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Abstract

A strong partial clone is a set of partial operations closed under
composition and containing all partial projections. Let X be the set
of all Boolean strong partial clones whose total operations are the
projections. This set is of practical interest since it induces a partial
order on the complexity of NP-complete constraint satisfaction problems.
In this paper we study X from the algebraic point of view, and prove
that there exists two intervals in X , corresponding to natural constraint
satisfaction problems, such that one is at least countably infinite and
the other has the cardinality of the continuum.

1 Introduction
A k-ary polymorphism of a relation R is a homomorphism from the kth power
of R to R. It is well-known that the set of all polymorphisms of a set of
relations Γ form a clone, that is a set of operations closed under composition
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1 INTRODUCTION

and containing all projections. The notion of a clone easily generalizes to
partial operations, and it is known that the set of all partial polymorphisms
of a set of relations Γ, pPol(Γ), form a strong partial clone, which is a set
of partial operations closed under composition and containing all partial
projections. Clone theory is not only a well-studied topic in universal algebra,
but has many practical applications in computational complexity. One
such example is the constraint satisfaction problem over a set of relations
Γ (CSP(Γ)), which can be viewed as the problem of deciding whether an
existentially quantified conjunctive formula over Γ admits at least one model.
For example, the NP-complete problem 1-in-3-SAT can be seen as a CSP
problem over the ternary relation R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. It has
been proven that the polymorphisms of Γ determine the complexity of the
CSP problem over Γ up to polynomial-time many-one reductions [5], while the
partial polymorphisms of Γ can be used to study the complexity of the CSP
problem over Γ with respect to stronger notions of reductions [6, 14]. More
specifically, Jonsson et al. [6] proved that if pPol(Γ) ⊆ pPol(∆) then CSP(∆)
is solvable in O(cn) time whenever CSP(Γ) is solvable in O(cn) time (if Γ and
∆ are both finite sets of relations). Hence, the partial polymorphisms of finite
sets of relations induce a partial order on the complexity of NP-complete
CSPs. Moreover, if Γ is a Boolean set of relations such that each operation
in Pol(Γ) is idempotent, then CSP(Γ) is NP-complete if and only if Pol(Γ)
consists only of projections [11, 13]. Put together, this implies that the
set of strong partial clones containing only projections as total operations
is a particularly interesting object of study, due to its relationship with
NP-complete CSP problems. With these observation Jonsson et al. [6] then
proved that there exists a relation R 6=6=6=01

1/3 such that (1) the CSP problem over
R 6=6=6=01

1/3 is NP-complete but (2) there does not exist any NP-complete Boolean
CSP problem with a strictly lower worst-case time-complexity. It is worth
noting that the relation R 6=6=6=01

1/3 is also interesting from a purely algebraic
point of view since it is known that pPol(R 6=6=6=01

1/3 ) is the largest set of Boolean
partial operations which does not contain any total operations (except the
projections) [6, 14]. Jonsson et al. [6] then conjectured that the set of strong
partial clones between pPol(R1/3) and pPol(R 6=6=6=01

1/3 ) had a particularly simple
structure consisting of only five elements. This conjecture turned out to be
incorrect, and Lagerkvist & Roy [8] proved that the cardinality of this set is
at least countably infinite.

In this paper we continue the investigation of pPol(R 6=6=6=01
1/3 ), with a partic-

ular focus on the strong partial clones between pPol(R1/3) and pPol(R 6=6=6=01
1/3 ).

After having introduced the basic notions in Section 2, we begin (in Sec-
tion 3.2) by proving that there exists at least countably many strong partial
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clones between pPol(R1/3) and pPol(R01
1/3), where R01

1/3 = R1/3 × {(0)} ×
{(1)}. To prove this, we find a class of relations σk with the property
that pPol(R1/3) ⊂ pPol({σk, R01

1/3}) ⊂ pPol(R01
1/3) and pPol({σk, R01

1/3}) ⊂
pPol({σk+1, R01

1/3}), for each k ≥ 4. In Section 3.3 we study the strong
partial clones between pPol(R01

1/3) and pPol(R 6=6=6=01
1/3 ), and prove that this

set is of continuum cardinality, and therefore strengthen the results from
Lagerkvist & Roy [8].

2 Preliminaries
In this section we introduce the basic terminology that will be used throughout
the paper.

2.1 Operations and Relations

Let X be a finite and non-empty set of values. Without loss of generality we
may assume that X ⊂ N. In the particular case when |X| = 2 we assume that
X = {0, 1} and denote this set by B. A k-ary operation over X, k ≥ 1, is a
function Xk → X. We write OPX for the set consisting of all operations over
the set X. We will sometimes denote Boolean operations by their defining
logical formulas, and for example write x for the operation 1 − x, and we
use x⊕ y to denote addition modulo 2. A k-ary partial operation over X is a
map D → X where D ⊆ Xk, and we write PARX for the set of all partial
operations over X. The set D is called the domain of the partial operation
f and we let dom(f) = D. For both total and partial operations we let
ar(f) denote the arity of f . If f and g are two k-ary partial operations g is
said to be a suboperation of f if dom(g) ⊆ dom(f) and f(x) = g(x) for all
x ∈ dom(g). We write f|D′ for the suboperation obtained by restricting f to
a set D′ ⊆ dom(f).

A k-ary relation over X is a subset of Xk. The set of all relations over X
is denoted by RelX . For R1, R2 ∈ RelX of arity n and m, we let R1 ×R2 =
{(x1, . . . , xn+m) | (x1, . . . , xn) ∈ R1, (xn+1, . . . , xn+m) ∈ R2} denote their
Cartesian product. Given a k-ary tuple t = (x1, . . . , xk) ∈ Xk we let t[i] = xi
denote the ith component of t, and we let Proji1,...,ik′ (t) = (xi1 , . . . , xik′ ), 1 ≤
k′ ≤ k, denote the projection of t on the coordinates i1, . . . , ik′ ∈ {1, . . . , k}.
Similarly, if R is a k-ary relation we let Proji1,...,ik′ (R) = {Proji1,...,ik′ (t) |
t ∈ R}. As a notational shorthand we let ~0k and ~1k denote the k-ary tuples
(0, . . . , 0) and (1, . . . , 1).

It will be convenient to view a sequence of tuples t1, . . . , tn from a k-ary
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relation R as a k × n matrix where the ith column consists of the tuple ti.
We let

Rows(t1, . . . , tn) = ((t1[1], . . . , tn[1]), . . . , (tn[k], . . . , tn[k]))

denote the tuple consisting of all rows of this matrix. When the exact
ordering is not important we instead write

RowSet(t1, . . . , tn) = {(t1[1], . . . , tn[1]), . . . , (tn[k], . . . , tn[k])}

to denote the set consisting of all rows. For example, if t1 = (0, 0, 0), t2 =
(0, 1, 0), and t3 = (1, 1, 0) then

Rows(t1, t2, t3) = ((0, 0, 1), (0, 1, 1), (0, 0, 1))

while
RowSet(t1, t2, t3) = {(0, 0, 1), (0, 1, 1)}.

We will sometimes represent a relation as the set of models of a first-order
formula, and if Γ is a set of relations we use the notation R(x1, . . . , xk) ≡
ϕ(x1, . . . , xk), where ϕ(x1, . . . , xk) is a first-order formula over Γ with the
free variables x1, . . . , xk, to define the relation

R = {(f(x1), . . . , f(xk)) | f is a model of ϕ(x1, . . . , xk)}.

2.2 Clones

Let ΠX be the set of all projections over X ⊆ N, i.e. all operations πni
of the form πni (x1, . . . , xi, . . . , xn) = xi. A clone over X is a set of op-
erations C ⊆ OPX such that (1) C ⊇ ΠX and (2) C is closed under
functional composition. More formally, the latter condition means that
if f, g1, . . . , gm ∈ C, where f has arity m and the functions g1, . . . , gm all
have the same arity n, then the composition f ◦ (g1, . . . , gm)(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) for all x1, . . . , xn ∈ X, is included in C.
For a set of total operations F we let [F ] be the smallest clone containing F ,
and call F a basis of [F ]. A clone C is said to be finitely generated if there
exists a finite set F such that [F ] = C, and is said to be infinitely generated
otherwise. Every Boolean clone is known to be finitely generated, and the
lattice of Boolean clones, Post’s lattice, is countably infinite [11].
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2.3 Strong Partial Clones

A partial projection is a suboperation of a projection. Let Πp
X be the set

of all partial projections over a set X. A set of partial operations C is a
strong partial clone if (1) C ⊇ Πp

X and (2) C is closed under composition
of partial operations. It is well-known that this definition implies that C is
closed under taking suboperations [12]. Composition of partial operations is
defined analogously to the total case, i.e., if f, g1, . . . , gm ∈ PARX , ar(f) =
m, and ar(g1) = . . . = ar(gm) = n, then f ◦ (g1, . . . , gm)(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), and the resulting function is defined
for every tuple

(x1, . . . , xn) ∈
m⋂
i=1

dom(gi)

such that
(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ dom(f).

For a set of partial operations F we let [F ]s be the smallest strong partial
clone containing F , and similar to the total case the set F is said to be a
basis of [F ]s. A strong partial clone C is said to be finitely generated if there
exists a finite set of partial operations F such that [F ]s = C, and is infinitely
generated otherwise.

2.4 Galois Connections

It is known that clones and strong partial clones admit relational representa-
tions. As a shorthand we let

f(t1, . . . , tn) = (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k]))

and say that a relation R is closed or invariant under f if f(t1, . . . , tn) ∈ R
for every sequence t1, . . . , tn ∈ R. We also say that f is a polymorphism
of R and let Pol(R) denote the set of all polymorphisms of the relation
R. A relation R with Pol(R) = ΠX is said to be strongly rigid. Similarly,
for a set of relations Γ we let Pol(Γ) =

⋂
R∈Γ Pol(R), and it is readily

verified that f is a polymorphism of Γ if it preserves every relation in
Γ. These notions can be generalized to partial operations, and we say
that the n-ary partial operation f is a partial polymorphism of a k-ary
relation R if f(t1, . . . , tn) ∈ R for every sequence t1, . . . , tn ∈ R such that
(t1[1], . . . , tn[1]), . . . , (t1[k], . . . , tn[k]) ∈ dom(f). We then let pPol(R) denote
the set of all partial polymorphisms of the relation R, and let pPol(Γ) denote
the set of all partial polymorphisms of the set of relations Γ. It is not difficult
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to verify that sets of the form Pol(Γ) and pPol(Γ) form clones and strong
partial clones, respectively. Moreover, if we let Inv(F ) be the set of all
invariant relations under the set of (partial) operations F , it is well-known
(cf. Chapter 2.9 in Lau [10]) that Pol(·) and Inv(·) give rise to a Galois
connection.

Theorem 1 ([1, 2, 4, 12]). Let Γ and Γ′ be two sets of relations. Then
Γ ⊆ Inv(Pol(Γ′)) if and only if Pol(Γ′) ⊆ Pol(Γ).

An analogous result is known for Inv(·) and pPol(·), due to Geiger [4]
and Romov [12].

Theorem 2 ([4, 12]). Let Γ and Γ′ be two sets of relations. Then Γ ⊆
Inv(pPol(Γ′)) if and only if pPol(Γ′) ⊆ pPol(Γ).

As a shorthand we let 〈Γ〉6∃ = Inv(pPol(Γ)). It is known that 〈Γ〉6∃ is
a set of relations closed under quantifier-free primitive positive definitions,
(qfpp-definitions) over Γ, i.e., logical formulas of the form

ϕ(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm)

where each Ri ∈ Γ ∪ {Eq} and each xi is a tuple of variables over x1, . . . , xn.
Here, Eq denotes the equality relation {(x, x) | x ∈ X} over X. Hence, we
can prove that pPol(Γ) ⊆ pPol(Γ′) by proving that each relation in Γ′ admits
a qfpp-definition over Γ.

2.5 Weak Bases

It turned out that the lattice of partial clones on a set with at least two
elements is very complex, and significant efforts were made by several authors
to study parts of it. The question of describing the general position of the
lattice of all total clones within the lattice of partial clones was raised by D.
Lau. For example, given a total clone C, determine cardinality of the set of
the partial clones on X whose total component is C. For B, this problem was
completely solved in [3] and the corresponding problem for strong partial
clones was solved in [15]. We need the following definition:

Definition 3. Let C be a clone over X. We let

Int(C) = {pPol(Γ) | Γ ⊆ RelX ,Pol(Γ) = C}.
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We will sometimes be concerned with even more fine-grained sets of
strong partial clones and, given two strong partial clones C1 and C2, write
Int(C1,C2) to denote the set

{pPol(Γ) | Γ ⊆ RelX ,C1 ⊆ pPol(Γ) ⊆ C2}.

It is worth noting that the smallest element in the set Int(C) is simply [C]s,
the strong partial clone obtained by closing C under suboperations, but it is
also known that each such set admits a largest element.

Theorem 4. [14] Let C be a finitely generated clone. Then⋃
pPol(Γ)∈Int(C)

pPol(Γ) ∈ Int(C).

It is also known that whenever Inv(C) is finitely generated, there exists a
relation R over X such that

pPol(R) =
⋃

pPol(Γ)∈Int(C)
pPol(Γ).

Using the terminology of Schnoor and Schnoor [14] we call a relation satisfying
this condition a weak basis of Inv(C). Moreover, for the Boolean domain, all
weak bases have been fully described [7]. In this paper we have a particular
interest in the weak basis

R 6=6=6=01
1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}

of RelB. Note that Proj1,2,3(R 6=6=6=01
1/3 ) = R1/3, that the third, fourth, and

fifth arguments are complement of the three first, and that the two last
arguments are constant 0 and 1, respectively. As remarked in Section 1,
pPol(R 6=6=6=01

1/3 ) can be viewed as the set of all Boolean partial operations f
such that [{f}]s ∩OPB = ΠB. Hence, it is the largest Boolean strong partial
clone whose only total operations are the projections. Somewhat surprisingly,
it is known that this strong partial clone is not finitely generated, in contrast
to the strong partial clone consisting of all Boolean partial operations (which
can be generated by a partial Sheffer operation).

Theorem 5. [9] Let Γ be a finite set of relations over a finite domain such
that Pol(Γ) has a basis consisting of unary operations. Then pPol(Γ) is
infinitely generated.

Since Pol({R 6=6=6=01
1/3 }) = ΠB, it can be generated by a single projection,

and so by Theorem 5 we have that pPol(R 6=6=6=01
1/3 ) is infinitely generated.
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3 The Structure Between pPol(R1/3) and pPol(R 6=6= 6=01
1/3 )

Jonsson et al. [6] conjectured that Int(pPol(R1/3), pPol(R 6=6=6=01
1/3 )) consisted of

pPol(R1/3), pPol(R01
1/3), pPol(R 6=01

1/3 ), pPol(R 6=6=01
1/3 ), and pPol(R 6=6=6=01

1/3 ), where
R 6=6=01

1/3 = Proj1,2,3,4,5,7,8(R 6=6=6=01
1/3 ), R 6=01

1/3 = Proj1,2,3,4,6,7(R 6=6=01
1/3 ), and R01

1/3 =
R1/3 ×R0 ×R1. This was disproven by Lagerkvist & Roy who proved that
Int(pPol(R01

1/3),pPol(R 6=6=6=01
1/3 )) is at least countably infinite [8]. However,

the questions of whether pPol(R1/3) is covered by pPol(R01
1/3), and whether

Int(pPol(R01
1/3),pPol(R 6=6=6=01

1/3 )) is in fact of continuum cardinality, were left
open. After introducing some simplifying notation in Section 3.1, we answer
both of these questions in Section 3.2 and Section 3.3. Before reading
these sections in greater detail, the reader may first consult Figure 1 for a
visualization of the main results.

3.1 Partial Polymorphisms of Strongly Rigid Relations

In order to describe the partial polymorphisms of strongly rigid relations we
make the following definition.

Definition 6. Let R be a relation and f a k-ary partial operation. We let

CoverR(dom(f)) = {RowSet(t1, . . . , tk) | t1, . . . , tk ∈ R,
RowSet(t1, . . . , tk) ⊆ dom(f)}.

This immediately gives rise to the following lemma.

Lemma 7. Let R be a strongly rigid relation and f a partial operation over a
finite set X. If f|C ∈ Πp

X for every C ∈ CoverR(dom(f)) then f ∈ pPol(R).

For R1/3 and related relations the following concept can be used to
characterize CoverR1/3(dom(f)). For k, k′ ≥ 1, a set {ω1, . . . , ωk′} ⊆ Bk is
an exact k′-cover if ω1[i] + . . .+ ωk′ [i] = 1 for every i ∈ {1, . . . , k}.

3.2 pPol(R1/3) and pPol(R01
1/3)

In this section we study the structure of the set Int(pPol(R1/3),pPol(R01
1/3))

and prove that it is at least countably infinite. First we define a useful class
of relations.

Definition 8. For each k ≥ 4 let σk denote the relation

{(x1, . . . , xk, x1, . . . , xk, y1, . . . , yk−3, y1, . . . , yk−3, 0) |
Σk
i=1xi = 1, y1 + x1 + x2 = 1, . . . , yk−3 + Σk−2

i=1 xi = 1}.
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{α5} {α6} {α7} . . .

{α5, α6} {α5, α7} {α6, α7} . . .

{α5, α6, α7, . . .}

{R 6=6=6=01
1/3 }

{σ4, R01
1/3}

{σ5, R01
1/3}

{R01
1/3}

{R1/3}

...

Figure 1: A visualization of Int(pPol(R1/3),pPol(R 6=6=6=01
1/3 )). A directed arrow

from Γ to ∆ means that pPol(Γ) ⊂ pPol(∆). Some inclusions are omitted.
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Hence, if t1, . . . , tk′ ∈ σk then RowSet(t1, . . . , tk′) contains an exact k′-
cover, the complement of these tuples, 2(k − 3) tuples determined by the
exact k′-cover, and a constant 0 tuple. For example, the relation σ5 may be
visualized as

σ5 =



0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1
1 1 1 0 0
1 1 0 0 0
0 0 0 1 1
0 0 1 1 1
0 0 0 0 0



.

We first claim that pPol(R1/3) ⊆ pPol(σ4). To see this, note that σ4 can be
qfpp-defined as

σ4(x1, x2, x3, x4, x5, x6, x7, x8, y1, z1, v0) ≡
R1/3(x1, x2, y1) ∧R1/3(x3, x4, z1) ∧R1/3(y1, z1, v0)∧

4∧
i=1

(xi, xi+4, v0).

It is then not difficult to see that the partial operation f(0, 0, 1) = f(0, 1, 0) =
f(1, 0, 0) = 0 preserves σ4 and R01

1/3 but not R1/3. Since pPol(R1/3) ⊂
pPol(R01

1/3) it therefore follows that pPol(R1/3) ⊂ pPol({σ4, R01
1/3}). More

generally it also holds that pPol({σk, R01
1/3) ⊂ pPol({σk+1, R01

1/3}).

Lemma 9. pPol({σk, R01
1/3}) ⊃ pPol({σk−1, R01

1/3}) for each k ≥ 5.

Proof. To prove the inclusion pPol({σk, R01
1/3}) ⊇ pPol({σk−1, R01

1/3}) we show
that σk ∈ 〈{σk−1}〉6∃, via the qfpp-definition

σk(x1, . . . , x2k, y1, . . . , yk−3, z1, . . . , zk−3, v0) ≡
σk−1(x1, . . . , xk−2, yk−3, xk+1, . . . , x2k−2, zk−3, y1, . . . ,

yk−4, z1, . . . , zk−4, v0) ∧ σk−1(xk, xk−1, . . . , x3, z1, x2k,

x2k−1, . . . , xk+3, y1, zk−3, zk−4, . . . , z1, yk−4, . . . , y1, v0).
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For the proper inclusion, define the (k − 1)-ary partial operation f such
that dom(f) = RowSet(σk−1), and let f(~0k−1) = 1 and f(x) = πk−1

1 (x)
otherwise. By definition f does not preserve σk−1, and it directly follows
from Theorem 10 in Lagerkvist & Roy that f preserves R01

1/3 [8]. Hence,
all that remains is to prove that f preserves σk, which we do by showing
that Coverσk(dom(f)) = ∅. Assume there exists t1, . . . , tk−1 ∈ σk such that
RowSet(t1, . . . , tk−1) ⊆ dom(f). Since Σk

j=1ti[j] = 1 for each i ∈ {1, . . . , k−
1} and k > k−1, there exists l ∈ {1, . . . , k} such that t1[l] = . . . = tk−1[l] = 0.
But due to Definition 8, t1[l + k] = . . . = tk[l + k] = 1, implying that
RowSet(t1, . . . , tk−1) 6⊆ Coverσk(dom(f)) since ~1k−1 /∈ dom(f).

We have thus proved the following.

Theorem 10. The set Int(pPol(R1/3),pPol(R01
1/3)) is at least countably infi-

nite.

3.3 pPol(R01
1/3) and pPol(R 6=6=6=01

1/3 )
Following Lagerkvist & Roy [8] we define the following class of relations.

Definition 11. Let k ≥ 5. The relation αk is defined as

αk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4,

v0, v1)

≡ ∃xk+1, . . . , x2k.
k−2∧
i=3

R1/3(x1, xi, wi−2) ∧R1(v1)∧

σk(x1, . . . , x2k, y1, . . . , yk−3, z1, . . . , zk−3, v0).

For each k ≥ 5, let α1, . . . , αk be an enumeration of the tuples in αk

such that α1[k] = 1, α2[k − 1] = 1, . . ., αk[1] = 1. Under this enumeration
of tuples we for example see that the matrix corresponding to α6 can be
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visualized as:

α6 =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 1 1 1 0 0
1 1 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 1
1 1 1 0 1 0
1 1 0 1 1 0
0 0 0 0 0 0
1 1 1 1 1 1



.

Let Vk = Rows(α1, . . . , αk)[2(k− 2) + 2(k− 3)], and define the k-ary partial
operation fk as dom(fk) = RowSet(α1, . . . , αk) and fk(x) = πk1 (x) for every
x ∈ dom(fk) \ {Vk} and fk(Vk) = α1[2(k − 2) + 2(k − 3)]⊕ 1. For example,
we have that V6 = (1, 1, 0, 1, 1, 0) and therefore that f(V6) = 0. We then
have the following result from Lagerkvist & Roy [8].

Theorem 12 (Lagerkvist & Roy [8]). Let k ≥ 5. Then (1) pPol(R01
1/3) ⊂

pPol(αk) ⊂ pPol(R 6=6=6=01
1/3 ) and (2) fk /∈ pPol(αk) but fk ∈ pPol(αk′) for

every 5 ≤ k < k′.

We will shortly see that fk preserves αk′ whenever k′ ≥ 5 and k′ 6= k.
First we state the following lemma, whose proof is trivial due to the fact that
fk is defined as a projection on the first argument whenever its arguments
are distinct from Vk.

Lemma 13. Let k, k′ ≥ 5. Then fk|C ∈ Πp
B for every C ∈ Cover

αk′ (dom(fk))
such that Vk /∈ C.

Before the proof of the following lemma we make a few observations
regarding the domain of the function fk. Due to Definition 11 this set
consists of

1. k tuples x1, . . . , xk such that {x1, . . . , xk} forms an exact k-cover,

2. k − 3 tuples y1, . . . , yk−3 such that {x1, . . . , xi, yi−1}, 2 ≤ i ≤ k − 2,
forms an exact k-cover,
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3. k − 3 tuples y1, . . . , yk−3 such that {xk, . . . , xi+1, yi−1}, 2 ≤ i ≤ k − 2,
forms an exact k-cover,

4. k− 4 tuples z1, . . . , zk−4 such that {x1, xi, zi−2} forms an exact k-cover
for 3 ≤ i ≤ k − 2, and

5. two constant tuples ~0k and ~1k.

It is also worth remarking that each yi satisfies the condition that yi[j] = 1
if 1 ≤ j ≤ k − i + 1 and yi[j] = 0 if k − i + 1 < j ≤ k, and that zi[k] = 0,
zi[i+ 2] = 0, and zi[j] = 1 otherwise. In particular, dom(fk) contains the
tuple Vk, which satisfies Vk[3] = 0 and Vk[k] = 0, and Vk[i] = 1 otherwise.
We are now ready to prove the main result of this section.

Lemma 14. Let k ≥ 5. Then fk /∈ pPol(αk) but fk ∈ pPol(αk′) for every
k′ ≥ 5 such that k′ 6= k.

Proof. Assume first that k′ > k. Then the result follows from Theorem 12.
Hence, in the forthcoming proof, assume that k′ < k. We will prove that
whenever C ∈ Cover

αk′ (dom(fk)) then Vk /∈ C, which by combining Lemma 7
and Lemma 13 proves that fk ∈ pPol(αk′). Hence, for t1, . . . , tk ∈ αk′ let

(a1, . . . , ak′ , b1, . . . , bk′−3, c1, . . . , ck′−3, d1, . . . , dk′−4,~0k,~1k)

denote the tuples in Rows(t1, . . . , tk). There are now a few cases to consider.
However, if Vk = ai, 1 ≤ i ≤ k′, or if Vk = bi, Vk = ci for 1 ≤ i ≤ k′− 3, then
the proof follows the same argument as Lemma 13 in Lagerkvist & Roy [8].

Therefore, assume there exists some i ∈ {1, . . . , k′ − 4} such that di =
Vk. This implies that {a1, ai+2, di} forms an exact k-cover, and we may
without loss of generality assume that ~0k /∈ {a1, ai+2, di} as otherwise Vk ∈
{a1, ai+2, di}, which is impossible since Vk /∈ dom(fk). Note in particular
that this implies that a1 and ai+2 both contain exactly one entry equal to
1. Assume without loss of generality that a1[k] = 1 and that ai+2[3] = 1.
We will first prove that Σaj = 1 for any j ∈ {1, . . . , k′ − 2}, where Σaj =
aj [1] + . . .+ aj [k].

First, assume that aj = ~0k for some j ∈ {1, . . . , k′ − 2}. The case
when j = 1 cannot occur since we have already established that Σa1 = 1,
and j = 2 is impossible since it implies that b1 = a1 /∈ dom(f), due to
the fact that {a1, a2, b1} must be an exact k-cover. Similarly, we see that
dj−2 = a1 /∈ dom(f) if Σaj = 0 for j ∈ {3, . . . , k′ − 2}, since {a1, aj , dj−2}
must be an exact k-cover.

Second, assume that Σaj > 1 for some 1 ≤ j ≤ k′ − 2. Since the
cases when j = 1 or j = i + 2 are impossible we assume that j 6= 1 and
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that j 6= i + 2. Since a1 = (0, 0, . . . , 0, 1) and ai−2 = (0, 0, 1, 0, . . . , 0), this
implies that aj = (1, 1, 0, . . . , 0), as otherwise aj /∈ dom(fk). But then, since
{a1, aj , dj−2} must form an exact k-cover, fk cannot be defined on dj−2.

Hence, Σaj = 1 for each 1 ≤ j ≤ k′ − 2, but since k′ < k this implies
that Σak′−1 > 1 or that Σak′ > 1. We assume that Σak′−1 > 1 since the
case when Σak′ > 1 is entirely symmetric. Due to the assumption that
ak′−1 ∈ dom(fk), a1 = (0, . . . , 0, 1) and ai−2 = (0, 0, 1, 0, . . . , 0), this in fact
implies that ak′−1 = (1, 1, 0, . . . , 0). Now, since {ak′−1, ak′ , ck′−2} must form
an exact k-cover, either ak′ = ~0k or ck′−2 = ~0k, as otherwise ak′ /∈ dom(fk)
or ck′−2 /∈ dom(fk). However, the latter case is impossible since it implies
that ak′−1 = ak′ , which cannot happen since {a1, . . . , ak′} is an exact k-cover,
and since Σaj = 1 for 1 ≤ j ≤ k′− 2. Hence, ak′ = ~0k, and ck′−2 = ak′ . Now,
since Σaj = 1 for every 1 ≤ j ≤ k′ − 2, it follows that |{t3, . . . , tk}| = k − 2,
i.e., the tuples t3, . . . , tk do not contain any repetitions. However, since
t1 /∈ {t3, . . . , tk}, and there cannot exist tj such that tj [k′] = 1, there are
only k′ − 2 tuples to choose from. This is impossible since k′ < k, and we
conclude that Vk /∈ RowSet(t1, . . . , tk).

Theorem 15. The set Int(pPol(R01
1/3),pPol(R 6=6= 6=01

1/3 )) is of continuum cardi-
nality.

Proof. Let N≥5 = N \ {0, 1, 2, 3, 4}. We will prove that there exists an
injective function h from {X | X ⊆ N≥5} to Int(pPol(R01

1/3),pPol(R 6=6=6=01
1/3 )).

Define h(X) = pPol({αi | i ∈ X}) for every X ⊆ N≥5. We claim that
pPol({αi | i ∈ X}) 6= pPol({αi | i ∈ Y }) whenever X,Y ⊆ N≥5 and X 6= Y .
Indeed, if X 6= Y then there exist i1 ∈ X or i2 ∈ Y such that i1 /∈ Y or
i2 /∈ X. But then fi1 /∈ pPol({αi | i ∈ X}) and fi1 ∈ pPol({αi | i ∈ Y }), or
fi2 /∈ pPol({αi | i ∈ X}) and fi2 ∈ pPol({αi | i ∈ Y }), due to Lemma 14.

4 Concluding Remarks
We have studied the set Int(ΠB), with a particular focus on describing the
strong partial clones between pPol(R1/3) and pPol(R 6=6=6=01

1/3 ). By generalizing
the results from Lagerkvist & Roy [8] we have proven that Int(pPol(R1/3),pPol(R01

1/3))
is at least countably infinite and that Int(pPol(R01

1/3),pPol(R 6=6=6=01
1/3 )) is of con-

tinuum cardinality. These results open up a few distinct directions for future
research. First, note that Lemma 9 raises the possibility that pPol({R01

1/3, σ
k})

is covered by pPol({R01
1/3, σ

k+1}), i.e., that there does not exist any strong
partial clone inbetween. If this is indeed the case then the cardinality of
Int(pPol(R1/3),pPol(R01

1/3)) might be countably infinite. Second, it would be
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interesting to determine the strong partial clones covered by pPol(R 6=6=6=01
1/3 ).

Since pPol(R 6=6=6=01
1/3 ) is infinitely generated (by Theorem 5) a good starting

point is to determine whether every strong partial subclone of pPol(R 6=6=6=01
1/3 )

is contained in a maximal strong partial subclone of pPol(R 6=6=6=01
1/3 ), or if there

exists a countably infinite chain of strong partial clones in Int(ΠB) such that
the union of this chain equals pPol(R 6=6=6=01

1/3 ).
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