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1Université de Lorraine, CNRS, Inria Nancy G.E., LORIA, F-54000 Nancy, France
2Department of Mathematics & Computer Science, Royal Military College of Canada,

Kingston, Ontario, Canada
3Department of Computer and Information Science, Linköping University, Linköping,
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Abstract

Constraint satisfaction problems (CSPs) are combinatorial problems with
strong ties to universal algebra and clone theory. The recently proved CSP
dichotomy theorem states that finite-domain CSPs are always either tractable or
NP-complete. However, among the intractable cases there is a seemingly large
variance in complexity, which cannot be explained by the classical algebraic
approach using polymorphisms. In this contribution we will survey an alternative
approach based on partial polymorphisms, which is useful for studying the
fine-grained complexity of NP-complete CSPs. Moreover, we will state some
challenging open problems in the research field.

1 Algebraic Background

Let k ≥ 2 be an integer and let k be a k-element set. Without loss of generality we
assume that k := {0, . . . , k−1}. An n-ary relation R over k is a subset of kn, and
we write ar(R) = n to denote its arity, and Relk for the set of all relations over k.
For a positive integer n, an n-ary partial operation on k is a map f : dom(f)→ k

where dom(f) is a subset of kn, called the domain of f . Let Par(n)(k) denote the

set of all n-ary partial operations on k and let Par(k) :=
⋃
n≥1

Par(n)(k). An n-ary

partial operation g is said to be a total operation if dom(g) = kn, and we let

Op(n)(k) be the set of all n-ary total operations on k and Op(k) :=
⋃
n≥1

Op(n)(k).
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For every positive integer n and each 1 ≤ i ≤ n, let eni denote the n-ary i-th
projection defined by eni (a1, . . . , an) = ai for all (a1, . . . , an) ∈ kn. Furthermore,
let Jk := {eni | 1 ≤ i ≤ n, n ∈ N \ {0}} be the set of all (total) projections.
Partial operations on k are composed in a natural way. For additional details
we refer the reader to Lau [31].

Definition 1. A clone is a composition closed subset of Op(k) containing Jk,
and a partial clone on k is a composition closed subset of Par(k) containing Jk.
A partial clone is said to be strong if it is closed under taking suboperations1.

It is well known that a partial clone C is strong if and only if Str(Jk) ⊆ C
(see, e.g., Lemma 2.11 in Haddad and Börner [8]). Moreover, strong partial
clones are exactly those partial clones that are determined by relations in the
following way. Let h, n ≥ 1 be integers, and let R be an h-ary relation on k. An
n-ary partial operation f on k is said to preserve R if for every h× n matrix
M = [Mij ] whose columns M∗j ∈ R, and whose rows Mi∗ ∈ dom(f), the h-tuple
(f(M1∗), . . . , f(Mh∗)) ∈ R. Note that if there is no h × n matrix M = [Mij ]
whose columns M∗j ∈ R and whose rows Mi∗ ∈ dom(f), then f preserves R. It
is not difficult to see that

pPol(R) := {f ∈ Par(k) | f preserves R}

is a strong partial clone called the partial clone determined by the relation
R. Similarly, if Γ is a set of relations over k we write pPol(Γ) for the set⋂
R∈Γ pPol(R). In the total case we similarly write Pol(R) for the set of total

polymorphisms of R and Pol(Γ) if Γ is a set of relations. If F ⊆ Par(k) then
we also write Inv(F ) for the set of relations preserved by all partial operations
in F . Sets of the form Inv(F ) are known as relational clones, or co-clones, if
each operation in F is total, otherwise they are called weak systems or weak
co-clones.

The set of partial clones on k forms a lattice LPk
under inclusion, in which

the infimum is the set-theoretical intersection. Similarly, the set of strong
partial clones on k also forms a lattice LStr(Pk), which is a sublattice of LPk

. By
definition, Jk and Str(Jk) are the least elements of LPk

and LStr(Pk), respectively.
For further background see, e.g., [8, 13, 15]. For F ⊆ Par(k), let [F ]s denote
the intersection of all strong partial clones on k containing F . Similarly, for
F ⊆ Op(k), let [F ] be the intersection of all clones on k containing F , and in
both cases we write [f ] or [f ]s when F = {f} is singleton.

2 Constraint Satisfaction Problems

In a constraint satisfaction problem (CSP) the objective is to assign values to
variables subjected to a set of constraints deciding permissible assignments. It
is typically phrased as the decision problem of determining if there exists an
assignment respecting all constraints, and we begin with the following definition
which is predominant in computer science literature.

1For f, g ∈ Par(k), g is a suboperation of f , g ≤ f , if g = f |dom(g). For F ⊆ Par(k), we denote
its closure under taking suboperations by Str(F ).
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A constraint satisfaction problem (CSP) over a set k is defined
as follows.
Instance: A tuple (V,C) where V is a finite set, and C a finite
set of the form (Ri, ti) where Ri ∈ Relk and ti ∈ V ar(Ri).
Question: Does there exist a function f : V → k such that

(f(x1
i ), . . . , f(x

ar(Ri)
i )) ∈ Ri for each (Ri, (x

1
i , . . . , x

ar(Ri)
i )) ∈ C?

The set k is called the domain of the CSP — not to be confused with the
domain of a partial operation. If k = 2 then k is said to be Boolean. The
members of V are referred to as variables and are usually denoted by x or v. A
tuple (Ri, ti) ∈ C is called a constraint, and we typically write R(ti) instead of
(Ri, ti). The function f , if it exists, is called a solution, a model, or a satisfying
assignment.

CSPs can be further specified by fixing a set of relations Γ, called a constraint
language. This problem is then referred to as CSP(Γ) and is restricted to
instances (V,C) where Ri ∈ Γ for each constraint (Ri, ti) ∈ C. If Γ is Boolean
then CSP(Γ) can be viewed as a satisfiability problem, usually written SAT(Γ).

Observe that if we associate a constraint language Γ over a domain D
with a relational signature τ , Γ can be treated as a relational structure Γτ .
With this viewpoint an instance {{v1, . . . , vn}, C} of CSP(Γ) can be viewed
as an existentially quantified τ -formula ∃v1, . . . , vn :

∧
(Ri,ti)∈C Ri(ti), and the

question is then simply to check whether this τ -formula admits at least one
model. It is also possible to rephrase CSP(Γ) as a homomorphism problem, i.e.,
an instance I of CSP(Γ) can be seen as a τ -structure I and the goal is then to
check if there exists a homomorphism between I and Γτ .

Example 1. Let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Then SAT({R1/3}) can be
seen as an alternative formulation of the monotone 1-in-3-SAT problem which
is well-known to be NP-complete. By choosing a suitable Boolean Γ, a large
range of satisfiability problems can be represented as a CSP(Γ) problem. For
example, for each k ≥ 1 let Γk

SAT be the set of relations of the form {0, 1}k \ {t}
for a single k-ary Boolean tuple t. Then SAT(Γk

SAT) can be verified to be an
alternative formulation of k-SAT which is NP-complete for k ≥ 3.

Example 2. Let us also consider a few non-Boolean examples. One of the
prototypical examples of a CSP is the k-colouring problem: given an undirected
graph (V,E), can (V,E) be coloured using at most k colours? To formulate this
problem as a CSP we take the relation R 6=k

= {(x, y) ∈ k2 | x 6= y} and for
each (x, y) ∈ E introduce a constraint R6=k

(x, y). It is also easy to find examples
of tractable CSPs, i.e., CSPs solvable in polynomial time. One such example
is systems of linear equations x1 + . . . + xn = 0 (mod k) which can be solved
in polynomial time using Gaussian elimination. As we will see in Section 3
this discrepancy in complexity between tractable and NP-complete CSPs can be
explained using algebraic methods.

Although this survey mainly focuses on finite-domain CSPs, a substantial
amount of research is dedicated towards infinite-domain CSPs. This is especially
true in artificial intelligence where many classical problems are intrinsically
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linked to constraints over infinite domains. Some examples include spatial and
temporal reasoning problems such as Allen’s interval algebra, the region
connection calculus, and the Rectangle algebra (cf. the surveys [4, 19]).

3 Polymorphisms and the Complexity of CSP

Feder & Vardi conjectured that CSP(Γ) is either tractable or NP-complete [20];
this conjecture is usually referred to as the CSP dichotomy conjecture. It
was then realized that several classical algorithms resulting in tractability,
e.g., Gaussian elimination and k-consistency, in a uniform manner could be
explained by the presence of certain polymorphisms of Γ [24]. More generally,
Jeavons proved the following reducibility result, usually interpreted as “the
polymorphisms of Γ determine the complexity of CSP(Γ) up to polynomial-time
reductions”.

Theorem 2 ([23]). Let Γ and ∆ be two finite constraint languages over k.
If Pol(∆) ⊆ Pol(Γ), then CSP(Γ) is polynomial-time many-one reducible to
CSP(∆).

Proof. The condition Pol(∆) ⊆ Pol(Γ) is well-known to be equivalent to the
condition Γ ⊆ Inv(Pol(∆)) [6, 7, 21]. This is furthermore known to imply that
each R ∈ Γ can be expressed as a conjunction of constraints over ∆, possibly
with the introduction of additional variables and equality constraints, and the
reduction then proceeds as a classical “gadget reduction” where each constraint
is transformed into the corresponding constraints over ∆.

To obtain a dichotomy for CSP(Γ) over k one would then need to fully
describe all operations over k and determine all combinations resulting in
tractable CSPs. However, such an undertaking turned out to be unecessary,
due to the realization that the classical complexity of CSP(Γ) only depends on
the identities, or the Strong Maltsev conditions, satisfied by the polymorphisms
of Γ [11]. For example, if Pol(Γ) contains a Maltsev operation satisfying the
identities m(x, x, y) ≈ y,m(x, y, y) ≈ x, then CSP(Γ) is tractable since it can be
solved by the simple algorithm for Maltsev constraints [10]. The main advantage
of this viewpoint is therefore that it suffices to describe all identities resulting
in tractable CSPs rather than all concrete operations. This approach recently
culminated in the following dichotomy theorem.

Theorem 3 ([9, 42]). Let Γ be a constraint language over k. Then CSP(Γ) is
either tractable or NP-complete.

For additional details concerning the classification project of CSP and the
algebraic approach based on Strong Maltsev conditions, see e.g. the survey by
Barto [1].
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4 Partial Polymorphisms and the Fine-Grained
Complexity of CSP

We begin this section by discussing the rather vague term “fine-grained complex-
ity” in relationship to CSPs in Section 4.1, before we describe how the algebraic
approach based on partial polymorphisms can be used to study this question in
Section 4.2 and Section 4.3.

4.1 Fine-Grained Complexity

Recall from Section 3 that polymorphisms are useful for studying the classical
complexity of CSPs up to polynomial-time reductions. However, there is reason
to believe that even NP-complete problems can exhibit a striking difference
in complexity, and that it may be disadvantageous to group them together
under the guise of polynomial-time reductions. For example, SAT({R1/3}) from
Example 1, is known to be solvable in O(1.0984n) time, where n denotes the
number of variables [41], whereas it is not known whether the unrestricted SAT
problem SAT(Rel{0,1}) is solvable in O(cn) time for c < 2. This phenomena
is not restricted to CSPs: for example, van Rooij et al. [5] proved that the
Partition Into Triangles problem restricted to graphs of maximum degree
4 can be solved in O(1.0222n) time despite being NP-complete.

Our main concern in this survey paper is thus to study the complexity of
NP-complete CSPs with regards to O(cn) time complexity (although we will
also mention related applications in Section 4.2). To make this question more
precise we begin with the following definition.

Definition 4. Let k ≥ 2. For Γ ⊆ Relk we define T(Γ) as

T(Γ) = inf{c | CSP(Γ) is solvable in time 2cn}

where n is the number of variables in an instance of CSP(Γ).

Note that it might be the case that CSP(Γ) is solvable in O(2(c+ε)n) time
for every ε > 0 despite not being solvable in O(2cn) time — hence, the use of
infimum in Definition 4 is necessary. It is important to observe that no concrete
value of T(Γ) is known when CSP(Γ) is NP-complete. Before we begin studying
the function T and its connection to partial polymorphisms we need to state
the following conjecture, which is of central importance in current research on
fine-grained complexity and lower bounds.

Definition 5. The exponential-time hypothesis (ETH) [22] conjectures that
T(Γ3

SAT) > 0.

In other words, the ETH states that there exists a c > 0 such that 3-SAT
is not solvable in O(2cn) time. Although not immediate from Definition 5, the
ETH is also known to imply that the sequence T(Γ3

SAT),T(Γ4
SAT), . . . increases

infinitely often, i.e., that for every k there exists k′ > k such that T(Γk
SAT) <

T(Γk′
SAT) [22]. This makes it tempting to also conjecture that the limit of

the sequence T(Γ3
SAT),T(Γ4

SAT), . . . equals 1; a conjecture known as the strong
exponential-time hypothesis (SETH) [12, 22]. Hence, under this conjecture the
unrestricted SAT problem cannot be solved in O(2cn) time for any c < 1.
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Let us also remark that CSP(Γ) for Γ ⊆ Relk is always solvable in O(kn) time
by simply enumerating all possible assignments over k. Hence, T(Γ) ≤ log2(k)
for every Γ ⊆ Relk. It is also known that if Γ ⊂ Relk is finite then CSP(Γ) is
solvable in O(cn) time for a c < k [40], implying that T(Γ) < log2(k).

4.2 Weak Bases

Schnoor & Schnoor [37] investigated connections between partial polymorphisms
and the complexity of CSPs. However, their motivation was not to study the
fine-grained complexity of CSPs, but to analyse the classical complexity of
CSP-like problems incompatible with polymorphisms.

Example 3. CSP(Γ) is sometimes said to be a priori compatible with polymor-
phisms due to the existence of Theorem 2. In contrast, there exist problems
proven to be a posteriori compatible with polymorphisms, in the sense that Pol(Γ)
determines whether the problem is tractable or intractable, but where an analogue
of Theorem 2 cannot be proven. One such example is the problem of finding a
surjective model of a SAT(Γ) instance (SUR-SAT(Γ)), which is NP-complete
if Pol(Γ) is essentially unary and tractable otherwise. Curiously, almost all
CSP-like problems studied in the literature turn out to be either a priori or a
posteriori compatible with polymorphisms, and only a handful of concrete counter
examples exist, e.g., enumerating models of CSP(Γ) with polynomial delay [36],
the inverse satisfiability problem over infinite constraint languages [29], and the
maximum satisfiability problem [18].

Problems that are not a priori compatible with polymorphisms may instead
be compatible with partial polymorphisms. It is, for example, straightforward to
prove that if pPol(Γ) ⊆ pPol(∆) then SUR-SAT(∆) is polynomial-time many-
one reducible to SUR-SAT(Γ). However, since the lattice of Boolean strong
partial clones LStr(P{0,1}) is largerly unexplored, this is not as useful as one
might first believe. Schnoor & Schnoor [37] realized that for many classification
purposes, there is typically no need to consider the whole lattice LStr(P{0,1}),
but only a small fragment corresponding to weak bases.

Definition 6. [37] Let C = Pol(Γ) be a clone over k where Γ is finite. A set
of relations Γw ⊆ Relk is said to be a weak base of Inv(C) if (1) Pol(Γw) = C
and (2) pPol(∆) ⊆ pPol(Γw) for each set ∆ ⊆ Relk such that Pol(∆) = C.

Example 4. Let us again consider SUR-SAT(Γ) and assume that we are given
a weak base Γw of a co-clone Inv(C). If we can prove that SUR-SAT(Γw)
is NP-complete, then NP-completeness also carries over to every Γ such that
Pol(Γ) = C. Hence, equipped with a weak base of each Boolean co-clone, we in
practice only need to consider Post’s lattice [33] rather than LStr(P{0,1}).

Schnoor & Schnoor [37] also described a procedure for constructing weak
bases for co-clones satisfying the preconditions in Definition 6, which was
leveraged by Lagerkvist to provide a list of weak bases for all Boolean co-
clones [27]. We will not describe this method in detail, but remark that it is
based on the observation that the algebra whose universe consists of all n-ary
operations in C can be viewed as a relation R, with the property that any
partial operation not preserving R can be extended to a total operation. In the
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literature, this construction has been referred to as a n-generated free algebra [1],
or the n-th graphic [32]. Using a similar strategy as in Example 4, weak bases
have been used to obtain complexity dichotomies for several Boolean CSP-like
problems incompatible with polymorphisms [2, 3, 29, 37, 38].

4.3 An Algebraic Approach Based on Partial Polymor-
phisms

We are now ready to present the link between partial polymorphisms and the
function T, allowing us to study the fine-grained complexity of CSPs using
partial polymorphisms.

Theorem 7 ([25]). Let Γ and ∆ be two finite sets of relations. If pPol(Γ) ⊆
pPol(∆) then T(∆) ≤ T(Γ).

Proof. The proof is similar to Theorem 2: pPol(Γ) ⊆ pPol(∆) is known to be
equivalent to the condition ∆ ⊆ Inv(Pol(Γ)) [21, 34], which in turn implies that
each R ∈ ∆ can be written as a set of constraints over Γ without introducing
any fresh variables. If each constraint in a CSP(∆) instance is rewritten in this
manner we obtain an instance of CSP(Γ) over the same set of variables, giving
the bound T(∆) ≤ T(Γ).

Now, let C be a clone such that Pol(Γ) = C and CSP(Γ) is NP-complete.
Theorem 7 then offers an algebraic method to analyse T(Γ) by studying the
properties of IStr(C) := {pPol(Γ) | Pol(Γ) = C}. For example, if IStr(C) is
finite, then the fine-grained complexity of CSP(Γ) would fall into a finite number
of cases. Hence, as a rough approximation, we would like to know the cardinality
of IStr(Pol(Γ)) when CSP(Γ) is NP-complete. A dichotomy has been proved
for Boolean clones, with the surprising implication that these sets are always
either finite or equal to the continuum.

Theorem 8 ([17, 39]). Let C be a Boolean clone. Then IStr(C) is finite if
C ⊇ Pol({{(0, 1), (1, 0)}, {(0, 1)}}) or C ⊇ Pol({{(0, 0), (0, 1), (1, 1)}, {(0, 1)}}),
and is of continuum cardinality otherwise.

By inspecting Post’s lattice of Boolean clones [33] one can then verify that
the finite cases of Theorem 8 hold for only 10 clones. Furthermore, it is known
that SAT(Γ) is NP-complete if and only if Pol(Γ) = [f¬] or Pol(Γ) = J{0,1},
where f¬(x) = 1− x [35], implying that IStr(Pol(Γ)) is of continuum cardinality
whenever SAT(Γ) is NP-complete. Clearly, the fact that IStr(Pol(Γ)) is of
continuum cardinality in these cases says very little of their actual complexity,
but at least suggests that one needs a different line of attack than trying to
obtain a characterization akin to Post’s lattice.

Let us for the moment concentrate on Boolean constraint languages Γ such
that Pol(Γ) = J{0,1}, which subsume the examples 1-in-3-SAT and k-SAT
from Example 1. Even though fully describing IStr(J{0,1}) does not appear
straightforward due to Theorem 8, there are still plenty of questions relevant for
the fine-grained complexity of SAT(Γ). For example, does IStr(J{0,1}) admit
a greatest element, and if this is the case, is it then possible to describe the
maximal elements? Similarly, is it possible to describe the minimal strong
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partial clones of IStr(J{0,1}) — provided they exist (note that a unique least
element trivially exists, namely Str(J{0,1}))

2. These questions are of interest
in fine-grained complexity since we from Theorem 7 would expect that “small”
members of IStr(J{0,1}) corresponds to SAT problems with high time complexity,
and that “large” members of IStr(J{0,1}) give rise to SAT problems of low time
complexity. In fact, recalling the concept of a weak base R of a co-clone Inv(C)
from Section 4.2, one of these questions can be answered immediately: pPol(R) ⊇
pPol(Γ) for each pPol(Γ) ∈ IStr(J{0,1}) implies that pPol(R) is the greatest
element. Furthermore, Inv(J{0,1}) is known to admit a particularly simple
weak base R 6= 6= 6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}
[27]. This observation was then leveraged by Jonsson et al. [25] to show that
SAT({R 6= 6= 6=01

1/3 }) results in the “easiest NP-complete SAT problem”, in the
following sense.

Theorem 9 ([25]). SAT({R 6= 6= 6=01

1/3 }) is NP-complete and T({R 6= 6= 6=01

1/3 }) ≤ T(Γ)
for any Boolean constraint language Γ such that SAT(Γ) is NP-complete.

Proof. We give a short sketch of the most important ideas. If SAT(Γ) is
NP-complete then by Schaefer’s dichotomy theorem either Pol(Γ) = [f¬] or
Pol(Γ) = J{0,1} [35]. It is then known that the relation R = R 6= 6= 6=01

1/3 ∪ {(f¬(t) |
t ∈ R 6=6= 6=01

1/3 )} is a weak base of Inv({f¬}) [27], and from Theorem 7 we then
conclude that T({R}) ≤ T(Γ) or T({R 6= 6= 6=01

1/3 }) ≤ T(Γ), since pPol(Γ) ⊆ pPol(R)
or pPol(Γ) ⊆ pPol(R 6=6= 6=01

1/3 ). Hence, it is sufficient to prove that T({R 6= 6=6=01

1/3 }) ≤
T({R}), which can be accomplished by a polynomial-time many-one reduction
only introducing a constant number of fresh variables (see Lemma 19 in Jonsson
el al. [25]).

This result was later extended to a broad class of finite-domain CSPs, so-
called ultraconservative CSPs, which can be viewed as CSP(Γ) problems where
Γ contains all unary relations over the domain.

Theorem 10 ([26]). For each k there exists a relation Rk ∈ Relk such that (1)
CSP({Rk}) is NP-complete, and (2) T({R}) ≤ T(Γ) for any ultraconservative
Γ ⊆ Relk such that CSP(Γ) is NP-complete.

Jonsson et al. [25] also conjectured that the strong partial clones between
pPol(R1/3) and pPol(R 6= 6= 6=01

1/3 ) had a simple structure consisting of only three ele-
ments pPol(R01

1/3), pPol(R 6=01

1/3 ), pPol(R 6= 6=01

1/3 ), such that pPol(R1/3) ⊂ pPol(R01
1/3) ⊂

pPol(R 6=01

1/3 ) ⊂ pPol(R 6= 6=01

1/3 ) ⊂ pPol(R 6= 6= 6=01

1/3 ). However, this turned out to be
false: Lagerkvist & Roy first showed the existence of countably many strong
partial clones between pPol(R01

1/3) and pPol(R 6=01

1/3 ), pPol(R 6=01

1/3 ) and pPol(R 6= 6=01

1/3 ),
and pPol(R 6= 6=01

1/3 ) and pPol(R 6= 6= 6=01

1/3 ) [28]. This was later refined by Couceiro et
al. [14] where it was proven that one can actually construct a family of strong
partial clones of continuum size between each of these pairs.

2We follow the standard terminology where minimal/maximal clones are those directly above/be-
low the greatest/least element in the clone lattice.

8



4.4 The Non-Existence of Minimal Strong Partial Clones

We now turn to the question of minimal strong partial clones in IStr(J{0,1}),
i.e., pPol(Γ) ∈ IStr(J{0,1}) such that pPol(Γ) ⊃ Str(J{0,1}) but there does not
exist pPol(∆) ∈ IStr(J{0,1}) such that pPol(Γ) ⊃ pPol(∆) ⊃ Str(J{0,1}). The
existence of a minimal element pPol(Γ) would have interesting consequences
in the light of the SETH, in particular if if T(Γ) < 1, since SAT(Γ) would
then belong to the class of “hardest” NP-complete SAT problems which are
still easier than the unrestricted SAT problem. However, this question has a
surprisingly straightforward resolution, as proven by Couceiro et al. [16]: there
are no minimal strong partial clones. More specifically, for each k (k > 1) it is
proven that if f 6∈ Str(Jk) then the strong partial clone [f ]s contains a family
of strong partial subclones of continuum cardinality. Two slightly different
constructions are needed depending on whether f is constant (i.e., there exists
x ∈ k such that f(αi) = x for all αi ∈ dom(f)) or not, and we provide a sketch
of the latter construction.

Let f be an n-ary partial operation not in Str(Jk) and not constant. In
the sequel we assume that the partial operation f is n-ary and with domain
α1, . . . , αm ∈ kn, where αi := (ai1, . . . , a

i
n), and we let A be the m× n matrix

whose rows are α1, . . . , αm. Let us first define the following. Let Col(A) be
the set of columns of A, and vf = f(A) ∈ km. For x := (x1, . . . , xh) ∈ kh and
` ≥ 1, let x×` ∈ kh` be

x×` = (x1, . . . , x1︸ ︷︷ ︸
` times

, x2, . . . , x2︸ ︷︷ ︸
` times

, . . . , xh, . . . , xh︸ ︷︷ ︸
` times

),

and let [x] = {x1, . . . , xh}. For a set X ⊆ k with

X = {x1 < · · · < x|X|}

and a ∈ X, let nextX(a) ∈ X be defined by

nextX(a) :=

{
xi+1 if a = xi and i < |X|,
x1 if a = x|X|.

Furthermore, for x = (x1, . . . , xh) ∈ [vf ]h and 1 ≤ i ≤ h, let ci(x) be the tuple

ci(x) := (x1, . . . , xi−1,next[vf ](xi), xi+1, . . . , xh).

Since the partial operation f is non-constant, the set [vf ] contains at least
two different elements, and so ci(x) 6= x for all x ∈ [vf ]h and all i = 1, . . . , h.
Let t ≥ 0 be the number of columns u

∼
in the matrix A that satisfy [u

∼
] = [vf ].

Without loss of generality, assume that all those t columns (if any) are the first
columns to the left of A.

For each ` ≥ 1, define the relation ρ` of arity `df by

ρ` := {ci(v×`f ) | 1 ≤ i ≤ `df} ∪ {u∼
×` | u

∼
∈ Col(A)}.

Notice that |ρ`| = `df + n.
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Let M` be the matrix with `df rows, whose (`df +n) columns are the tuples
of ρ` in the following order:

c1(v×`f ), . . . , c`df (v×`f ), u
∼1
×`, . . . , u

∼n
×`,

where u
∼1, . . . , u∼n are the columns of A written in the same order as they appear

in A. By f×` we denote the (`df + n)-ary partial operation whose domain is
the set of all rows of M` and defined by

f×`(M`) = v×`f .

Notice that for every x = (x1, . . . , x`df+n) ∈ dom(f×`), we have that x1, . . . , x`df+t ∈
[vf ].

Example 5. Let k = {0, 1, 2}, ` = 3 and

f

0 0 0
1 0 1
0 0 2

 =

0
0
1

 .

Then vf = (0, 0, 1), v×3
f = (0, 0, 0, 0, 0, 0, 1, 1, 1),

A =

0 0 0
1 0 1
0 0 2

 ,

Col(A) = {(0, 1, 0)T , (0, 0, 0)T , (0, 1, 2)T }, and f×3(M3) =

f×3



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 1 0 1
1 1 1 1 1 1 0 1 1 0 0 2
1 1 1 1 1 1 1 0 1 0 0 2
1 1 1 1 1 1 1 1 0 0 0 2


=



0
0
0
0
0
0
1
1
1


.

This construction yields the following results.

Lemma 11 ([16]). For every ` ≥ 1, f×` ∈ [f ]s. Moreover, for `′ ≥ 1, f×` ∈
pPolρ`′ iff ` 6= `′.

Corollary 12. Let C be a strong partial clone on k and suppose that C contains
a partial operation f 6∈ Str(Jk) that is not a constant operation. Then the set of
strong partial clones contained in C is of continuum cardinality.

5 Open Questions

The study of fine-grained complexity is still in its infancy and we have only
concentrated a handful of results relevant in the context of partial polymorphisms.
Now we present a few concrete questions arising from the results presented thus
far.

10



On the non-existence of minimal strong partial clones: We provided a
sketch of the construction from Couceiro et al. [16], which shows that there
for any non-constant f /∈ Str(J{0,1}) exists g /∈ Str(J{0,1}) such that [g]s ⊂ [f ]s.
Assuming T(Inv({f})) < 1, can this construction be used to find g such that
T(Inv({f})) < T(Inv({g}))?

Maximal elements of IStr(Jk): We have seen that IStr(J{0,1}) has a largest
element pPol(R 6= 6=6=01

1/3 ), resulting in the “easiest NP-complete SAT problem”
SAT({R 6= 6= 6=01

1/3 }). Given the non-existence of minimal strong partial clones one
might be sceptical about the existence of maximal elements of IStr(J{0,1}).
However, such elements do in fact exist, one can for example prove that
pPol({R 6= 6= 6=01

1/3 , {(0)}}) and pPol({R 6=6= 6=01

1/3 , {(1)}}) are both maximal elements.
The caveat here is that T ({R 6= 6= 6=01

1/3 }) = T({R 6= 6= 6=01

1/3 , {(0)}) = T({R 6= 6=6=01

1/3 , {(1)}),
implying that these elements are not interesting from a complexity theoretical
point of view. This raises the question of whether there exists a maximal element
pPol(Γ) of IStr(J{0,1}) such that T({R 6= 6= 6=01

1/3 }) < T(Γ).

Strong Maltsev conditions and partial polymorphisms: Lagerkvist &
Wahlström [30] propose a usage of partial polymorphisms which is similar to
how strong Maltsev conditions are used to characterize the classical complex-
ity of CSPs. For example, given the identities defining a Maltsev operation
m(x, x, y) ≈ y,m(x, y, y) ≈ x one for every k we can define a partial operation
f such that dom(f) = {(x, x, y), (x, y, y) | x, y ∈ k} and such that f(x, x, y) = y
and f(x, y, y) = x for all values where it is defined. The operation f is then
called a partial Maltsev operation. The objective is then, given a partial opera-
tion f constructed in this manner, to construct an algorithm for CSP(Inv(f))
with a running time better than O(kn). Surprisingly, this is indeed possible for
the partial Maltsev operation, where one obtains the upper bound O(k

n
2 ). An

interesting continuation to this line of research is to consider the identities defin-
ing near unanimity operations and edge operations, and investigate if similar
improved bounds can be obtained for the corresponding partial operations.
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