
Bounded Bases of Strong Partial Clones

Victor Lagerkvist∗, Magnus Wahlström†, Bruno Zanuttini‡
∗Department of Computer and Information Science, Linköpings Universitet, Sweden,

Email: victor.lagerkvist@liu.se
†Department of Computer Science, Royal Holloway, University of London, Great Britain

Email: Magnus.Wahlstrom@rhul.ac.uk
‡GREYC, Normandie Université, UNICAEN, CNRS, ENSICAEN, France,

Email: bruno.zanuttini@unicaen.fr

Abstract—Partial clone theory has successfully been applied to
study the complexity of the constraint satisfaction problem param-
eterized by a set of relations (CSP(Γ)). Lagerkvist & Wahlström
(ISMVL 2014) however shows that the partial polymorphisms of
Γ (pPol(Γ)) cannot be finitely generated for finite, Boolean Γ if
CSP(Γ) is NP-hard (assuming P 6=NP). In this paper we consider
stronger closure operators than functional composition which can
generate pPol(Γ) from a finite set of partial functions, a bounded
base. Determining bounded bases for finite languages provides a
complete characterization of their partial polymorphisms and we
provide such bases for k-SAT and 1-in-k-SAT.

I. INTRODUCTION

A clone is a composition-closed set of functions containing
all projection functions, i.e., all functions πni of the form
πni (x1, . . . , xi, . . . , xn) = xi. A strong partial clone is a
composition-closed set of partial functions containing all partial
projection functions. Clones and strong partial clones can
equivalently well be described through sets of relations. We
say that a function f is a polymorphism of a set of relations
Γ if f(t1, . . . , tn) ∈ R for all R ∈ Γ and all t1, . . . , tn ∈ R,
where f is applied component-wise to t1, . . . , tn. Let Pol(Γ)
(respectively pPol(Γ)) denote the (strong partial) clone consist-
ing of all (partial) polymorphisms of Γ. From a practical point
of view clone theory has been successfully applied to study
the complexity of, e.g., the constraint satisfaction problem over
a set of relations Γ (CSP(Γ)). The set Γ is in this context
referred to as a constraint language. The CSP problem is well-
studied and can for instance be used to model classical NP-hard
problems such as κ-SAT and κ-coloring. It is known (1) that if
Pol(Γ) ⊆ Pol(∆) then CSP(∆) is polynomial-time reducible
to CSP(Γ) [4] and (2) that if pPol(Γ) ⊆ pPol(∆) and CSP(Γ)
is solvable in time O(cn), then CSP(∆) is also solvable in
time O(cn) [5]. Strong partial clones are therefore useful when
comparing the time complexity between NP-hard problems,
and have for instance been used to find the computationally
easiest NP-hard CSP problem for finite Boolean languages [5].

There are two kinds of clone theoretical investigations that
are particularly interesting when considering CSP problems.
First, determining the lattice of strong partial clones on a given
domain, so as to obtain a complete understanding of the relative
complexity between CSP problems on this domain. Second,
given a set of relations Γ, characterizing the strong partial clone
pPol(Γ), by finding a base of partial functions that generate
this strong partial clone. Such a base could then, e.g., be used
to efficiently check whether pPol(Γ) ⊆ pPol(∆). It should not
come as a surprise that both of these questions are difficult.

For the first case it is known that in contrast to Post’s lattice of
Boolean clones, the cardinality of the lattice of strong partial
clones is uncountably infinite even for the Boolean domain [1],
and for the second case, Lagerkvist & Wahlström [6] prove
that for any finite Boolean set of relations Γ such that CSP(Γ)
is NP-hard (assuming P6=NP), pPol(Γ) is of infinite order and
cannot be finitely generated. This should be compared to Post’s
lattice where every clone is of finite order. Hence the step
from total polymorphisms to partial polymorphisms leads to
interesting applications but at the same time makes reasoning
much more complex.

In this paper we tackle the problem of determining bases
for strong partial clones by considering stronger notions of
closure than composition of partial functions. After introducing
the notions needed for the subsequent treatment (Section II),
we show that the strong partial clone corresponding to any
finite language can be characterized by a finite set of functions,
which we call the bounded base of the language (Section III).
Next we prove that the bounded base of a finite constraint
language is expressive enough to generate all functions in
pPol(Γ), by defining an operator stronger than functional
composition which generates the strong partial clone from
the bounded base (Section IV). Finally, we turn to the problem
of determining bounded bases of finite Boolean constraint
languages (Section V). First we give some general results
regarding Boolean constraint languages that contain additional
sign patterns, i.e., when constraints can have negated arguments,
and prove that in many cases the partial polymorphisms of such
languages can be described in terms of simpler relations. Then
we provide descriptions of the bounded bases for 1-in-κ-SAT
and κ-SAT which, thanks to the notions introduced in this
paper, have a particularly simple form. We believe that these
bases can be used as a starting point to determine bounded
bases of other constraint languages, in order to get a better
understanding of the seemingly large difference in complexity
between various NP-hard CSP problems.

II. PRELIMINARIES

An n-ary partial function f on D ⊆ N is a map f : X → D
where X ⊆ Dn (n ≥ 1), that is, a function that is allowed to
be undefined for some sequences of arguments. Throughout
this paper we always assume that D is finite. For a partial
function f : X → D, X ⊆ Dn, we let domain(f) = X
and ar(f) = n. If u = (x1, . . . , xn) ∈ domain(f) we often
write f(u) instead of f(x1, . . . , xn). For a finite set of partial
functions we let ar(F) = maxf∈F (ar(f)). The partial function

g is said to be a subfunction of the partial function f if
domain(g) ⊆ domain(f) and g(x1, . . . , xn) = f(x1, . . . xn)
for all (x1, . . . , xn) ∈ domain(g). We also say that g is f
restricted to X . Finally, a set of partial functions F is said to
be strong if for all (partial or total) functions f ∈ F and all
subfunctions g of f , g is also in F .

Given a relation R ⊆ Dκ (κ ≥ 1) over D ⊆ N we
let #tuples(R) = |R|, i.e., the number of tuples in the
relation, and ar(R) = κ be its arity. For a κ-ary tuple t and
1 ≤ i ≤ κ, we write t[i] for the ith element of t. For κ ≥ 0
and c ∈ {0, 1}, we write ~cκ for (c, . . . , c) (κ times), i.e., for
a κ-ary sequence of 0’s or 1’s. If κ is clear from the context
we simply write ~c. If R is a κ-ary relation and t1, . . . , tn ∈
R a sequence of n tuples then we let Cols(t1, . . . , tn)
be the sequence

(
(t1[1], . . . , tn[1]), . . . , (t1[κ], . . . , tn[κ])

)
. In

other words, Cols(t1, . . . , tn) are the columns in the n ×
κ matrix formed by letting each element ai,j = ti[j].
For instance, Cols((0, 1, 1), (1, 1, 1)) is the sequence of
tuples ((0, 1), (1, 1), (1, 1)). Whenever convenient we also
use ColsSet(t1, . . . , tκ) for the set (instead of a sequence)
{(t1[1], . . . , tn[1]), . . . , (t1[κ], . . . , tn[κ])}.

A set of relations Γ is known as a constraint lan-
guage, or simply language. Given a finite language Γ we
let #tuples(Γ) = maxR∈Γ(#tuples(R)) and ar(Γ) =
maxR∈Γ(ar(R)). Note that #tuples(Γ) ≤ |D|ar(Γ) always
holds. A relation R is said to be column-irredundant if for
any two indexes i, j ≤ ar(R), there is a tuple t ∈ R
with t[i] 6= t[j]. A constraint language Γ is said to be
column-irredundant if all relations in Γ are column-irredundant.
Clearly, if Γ is not column-irredundant, it can easily be
transformed into a column-irredundant language resulting in a
CSP problem with equivalent complexity. Observe that if Γ is
a finite column-irredundant constraint language over D, then
ar(Γ) ≤ |D|#tuples(Γ) holds.

As a convention, we use the Greek letters κ and λ to
denote arities of relations and µ and ν for numbers of tuples in
relations. For functions we instead use Latin letters n and m
for arities and k and ` for size of domains. We denote tuples
in relations by t, and tuples in the domain of functions by u.

A. Total and Partial Clones

Let D ⊆ N. For n ∈ N and i ∈ {1, . . . , n}, we write πni for
the projection function defined by πni (x1, . . . , xi, . . . , xn) = xi
for all (x1, . . . , xn) ∈ Dn. We write ΠD for the set of all
projection functions over D ⊆ N, and Πp

D for the set of all
partial functions that are subfunctions of projections. If f is
an n-ary function and g1, . . . , gn are m-ary functions, then the
composition of f and g1, . . . , gn, denoted f◦(g1, . . . , gn), is the
m-ary function defined by (f ◦ (g1, . . . , gn))(x1, . . . , xm) =
f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)). Composition of par-
tial functions is defined in the same way but the result is only
defined when all involved function applications are defined. A
clone over D is then a set of functions C such that (1) C ⊇ ΠD

and (2) C is closed under composition. Similarly, a set of partial
functions C is a strong partial clone if (1) C ⊇ Πp

D and (2)
C is closed under composition. Note that such C contains all
subfunctions of its (partial or total) functions [9], hence the
term strong. For a set of total functions F and a set of partial
functions F ′ we let [F] be the smallest clone containing F

and [F ′]s be the smallest strong partial clone containing F ′.
The sets F and F ′ are said to be bases of [F] or [F ′]s. The
order of a clone or a strong partial clone is the cardinality of
its smallest base. In particular, we are interested in whether
this order is finite or infinite.

Example 1: For any Boolean projection function πni we
have that [{πni }] is the smallest element in the lattice of
Boolean clones, consisting only of projections. If we instead
let neg(0) = 1 and neg(1) = 0 then [{neg}] is the clone
consisting of compositions of unary negation and projection
functions. Observe that [{πni }] ⊂ [{neg}]. From Post’s classi-
fication of Boolean clones [8] we also know that [{neg}] is
minimal, in the sense that there is no Boolean clone C with
[{πni }] ⊂ C ⊂ [{neg}].

Clones and strong partial clones can also be characterized
by sets of relations. An n-ary function f : Dn → D (n ≥ 1)
is said to be a polymorphism of a κ-ary relation R ⊆ Dκ

if f(t1, . . . , tn) ∈ R for every sequence t1, . . . , tn ∈ R (pos-
sibly with repetitions), where f(t1, . . . , tn) denotes the tuple(
f(t1[1], . . . , tn[1]), . . . , f(t1[κ], . . . , tn[κ])

)
, i.e., f applied to

every element in Cols(t1, . . . , tn). Similarly, a partial function
f is said to be a partial polymorphism of R if f(t1, . . . , tn) ∈ R
for every sequence (t1, . . . , tn) of tuples of R such that all
components of f(t1, . . . , tn) are defined. In both cases R is
said to be invariant under f , and that f preserves R, and we let
Inv(F) denote the set of all relations that are invariant under
the set of (total or partial) functions F . Dually, for a set of
relations Γ we let Pol(Γ) denote the set of all polymorphisms
of Γ, and pPol(Γ) denote the set of all partial polymorphisms
of Γ. We then have the following Galois connections relating
the operators together.

Theorem 1 ([2], [3], [9]): Let Γ, Γ′ be constraint lan-
guages. Then Inv(Pol(Γ′)) ⊆ Inv(Pol(Γ)) ⇐⇒ Pol(Γ) ⊆
Pol(Γ′) and Inv(pPol(Γ′)) ⊆ Inv(pPol(Γ)) ⇐⇒ pPol(Γ) ⊆
pPol(Γ′).

Sets of the form Inv(Pol(Γ)) are usually referred to as
co-clones, and sets of the form Inv(pPol(Γ)) as weak partial
co-clones, or weak systems [11].

B. The Constraint Satisfaction Problem

Given D ⊆ N, the constraint satisfaction problem over
a constraint language Γ (CSP(Γ)) takes as input a set V
of variables and a set C of constraint applications of the
form R(x1, . . . , xar(R)), with R ∈ Γ and x1, . . . , xar(R) ∈ V .
The question is whether there is a function s : V → D
such that (s(x1), . . . , s(xar(R))) ∈ R for all R(x1, . . . , xar(R))
in C. For the Boolean domain, this problem is typically
denoted by SAT(Γ). Jeavons [4] proved that for any finite
constraint language Γ, the computational complexity of CSP(Γ)
is determined by Pol(Γ) up to polynomial-time reductions.
With this fact and Post’s classification of Boolean clones we
can rephrase Schaefer’s dichotomy theorem [10] for SAT as
follows: SAT(Γ) is NP-hard if and only if Pol(Γ) ⊆ [{neg}]
where neg(0) = 1 and neg(1) = 0. Jonsson et al. [5]
give a classification similar to Jeavons’, by showing that
if pPol(Γ) ⊆ pPol(∆) and CSP(Γ) is solvable in time
O(cn), then CSP(∆) is also solvable in time O(cn), with
n = |V |. Unfortunately, describing the partial polymorphisms
of finite languages is a very complex task since Lagerkvist

& Wahlström [6] proved that pPol(Γ) is of infinite order
whenever CSP(Γ) is NP-hard and Γ is a finite Boolean language
(assuming P6=NP).

III. BOUNDED BASES

In this section we give our first contribution, namely, for the
strong partial clone pPol(Γ) associated to any finite constraint
language Γ, we define a finite set of partial functions which
completely determines pPol(Γ). The construction of pPol(Γ)
from its bounded base will be investigated in Section IV. We
start with an investigation of how functions with small arities
characterize the set of all partial polymorphisms of Γ (of any
arity). Intuitively, if f has “high” arity, we will consider sets
of variables which have the same value in all the tuples over
which f is defined, and consider the contraction of f obtained
by removing such duplicates.

Definition 1 (redundant variable): Let g be an n-ary par-
tial function over arguments x1, . . . , xn. A variable xi is said
to be redundant with xj for g (j 6= i), if u[i] = u[j] for all
u ∈ domain(g).

If f is an n-ary function and σ is a permutation on [n], then
we denote by g ◦σ the function defined by g ◦σ(x1, . . . , xn) =
g(xσ(1), . . . , xσ(n)) for all x1, . . . , xn.

Definition 2 (contraction, stretching): Let g be an n-ary
partial function over arguments x1, . . . , xn. If there is a
permutation σ of [n] and a function γ from {m+ 1, . . . , n} to
[m] such that for all i ∈ {m + 1, . . . , n}, xi is redundant
with xγ(i) for g ◦ σ, then the m-contraction of g with
respect to σ and γ is the m-ary function g′ defined by
g′(x1, . . . , xm) = g ◦ σ(x1, . . . , xm, xγ(m+1), . . . , xγ(n)). In
this case g is also said to be an n-stretching of g′ with respect
to σ and γ.

If g′ is the m-contraction of g with respect to some permutation
σ and function γ, we simply say that g′ is an m-contraction
of g (and that g is an n-stretching of g′). If an n-ary function
f has no m-contractions for some m < n, then we say that
f is uncontractable to arity m. For instance, if f is an n-ary
function defined only on tuples of Hamming weight 1, then it
is uncontractable to arity n− 1 since for all variables xi 6= xj ,
there is a tuple in the domain of f which assigns 1 to xi
and 0 to xj and hence, xi is not redundant with xj for f .
Note that if f is uncontractable to arity m, then it is a fortiori
uncontractable to any arity m′ ≤ m.

Given a set of partial functions F , we write Sn(F) for the
set of all n-ary partial functions that are an n-stretching of some
f ∈ F , and Cm(F) for the set of all m-ary partial functions
that are an m-contraction of some f ∈ F . For m ≤ n we let
Umn be the set of all n-ary partial functions uncontractable to
arity m. The following is a simple but essential property. We
omit the proof since it easily follows from the definitions.

Lemma 1: Let g′ be an m-contraction of an n-ary partial
function g. Then [{g′}]s = [{g}]s holds.

The notions of contraction and stretching will allow us to
bound the arities of the functions needed to characterize a
strong partial clone. Dually, we now introduce the notion of
a k-restriction, which will allow us to bound the size of the
domain of these functions.

Definition 3 (k-restriction): Let f be an n-ary partial func-
tion, and k be an integer with |domain(f)| ≥ k. An n-ary
function g is said to be a k-restriction of f if g is a subfunction
of f and |domain(g)| = k holds.

For a partial function f and an integer k, we write
Rk(f) for the set of all functions that are a k-restriction
of f if |domain(f)| ≥ k holds, and otherwise we define
Rk(f) = ∅. If F is a set of partial functions, then Rk(F)
denotes

⋃
f∈F Rk(f). The following lemma, which relates

partial polymorphisms with their restrictions and contractions,
is the cornerstone of our study.

Lemma 2: Let R be a relation, let κ ≥ ar(R) and n >
µ ≥ #tuples(R), and let f be an n-ary partial function. Then
f ∈ pPol({R}) holds if and only if Cµ(Rκ′(f)) ⊆ pPol({R})
holds for all κ′ ≤ κ.

Proof: First assume f ∈ pPol({R}). Then g ∈
pPol({R}) holds for all subfunctions g of f , and all µ-
contractions g′ of such g’s are in pPol({R}) by Lemma 1
and Theorem 1. For the other direction, towards contra-
diction assume f /∈ pPol({R}). Then there is a se-
quence of tuples t1, . . . , tn ∈ R with f(t1, . . . , tn) =
(f(t1[1], . . . , tn[1]), . . . , f(t1[ar(R)], . . . , tn[ar(R)])) /∈ R.
Note that at least n − µ of these tuples must be repeated
since we assume n > µ ≥ #tuples(R). Let λ ≤ ar(R) ≤ κ
be the number of distinct tuples in Cols(t1, . . . , tn), and let
g be the λ-restriction g of f defined only on these tuples.
Since all but at most µ tuples are repeated in t1, . . . , tn there
is at least one µ-contraction g′ of g with g′(ti1 , . . . , tiµ) =
g(t1, . . . , tn) = f(t1, . . . , tn) /∈ R. This contradicts that all
µ-contractions of all λ-restrictions of f are in pPol({R}).

We immediately get the following generalization to con-
straint languages (instead of single relations). The proof follows
easily by applying Lemma 2.

Corollary 1: Let Γ be a finite constraint language, let κ ≥
ar(Γ), n > µ ≥ #tuples(Γ), and let f be an n-ary partial
function. Then f ∈ pPol(Γ) if and only if Cµ(Rκ′(f)) ⊆
pPol(Γ) for all κ′ ≤ κ.

Corollary 1 implies that the partial polymorphisms of a finite
constraint language can be derived from those with bounded
arity and domain (with bounds depending on the language).
We now define these to constitute the bounded base of the
constraint language.

Definition 4 (bounded base): Let Γ be a finite constraint
language with κ = ar(Γ) and µ = #tuples(Γ). The bounded
base of Γ, B(Γ), is defined to be

B(Γ) = {f | f ∈ pPol(Γ), ar(f) ≤ µ, |domain(f)| ≤ κ}.

The following proposition shows that representing languages
by their bounded bases suffices to distinguish languages with
different expressivity. The proof is straightforward and omitted
due to space constraints.

Proposition 1: Let Γ,Γ′ be finite column-irredundant con-
straint languages with B(Γ) = B(Γ′). Then pPol(Γ) =
pPol(Γ′) holds.

It may be the case that two different languages generate the
same weak partial co-clone but have different bounded bases

because their arities or numbers of tuples are different, but as
we show in Section IV, we can still compare their expressivity
using bounded bases.

IV. CLOSURE OF BOUNDED BASES

In this section we show how, for a finite constraint language
Γ, the whole strong partial clone pPol(Γ) can be recovered
from the functions in the finite base B(Γ), which is done using
a notion of closure stronger than functional composition. With
this we investigate how bounded bases can be used to compare
the expressivity of finite constraint languages. We first need
some preliminary definitions to cope with the fact that the
bounded base is a finite set.

Definition 5 (covering): Let G be a set of n-ary partial
functions, and let k ≥ 1. Then G is said to be k-covering if
for all U ⊆ ∪g∈Gdomain(g) satisfying |U | ≤ k, there is a
function g ∈ G with domain(g) = U .

We say that a set of n-ary partial functions G is consistent
if for all g, g′ ∈ G and all (x1, . . . , xn) ∈ domain(g) ∩
domain(g′), it holds that g(x1, . . . , xn) = g′(x1, . . . , xn).
Consistency ensures that g can be chosen arbitrarily in the
next definition.

Definition 6 (union): Let G be a consistent set of n-ary
partial functions. The union of G, written u(G), is the n-ary
partial function defined by u(G)(x1, . . . , xn) = g(x1, . . . , xn)
for all (x1, . . . , xn) such that some g ∈ G is defined on
(x1, . . . , xn), and undefined for other tuples.

Given a function f and k ≥ 1, we define the k-covering of
f as the set of functions Gk(f) =

⋃k
k′=1Rk′(f). Observe that

u(Gk(f)) = f holds. Next recall that Sn(F) denotes the set
of all functions that are an n-stretching of some function in
F , and that Umn denotes the set of all n-ary partial functions
that have no m-contractions. We are now ready to define our
notion of closure.

Definition 7 (closure): Let F be a finite set of partial
functions, and let m = ar(F). Let k ≥ 1, n ≥ 1 be
integers. The k, n-closure of F , written Clk,n(F), is the set
of n-ary functions defined by Clk,n(F) = {u(G) | G ⊆
F, ar(G) = n, G is k-covering and consistent} for n ≤ m
and Clk,n(F) = {u(G) | G ⊆ Sn(F) ∪ Umn and G is k-
covering and consistent} for n > m. The k-closure of F is
defined to be Clk(F) =

⋃∞
n=1 Clk,n(F).

Example 2: As a simple example let R0 = {(0)}. Note
that pPol({R0}) = [{x1 ∧ x2, x1 ⊕ x2}]s [7]. The bounded
base B({R0}) consists of all unary f ∈ pPol({R0}) satisfying
|domain(f)| = 1. Thus B({R0}) = {f1, f2, f3} where f1,
f2, f3 are defined as f1(0) = 0, f2(1) = 1, f3(1) = 0, and
undefined otherwise. To exemplify 1,2-closure we see that x1∧
x2 = u(G)(x1, x2) where G = {g1, g2, g3, g4} and g1(0, 0) =
0, g2(0, 1) = 0, g3(1, 0) = 0, g4(1, 1) = 1, and undefined for
all other values. Since g1 ∈ S2({f1}) , g4 ∈ S2({f2}), and
g2, g3 ∈ U1

2 , it follows x1 ∧ x2 ∈ Cl1,2({f1, f2, f3}).

Note that we slightly abuse the term “closure”, since
the k-closure operator fails to satisfy all properties normally
associated with closure operators.

With this in hand, we can now show that our notion of
closure captures exactly what we want, namely, that the ar(Γ)-
closure of the bounded base of Γ is exactly pPol(Γ).

Theorem 2: Let Γ be a finite constraint language. Then
Clar(Γ)(B(Γ)) = pPol(Γ) holds.

Proof: Write κ = ar(Γ) and µ = #tuples(Γ), and first
let f ∈ Clκ(B(Γ)) be an n-ary partial function. For n ≤ µ,
by definition of closure the κ-covering Gκ(f) of f satisfies
Gκ(f) ⊆ B(Γ) ⊆ pPol(Γ). Since all relations in Γ are at most
κ-ary, any application of f to tuples from such a relation is in
fact an application of some f ′ in the κ-covering of f , hence f
preserves Γ. Now for n > µ we have by definition of closure
that for all κ′ ≤ κ and all κ′-restrictions g of f , either g is
uncontractable to arity µ or g is the stretching of a function
g′ in B(Γ) ⊆ pPol(Γ). In the latter case all µ-contractions of
g are in pPol(Γ) by Lemma 1, and this also holds vacuously
in the former case. Hence we get f ∈ pPol(Γ) by Corollary 1.
Conversely, let f ∈ pPol(Γ) be an n-ary function. For n ≤ µ,
by definition the κ-covering Gκ(f) of f consists of functions
of arity n that are defined on at most κ tuples, and which are
in pPol(Γ) as subfunctions of f . It follows that Gκ(f) ⊆ B(Γ)
and hence, f = u(Gκ(f)) is in Clκ(B(Γ)). Finally, for n > µ,
let g be a function in the κ-covering Gκ(f) of f . We get
Cµ(g) ⊆ pPol(Γ) from Corollary 1, and hence either g ∈ Uµn
holds or g has at least one µ-contraction g′, which is in pPol(Γ)
and hence in B(Γ). In the latter case g is a stretching of g′, and
finally, Gκ(f) ⊆ Sn(B(Γ)) ∪ Uµn , which concludes the proof.

To exemplify this result, let R0 and f1, f2, f3 be defined
as in Example 2. From Theorem 2 we get Cl1({f1, f2, f3}) =
pPol({R0}), i.e., the set of all total or partial functions that
are 0-reproducing. The proof of Theorem 2 also makes it clear
why we need the sets Uµn of uncontractable functions.

V. DETERMINING BOUNDED BASES OF BOOLEAN
CONSTRAINT LANGUAGES

We now turn to the problem of determining bounded
bases of Boolean constraint languages. We start with a
general construction for retrieving the partial polymorphisms
of the language obtained from another one by allowing some
arguments to be negated in constraint applications, and then
determine bounded bases for two of the most studied languages
corresponding to NP-hard SAT problems, namely monotone
1-in-κ-SAT and κ-SAT.

A. Sign Patterns

It is natural to ask how the complexity of CSP(Γ) is
influenced by negated arguments in constraint applications. To
handle this we extend Γ by additional relations, representing
the cases where one or more arguments are negated. Formally,
if R is a κ-ary Boolean relation and s1, . . . , sκ ∈ {+,−}, then
we let R(s1,...,sκ) = {(xs11 , . . . , x

sκ
κ) | (x1, . . . , xκ) ∈ R}, with

x+
i = xi and x−i = xi. The tuple (s1, . . . , sκ) is called a sign

pattern for R. As a shorthand we write R = R(−,...,−). For
example, R(+,−,−)

1/3 is {(0, 1, 0), (0, 0, 1), (1, 1, 1)} and R1/3

is {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Interestingly, it is possible to
describe pPol({R}) and pPol({R,R}) in terms of pPol({R}).
For an n-ary Boolean partial function f , let the dual fd be
defined by fd(u) = f(u) for all u ∈ domain(f).

Proposition 2: Let R be Boolean relation. Then
pPol({R}) = {fd | f ∈ pPol({R})} and
pPol({R,R}) = {f | f, fd ∈ pPol({R})} hold.

The proof is not complicated and therefore omitted. The
cases when one or more, but not all, arguments are negated
are not as straightforward, and we need a few additional
definitions. First, call a partial function f self-dual if for all
u ∈ domain(f) we have ū ∈ domain(f) and f(ū) = f(u).
Second, call a language Γ closed under sign patterns if
for all R ∈ Γ and s1, . . . , sar(R) ∈ {+,−}, the relation
R(s1,...,sar(R)) is also in Γ. Finally, call Γ closed under fixing
arguments if for all R ∈ Γ, 1 ≤ i ≤ ar(R), c ∈ {0, 1},
the relation Rxi←c = {(x1, . . . , xi−1, c, xi+1, . . . , xar(R)) |
(x1, . . . , xi−1, xi, xi+1, . . . , xar(R)) ∈ R} is in Γ. Recall that
a function is c-reproducing, c ∈ {0, 1}, if it returns c when all
arguments are c.

Theorem 3: Let R be a Boolean relation, Γ be the
closure of {R} under sign patterns, and Γ′ be the closure
of Γ under fixing arguments. If Pol(Γ) = [Π{0,1}]
then pPol(Γ′) = {f ′ | f ′ is a subfunction of some f ∈
pPol({R}), f is 0-reproducing, 1-reproducing, and self-dual}.

The proof is omitted due to space constraints. Proposition 2
and Theorem 3 provide sufficient conditions for when it is
possible to describe pPol(Γ) through pPol({R}) if Γ is a sign
pattern expansion of R. Naturally this also holds for B(Γ),
which means that bounded bases for these languages can be
expressed in a particularly simple form.

B. 1-in-κ-SAT

In this section we determine the bounded base of R1/κ =
{(x1, . . . , xκ) | x1, . . . , xκ ∈ {0, 1},Σκi=1xi = 1}. First note
that #tuples(R1/κ) = κ, and that CSP({R1/κ}) can be seen as
an alternative formulation of the monotone 1-in-κ-SAT problem,
hence it is NP-complete for every κ ≥ 3.

We give a general characterization of the functions in the
bounded base B({R1/κ}). For integers λ, κ′ and a set of κ′-
ary Boolean tuples U satisfying |U | = λ, we say that U is
an exact cover of {1, . . . , κ′} if for all i = 1, . . . , κ′, there
is a unique u ∈ U with u[i] = 1. For instance, for λ = 2
and κ′ = 3, the set U = {(0, 1, 1), (1, 0, 0)} is an exact
cover of {1, . . . , 3}, and for λ = 4 and κ′ = 3, the set
U = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)} is an exact cover
of {1, . . . , 3}. Observe that U is an exact cover of {1, . . . , κ′}
if and only if U \ {~0} and U ∪ {~0} are exact covers, and that
the size λ = |U | of an exact cover U of {1, . . . , κ′} satisfies
either λ ≤ κ′+ 1 or λ ≤ κ′, depending on whether U contains
~0. In the forthcoming proposition we make use of the following
two lemmas, which we state without proof.

Lemma 3: Let κ ≥ κ′ ≥ 1. If U ⊆ {0, 1}κ′
is

an exact cover of {1, . . . , κ′} with |U | = κ, then U =
ColsSet(t1, . . . , tκ′) for some t1, . . . , tκ′ ∈ R1/κ.

Lemma 4: Let κ′ ≥ 1. Then U ⊆ {0, 1}κ′
is an exact

cover of {1, . . . , κ′} with (~0) ∈ U if and only if U =
ColsSet(t1, . . . , tκ′) for some t1, . . . , tκ′ ∈ R1/κ with κ > κ′.

Proposition 3: Let κ ≥ 3. Then the bounded base of R1/κ

is the set of all functions f with κ′ = ar(f) ≤ κ and defined
on at most κ tuples, that satisfy one of the following:

1) for all exact covers U of {1, . . . , κ′} contained in
domain(f) and with ~0 ∈ U or |U | = κ, f restricted
to U is a projection, or

2) ~0 ∈ domain(f), |domain(f)| = κ, domain(f)
is an exact cover of {1, . . . , κ′}, f(~0) = 1,
and f(x1, . . . , xκ′) = 0 for all (x1, . . . , xκ′) ∈
domain(f) \ {~0}.

Proof: Let f be a function in B(R1/κ). By definition of
a bounded base, from ar(R1/κ) = #tuples(R1/κ) = κ we
get ar(f), |domain(f)| ≤ κ. We now distinguish two cases
for the tuple ~0. First assume ~0 /∈ domain(f) or f(~0) = 0,
and let U ⊆ domain(f) be an exact cover of {1, . . . , κ′} with
(~0) ∈ U or |U | = κ. Let T be the sequence of tuples from R1/κ

satisfying ColsSet(T) = U . For |U | = κ and ~0 /∈ U , such T
exists by Lemma 3, and it is easily seen that it has to contain
each tuple of R1/κ exactly once. For the case when ~0 ∈ U such
T exists by Lemma 4 and |domain(f)| ≤ κ. Now because
f preserves R1/κ by assumption, f applied columnwise to T
must yield a tuple containing exactly one 1. Hence for |U | = κ
and ~0 /∈ U it is clear that f restricted to U is a projection,
and for ~0 ∈ U , using f(~0) = 0 we get that f(x1, . . . , xκ′)
must be 1 for some (x1, . . . , xκ′) ∈ U \ {~0}, hence again that
f restricted to U is a projection. Finally, f is in Case (1).
Now assume f(~0) = 1 and that f is not in Case (1). We
first show that |domain(f)| = κ and domain(f) is an exact
cover of {1, . . . , κ′}. We first claim that domain(f) does not
contain an exact cover of {1, . . . , κ′} of size less than κ− 1.
Indeed, otherwise it follows from Lemma 4 that there exists
a sequence T = (ti1 , . . . , tiκ′) of tuples from R1/κ satisfying
ColsSet(T) = U ∪ {~0} and such that ~0 occurs at least twice
a column. Hence f applied columnwise to T yields a tuple
containing at least two 1’s and it follows that f does not
preserve R1/κ, a contradiction. With this in hand, since f is
not in Case (1), domain(f) must contain an exact cover of
{1, . . . , κ′}, hence one of size κ − 1 or κ, say U . But for
|U | = κ − 1, U cannot contain ~0, since otherwise U \ {~0}
would be a cover of size less than κ− 1, which we have just
shown to be impossible. Now since we have ~0 ∈ domain(f)
we get that U ∪ {~0} is an exact cover of size κ, as desired.
Hence |domain(f)| = κ and domain(f) is an exact cover of
{1, . . . , κ′}. Letting T be a sequence of tuples from R1/κ with
ColsSet(T) = domain(f), we have that f applied columnwise
to T must yield a tuple containing exactly one 1. From f(~0) = 1
we conclude that f is constantly 0 on domain(f)\{~0}. Finally,
f is in Case (2).

We now show the reverse inclusion. Let T be a sequence of
κ′ tuples from R1/κ such that f is defined on ColsSet(T). We
show that applying f columnwise to T yields a tuple in R1/κ,
which is enough to show the claim. Since T is a sequence
of tuples from R1/κ we have that ColsSet(T) is an exact
cover of {1, . . . , κ′}, which either contains ~0 or is of size κ
(or both). Hence if f is in Case (1), then its restriction to U
has to be a projection. Now, if f is in Case (2), ~0 cannot be
repeated in Cols(T) since otherwise domain(f)\{~0} would be
a proper superset of ColsSet(T) \ {0} (by |domain(f)| = κ)
and hence, could not be an exact cover of {1, . . . , κ′}. On
the other hand, by definition of R1/κ, no other column can
be repeated in Cols(T), hence from |domain(f)| = κ we
conclude ColsSet(T) = domain(f). From the assumption it

follows that f applied columnwise to T yields a tuple containing
exactly one 1, as desired.

We emphasize that a similar characterization could be given for
the whole set pPol({R1/k}), but using bounded bases makes
the characterization much simpler. For instance, Case (1) in the
proposition encompasses the case when f is a subfunction of a
projection, but also the case when domain(f) does not contain
an exact cover of {1, . . . , κ′}. In this latter case f can take
arbitrary values, since there are no t1, . . . , tκ′ ∈ R1/κ such that
f(t1, . . . , tκ′) is defined. It also encompasses (through κ, κ-
closure) the general case of functions f (with |domain(f)| > κ)
whose domain contains several exact covers over which f is
a projection, and other tuples which do not participate in any
exact cover, and over which the value of f is unconstrained.

C. κ-SAT

Let ΓκSAT be the constraint language that for every t ∈
{0, 1}κ contains the κ-ary relation {0, 1}κ\{t}. In other words
each relation corresponds to a clause of the form (`1∨ . . .∨ `κ)
where `i = xi or `i = xi. The following proposition establishes
that the bounded base of ΓκSAT is particularly simple, since it
only consists of subfunctions of projections.

Proposition 4: Let κ ≥ 3. Then the bounded base of κ-
SAT is given by B(ΓκSAT) = {f | |domain(f)| ≤ κ, ar(f) ≤
2κ − 1 and ∃i, f is a subfunction of πar(f)

i }.
Proof: Since a partial projection function trivially preserves

all relations it is clear that every partial projection f with
|domain(f)| ≤ κ and ar(f) ≤ 2κ − 1 is included in B(ΓκSAT).
For the other direction let f ∈ B(ΓκSAT). By definition of a
bounded base we have |domain(f)| ≤ ar(ΓκSAT) = κ and
ar(f) ≤ #tuples(ΓκSAT) = 2κ − 1. Now assume towards
contradiction that f is not a subfunction of a projection. Write
κ′ ≤ κ for |domain(f)| and let u1, . . . , uκ′ be the tuples in
domain(f). Finally, for i = 1, . . . , κ′ let `i be xi if f(ui)
is 0, and xi if f(ui) is 1, and let Rf be the κ′-ary relation
Rf defined by the clause (`1 ∨ · · · ∨ `κ′) Now since fi is
not a subfunction of a projection and u1, . . . , uκ′ enumerate
domain(f), the tuple (f(u1), . . . , f(uκ′)) is different from the
tuple (u1[i], . . . , uκ′ [i]) for all i = 1, . . . , ar(f). Moreover, by
construction of Rf , (f(u1), . . . , f(uκ′)) is not in Rf . Since
Rf is defined by a clause it contains all tuples but one,
and it follows that it contains the tuple (u1[i], . . . , uκ′ [i]) for
all i = 1, . . . , ar(f), but not the tuple (f(u1), . . . , f(uκ′)).
Hence Rf is not preserved by f . On the other hand we have
Rf (x1, . . . , xκ′) = R(x1, . . . , xκ′ , xκ′ , . . . , xκ′) for an appro-
priately chosen R ∈ ΓκSAT, hence f ∈ B(ΓκSAT) ⊆ pPol(ΓκSAT)
should be a polymorphism of Rf , a contradiction.

Again, using bounded bases makes the characterization
much simpler, since pPol(ΓκSAT) includes functions with
|domain(f)| = λ > κ which are not partial projections, as
made clear in the following proposition. For a ground set V , a
hypergraph H ⊆ 2V is a set system over V , and a set S ⊆ V
is a hitting set of H if for every E ∈ H we have E ∩ S 6= ∅.

Proposition 5: Let f be an n-ary partial function that is
not a partial projection, and let domain(f) = {u1, . . . , uk}.
Let V = {v1, . . . , vk}, and define H = {E1, . . . , En} ⊆ 2V

by: vi ∈ Ej if and only if ui[j] 6= f(ui). Then f ∈ pPol(ΓκSAT)
if and only if every hitting set of H has size at least κ+ 1.

Proof: Observe ∅ /∈ H, since f is not a partial projection.
On the one hand, assume that H has a hitting set S of size κ
or less. Consider the subfunction f ′ of f with domain(f ′) =
{ui | vi ∈ S}. By construction, f ′ is not a partial projection;
thus f ′ has a contraction g defined on at most κ tuples and
arity at most 2κ − 1. By Proposition 4, g is not a partial
polymorphism of κ-SAT, hence neither is f . On the other hand,
assume that all hitting sets of H have size at least κ+ 1. Let
B be the bounded base for κ-SAT; by Theorem 2, we must
show f ∈ Clκ,n(B). Let f ′ be a restriction of f on at most κ
tuples, and let S = {vi | ui ∈ domain(f ′)}. Then S is not a
hitting set of H, hence for some Ej ∈ H we have S ∩Ej = ∅,
hence f ′ is a subfunction of πnj . Now we have a few simple
cases. If n ≤ 2κ − 1, then f ′ ∈ B; if n > 2κ − 1 but f ′ has a
contraction of arity at most 2κ − 1, then f ′ is a stretching of
a function in B; otherwise f ′ ∈ U2κ−1

n by definition of Umn .
In each case, we see that we can construct a κ-covering of f
from B(ΓκSAT), hence f ∈ Clκ,n(B) and we are done.

VI. CONCLUDING REMARKS

We have proposed the new notion of a bounded base which,
together with a closure operator, allows one to characterize the
partial polymorphisms of a finite constraint language from a
finite set of functions. This notion gives simple characterizations
of the partial polymorphisms of natural and well-studied lan-
guages. Continuing this investigation and determining bounded
bases for more constraint languages is a natural starting point,
in order to explain the complexity differences between NP-hard
CSP problems with the help of partial polymorphisms.

ACKNOWLEDGEMENTS

Bruno Zanuttini is supported by ANR Project ANR-10-
BLAN-0210.

REFERENCES

[1] V. B. Alekseev and A. A. Voronenko. On some closed classes in partial
two-valued logic. Discrete Mathematics and Applications, 4(5):401–419,
1994.

[2] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov.
Galois theory for Post algebras. I. Cybernetics, 5:243–252, 1969.

[3] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov.
Galois theory for Post algebras. II. Cybernetics, 5:531–539, 1969.

[4] P. Jeavons. On the algebraic structure of combinatorial problems.
Theoretical Computer Science, 200:185–204, 1998.

[5] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Complexity of
SAT problems, clone theory and the exponential time hypothesis. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA-2013), pages 1264–1277, 2013.

[6] V. Lagerkist and M. Wahlström. Polynomially closed co-clones. In
Proceedings of the 44th International Symposium on Multiple-Valued
Logic (ISMVL-2014), pages 85 – 90, 2014.

[7] V. Lagerkvist. Weak bases of Boolean co-clones. Information Processing
Letters, 114(9):462–468, 2014.

[8] E. Post. The two-valued iterative systems of mathematical logic. Annals
of Mathematical Studies, 5:1–122, 1941.

[9] B.A. Romov. The algebras of partial functions and their invariants.
Cybernetics, 17(2):157–167, 1981.

[10] T. Schaefer. The complexity of satisfiability problems. In Proceedings of
the 10th Annual ACM Symposium on Theory Of Computing (STOC-78),
pages 216–226. ACM Press, 1978.

[11] I. Schnoor. The weak base method for constraint satisfaction. PhD thesis,
Gottfried Wilhelm Leibniz Universität, Hannover, Germany, 2008.

