of the
42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS-2017), pages 17:1–17:15, 2017.

[14] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal
relations: The tractable subalgebras of Allen’s interval algebra.
Journal of the ACM, 50(5):591–640, September 2003.

[15] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential
parameterized problems. SIAM Journal on Computing, 47(3):675–
702, 2018.

REFERENCES 16

[16] J. Renz and B. Nebel. On the complexity of qualitative spatial
reasoning: A maximal tractable fragment of the region connection
calculus. Artificial Intelligence, 108(1-2):69–123, 1999.

[17] B. A. Romov. Endpoints of associated intervals for local clones on
an infinite set. Algebra universalis, 79(4):82, Oct 2018.

[18] A. Schutt and P. J. Stuckey. Incremental satisfiability and impli-
cation for UTVPI constraints. INFORMS Journal on Computing,
22(4):514–527, 2010.

[19] S. A. Seshia, K. Subramani, and R. E. Bryant. On solving boolean
combinations of UTVPI constraints. Journal on Satisfiability,
Boolean Modeling and Computation, 3(1-2):67–90, 2007.

[20] P. Traxler. The time complexity of constraint satisfaction. In
Proceeding of the Third International Workshop on Parameterized
and Exact Computation (IWPEC-2008), pages 190–201, 2008.

[21] D. Zhuk. The proof of CSP dichotomy conjecture. In Proceedings of
the 58th Annual Symposium on Foundations of Computer Science
(FOCS-2017). IEEE Computer Society, 2017.

	Introduction
	Preliminaries
	The Constraint Satisfaction Problem
	Primitive Positive Definitions and Interpretations
	Equality Languages
	Fine-Grained Complexity and the Exponential-Time Hypothesis

	Lower Bounds on the Complexity of Equality Constraints
	Finite Versus Infinite Equality Languages
	No Easiest NP-Hard Infinite-Domain CSP

	Upper Bounds for Equality CSPs
	Concluding Remarks

