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Abstract

Strong partial clones are composition closed sets of partial operations containing all
partial projections, characterizable as partial polymorphisms of sets of relations Γ (pPol(Γ)).
If C is a clone it is known that the set of all strong partial clones whose total component
equals C, has a greatest element pPol(Γw), where Γw is called a weak base. Weak bases
have seen applications in computer science due to their usefulness for proving complexity
classifications for constraint satisfaction related problems. In this paper we completely
describe the inclusion structure between pPol(Γw), pPol(∆w) for all Boolean weak bases Γw

and ∆w.

1 introduction

A clone is a set of operations closed under composition which contains all projections. In the
last decades clone theory has received quite some attention due to its relevance for classifying
the complexity of computational problems such as constraint satisfaction problems (CSPs) [1].
This approach is based on the fact that a clone can be described as the set of polymorphisms
(intuitively, a generalisation of a homomorphism) of a set of relations, which corresponds to
a closure operator on relations, closure under primitive positive definitions, that can be used
to obtain reductions between CSPs. Not all computational problems are compatible with
polymorphisms, in the sense that a clone corresponding to a constraint language unequivocally
determines whether the problem is tractable, in P, or intractable (typically NP-hard or co-NP-
hard). Some examples include the inverse satisfiability problem, enumerating models of CSP
with polynomial delay, and the surjective CSP problem [7]. The complexities of several of these
problems have been settled, but using non-algebraic proofs based on a large number of case
analyses, only valid for the Boolean domain. Schnoor & Schnoor [16] argued that the complexity
of such problems is better studied using partial polymorphisms, since these correspond to a
more restricted closure operator on relations, closure under quantifier-free primitive positive
definitions. These notions will be formally defined in Section 2 and at the moment we simply
view the set of partial polymorphisms of a set of relations Γ, pPol(Γ), as polymorphisms that
may be undefined for certain sequences of arguments. Unfortunately, the resulting closed classes
of partial operations, strong partial clones, are largely unexplored even in the Boolean domain.
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To mitigate this Schnoor & Schnoor introduced the concept of a weak base [16] corresponding to
a clone C — a relational description of the largest strong partial clone whose total component
equals C — and proved that weak bases always exist. Hence, if Γw is a weak base corresponding
to a clone C then pPol(Γw) is the largest set of partial operations not containing a total operation
outside of C. The practical motivation behind weak bases is that they offer a considerable
simplification for proving hardness results, in the following sense. Assume that X(Γ) is a
computational problem parameterized by a set of relations Γ, and that we want to determine
how Γ influences the complexity of X(Γ). Then, instead of proving hardness results for X(Γ)
for every pPol(Γ) corresponding to a clone C, it is sufficient to show that X(Γw) is intractable
for the weak base Γw corresponding to C [16]. The reason is that Γw is the least expressive
language corresponding to C with respect to quantifier-free primitive positive definitions, and
X(Γw) then intuitively represents the “easiest” problem corresponding to C. For arbitrary finite
domains little is known concerning weak bases, but in the Boolean domain they are completely
described [11]. Weak bases have successfully been used to prove complexity dichotomies for
several different computational problems [2, 3, 12, 16, 17].

In this paper we study additional properties of Boolean weak bases, with a particular focus on
their inclusion structure. More precisely, if we let LW = {pPol(Γw) | Γw is a Boolean weak base}
we are interested in determining the poset (LW ,⊆). Such a classification can be of practical
interest since it effectively reduces the number of distinct cases one needs to consider to prove
a complexity dichotomy for a computational problem. Determining this inclusion structure is
conceptually not difficult, but is in practice rather challenging due to the large number of cases
that need to be considered. We propose a method where, given a weak base Γw corresponding
to a clone C, one effectively needs to consider only the clones covering C, i.e., situated directly
above in the clone lattice, rather than all clones containing C. Using this method, we in Section 3
completely describe the poset LW . We are also able to leverage our method to prove a covering
result for pPol(Γw) and pPol(∆w) for two specific weak bases Γw and ∆w. This result can be
translated to the following statement: the strong partial clone pPol(Γw), the set of all partial
operations which cannot define a (non-projective) total operation, is covered by the submaximal
strong partial clone pPol(∆w) where ∆w = {{(0, 1, 0, 1), (1, 0, 0, 1)}}, but is not covered by any
other strong partial clone. Most likely, covering results can also be obtained for other pairs of
weak bases, and we discuss this and other open questions in Section 4.

2 Preliminaries

2.1 Partial Operations and Strong Partial Clones

A k-ary partial operation over a set D is a map f : dom(f) → D where dom(f) ⊆ Dk (k ≥ 1).
We write PARD, respectively OPD, for the set of all partial, respectively total, operations over
the set D, and let BF = OP{0,1}. If f, g ∈ PARD, both of arity k, then g is a suboperation
of f if dom(g) ⊆ dom(f) and g(x) = f(x) for each x ∈ dom(g). Partial operations compose
together in a natural way, and if f, g1, . . . , gm ∈ PARD are partial operations such that f
has arity m ≥ 1 and each gi arity n ≥ 1 then we write f ◦ g1, . . . , gm for the n-ary partial
operation f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) which is defined for (x1, . . . , xn) ∈ Dn if and only
if (x1, . . . , xn) ∈

⋂
1≤i≤m dom(gi) and (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ dom(f). Note that

since a total operation can be viewed as a special case of partial operation the above definition
is valid also in the total setting. For k ≥ 1 and 1 ≤ i ≤ k the ith projection πki is defined as
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Figure 1: A visualization of the poset (LW ,⊆). A path consisting of upward edges connecting
PC to PC′ if and only if PC ⊂ PC′.
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Table 1: Weak bases of Boolean co-clones. The rightmost column contains a base of the
corresponding clone.
C Weak base of IC Base of C
BF {Eq{0,1}(x1, x2)} {x1∧̄x2}
R0 {F(c0)} {x1 ∧ x2, x1 ⊕ x2}
R1 {T(c1)} {x1 ∨ x2, x1 ↔ x2}
R2 {F(c0) ∧ T(c1)} {x1 ∨ x2, x1 ∧ (x2 ↔ x3}
M {(x1 → x2)} {x1 ∨ x2, x1 ∧ x2, 0, 1}
M0 {(x1 → x2) ∧ F(c0)} {x1 ∨ x2, x1 ∧ x2, 0}
M1 {(x1 → x2) ∧ T(c1)} {x1 ∨ x2, x1 ∧ x2, 1}
M2 {(x1 → x2) ∧ F(c0) ∧ T(c1)} {x1 ∨ x2, x1 ∧ x2}
Sn0, n ≥ 2 {ORn(x1, . . . , xn) ∧ T(c1)} {x→ y, dual(hn)}
S0 {ORn(x1, . . . , xn) ∧ T(c1) | n ≥ 2} {x→ y}
Sn02, n ≥ 2 {ORn(x1, . . . , xn) ∧ F(c0) ∧ T(c1)} {x ∨ (y ∧ ¬z), dual(hn)}
S02 {ORn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2} {x ∨ (y ∧ ¬z)}
Sn01, n ≥ 2 {ORn(x2, . . . , xn+1) ∧ (x1 → x2 · · · xn+1) ∧ T(c1)} {dual(hn), 1}
S01 {ORn(x2, . . . , xn+1) ∧ (x1 → x2 · · · xn+1) ∧ T(c1) | n ≥ 2} {x ∨ (y ∧ z), 1}
Sn00, n ≥ 2 {ORn(x2, . . . , xn+1) ∧ (x1 → x2 · · · xn+1) ∧ F(c0) ∧ T(c1)} {x ∨ (y ∧ z), dual(hn)}
S00 {ORn(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ F(c0) ∧ T(c1) | n ≥ 2} {x ∨ (y ∧ z)}
Sn1, n ≥ 2 {NANDn(x1, . . . , xn) ∧ F(c0)} {x ∧ ¬y, hn}
S1 {NANDn(x1, . . . , xn) ∧ F(c0) | n ≥ 2} {x ∧ ¬y}
Sn12, n ≥ 2 {NANDn(x1, . . . , xn) ∧ F(c0) ∧ T(c1)} {x ∧ (y ∨ ¬z), hn}
S12 {NANDn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2} {x ∧ (y ∨ ¬z)}
Sn11, n ≥ 2 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0)} {hn, 0}
S11 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0) | n ≥ 2} {x ∧ (y ∨ z), 0}
Sn10, n ≥ 2 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0) ∧ T(c1)} {x ∧ (y ∨ z), hn}
S10 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0) ∧ T(c1) | n ≥ 2} {x ∧ (y ∨ z)}
D {Neq(x1, x2)} {x1x2 ∨ x1x3 ∨ x2x3}
D1 {Neq(x1, x2) ∧ F(c0) ∧ T(c1)} {x1x2 ∨ x1x3 ∨ x2x3}
D2 {OR2(x2, x4) ∧ Neq(x2, x3) ∧ Neq(x4, x1) ∧ F(c0) ∧ T(c1)} {h2}
L {EV4(x1, x2, x3, x4)} {x1 ⊕ x2, 1}
L0 {EV3(x1, x2, x3) ∧ F(c0)} {x1 ⊕ x2}
L1 {OD3(x1, x2, x3) ∧ T(c1)} {x1 ↔ x2}
L2 {EV3

36=(x1, . . . , x6) ∧ F(c0) ∧ T(c1)} {x1 ⊕ x2 ⊕ x3}
L3 {EV4

46=(x1, . . . , x8)} {x1 ⊕ x2 ⊕ x3 ⊕ 1}
V {(x4 ↔ x2x3) ∧ (x2 ∨ x3 → x1)} {x1 ∨ x2, 0, 1}
V0 {(x1 ↔ x2x3) ∧ F(c0)} {x1 ∨ x2, 0}
V1 {(x4 ↔ x2x3) ∧ (x2 ∨ x3 → x1) ∧ T(c1)} {x1 ∨ x2, 1}
V2 {(x1 ↔ x2x3) ∧ F(c0) ∧ T(c1)} {x1 ∨ x2}
E {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4)} {x1 ∧ x2, 0, 1}
E0 {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ F(c0)} {x1 ∧ x2, 0}
E1 {(x1 ↔ x2x3) ∧ T(c1)} {x1 ∧ x2, 1}
E2 {(x1 ↔ x2x3) ∧ F(c0) ∧ T(c1)} {x1 ∧ x2}
N {EV4(x1, x2, x3, x4) ∧ x1x4 ↔ x2x3} {x1, 0, 1}
N2 {EV4

46=(x1, . . . , x8) ∧ x1x4 ↔ x2x3} {x1}
I {(x1 ↔ x2x3) ∧ (x4 ↔ x2x3)} {π1

1 , 0, 1}
I0 {(x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ F(c0)} {π1

1 , 0}
I1 {(x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ T(c1)} {π1

1 , 1}
I2 {R1/3

36= (x1, . . . , x6) ∧ F(c0) ∧ T(c1)} {π1
1}

πki (x1, . . . , xi, . . . , xk) = xi, and a suboperation of a projection is a a partial projection.

Definition 1. A set C ⊆ OPD is a clone if C contains all projections over D and C is closed
under composition, and a set P ⊆ PARD is a strong partial clone if P contains all partial
projections over D and P is closed under composition.

If F is a set of (partial) operations then we write [F ] (respectively [F ]s) for the intersection
of all (strong partial) clones containing F , and say that F is a base.

2.2 Partial Polymorphisms and Relations

Clones and strong partial clones can also be described through relations. First, let RelD be the set
of all (finitary) relations over D ⊆ N. Then, given a k-ary relation R ∈ RelD and an n-ary partial
operation f ∈ PARD we say that f preserves R, or that R is invariant under f , if for each sequence
t1, . . . , tn ∈ R it holds that either f(t1, . . . , tn) := (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])) ∈ R
or that there exists i such that (t1[i], . . . , tn[i]) /∈ dom(f) (where ti[j] is the jth element of ti).

If we then let Pol(Γ) (respectively pPol(Γ)) be the set of all (partial) operations preserving
each relation in Γ, it is easy to verify that pPol(Γ) forms a strong partial clone and that Pol(Γ)
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Table 2: Relations.
Relation Definition

F {(0)}
T {(1)}
Neq {(0, 1), (1, 0)}
EVn {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . .+ xn is even}
EVn

n 6= EVn(x1, . . . , xn) ∧Neq(x1, xn+1) ∧ . . . ∧Neq(xn, x2n)
ODn {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . .+ xn is odd}
ODn

n 6= ODn(x1, . . . , xn) ∧Neq(x1, xn+1) ∧ . . . ∧Neq(xn, x2n)
ORn {0, 1}n \ {(0, . . . , 0)}
NANDn {0, 1}n \ {(1, . . . , 1)}
R1/3

3 6= {(0, 0, 1, 1, 1, 0), (0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1)}

forms a clone. Dually, if F ⊆ PARD, we let Inv(F ) ⊆ RelD (sometimes written IF) be the set of
all relations invariant under each (partial) operation in F . The operator Inv(·) relate to pPol(·)
and Pol(·) in the following sense.

Theorem 2 ([4, 5, 8, 15]). Let Γ and ∆ be two sets of relations over a finite set. Then (1)
Γ ⊆ Inv(Pol(∆)) if and only if Pol(∆) ⊆ Pol(Γ), and (2) Γ ⊆ Inv(pPol(∆)) if and only if
pPol(∆) ⊆ pPol(Γ).

It is sometimes easier to work with Inv(F ) directly instead of invoking its corresponding
(strong partial) clone. Fortunately, these are well-behaved sets of relations, in the following
sense: if F consists of total operations, then Inv(F ) is closed under formation of first-order
formulas consisting of existential quantification, conjunction, and equality constraints, primitive
positive definitions (pp-definitions). To make this a bit more precise, first observe that the set
of models of a first-order formula ϕ(x1, . . . , xn) can be viewed as a relation R, and we then
write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) for R = {(f(x1), . . . , f(xn)) | f is a model of ϕ(x1, . . . , xn)}.
Then, if Γ ⊆ RelD, a primitive positive definition of an n-ary R ∈ RelD over Γ is simply the
condition that R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ :R1(x1) ∧ . . . ∧Rm(xm) where each Ri ∈ Γ ∪ {EqD}
and each xi is a tuple of variables over x1, . . . , xn, y1, . . . , yn′ . Here, EqD = {(x, x) | x ∈ D} is
the equality relation over D. Similarly, if F ⊆ PARD it is known that Inv(F ) is closed under
quantifier-free primitive positive definitions (qfpp-definitions) which are simply primitive positive
definitions without existential quantification.

If we let 〈Γ〉 (respectively 〈Γ〉 6∃) be the smallest set of relations containing Γ and which is closed
under pp-definitions (respectively, qfpp-definitions), then it is known that 〈Γ〉 = Inv(Pol(Γ)) and
that 〈Γ〉6∃ = Inv(pPol(Γ)). The sets 〈Γ〉 and 〈Γ〉 6∃ are furthermore known as relational clones, or
co-clones, and weak systems, or weak co-clones. In both cases we refer to the set Γ as a base of
〈Γ〉 or 〈Γ〉 6∃. Our main usage of this correspondence in this paper will be to show an inclusion of
the form pPol(Γ) ⊆ pPol(∆) by proving that each relation in ∆ is qfpp-definable over Γ.

2.3 Intervals of Strong Partial Clones and Weak Bases

The lattice of strong partial clones is of continuum cardinality even in the Boolean domain. The
maximal elements have been determined [13][Section 20.4] and recently it was also proven that
no minimal elements can exist [6], but in more general terms a complete understanding is still
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out of reach. A slightly more manageable strategy is to first fix a clone C and then describe the
set of all strong partial clones corresponding to the clone C, motivating the following definition.

Definition 3. Let C be a clone over a set D. We define the set LD |C = {pPol(Γ) | Γ ⊆
RelD,Pol(Γ) = C}.

Hence, LD |C is the set of all strong partial clones over D whose total component equals the
given clone C. Say that a clone C is finitely related if there exists a finite Γ ⊆ RelD such that
Pol(Γ) = C. Schnoor & Schnoor [16] proved that if C is finitely related then LD |C has a greatest
element, namely the union of all members of LD |C.

Theorem 4. [16] Let C be a clone over a finite set D. If C is finitely related, then (
⋃∞

P∈LD |C P)∩
OPD = C.

The fact that a greatest element exists motivates the following definition.

Definition 5. Let C be a clone over D. We say that Γ ⊆ RelD is a weak base of Inv(C) if
pPol(Γ) = (

⋃∞
P∈LD |C P).

In relational terms Definition 5 then implies that 〈Γ〉 6∃ ⊆ 〈∆〉 6∃ for each base ∆ of Inv(C).
Hence, a weak base is a base of Inv(C) minimally expressive with respect to qfpp-definitions.
Boolean weak bases were fully described by Lagerkvist [11] and we refer the reader to Table 2.1 for
a comprehensive list. Each entry consists of a Boolean clone C, a weak base of IC, and a base of C.
Here, and in the sequel, we will define Boolean relations and operations by logical formulas and
employ infix notation whenever convenient. Variables are typically named x1, . . . , xn or x, y, z,
with the exception of variables which are assigned constant values 0 and 1. These are instead
denoted by c0 and c1, respectively, and we typically assume that c0 occurs as the first argument
and c1 as the last. For example, we write x for f(0) = 1, f(1) = 0, x1∧̄x2 for f(0, 0) = 1, f(0, 1) =
f(1, 0) = f(1, 1) = 0, and x1 ↔ x2 for f(0, 0) = 1, f(0, 1) = f(1, 0) = 0, f(1, 1) = 1. In addition,
we will frequently write x1 · · ·xn instead of x1 ∧ . . . ∧ xn, and write 0 and 1 for the two constant
Boolean operations. Hence, logical formulas are used to denote both operations and relations, but
the intended meaning will always be clear from the context. For example, the entry for the clone V
in Table 2.1 consists of the base {x1∨x2, 0, 1} and the logical formula (x4 ↔ x2x3)∧(x2∨x3 → x1)
which defines the 4-ary relation {(0, 0, 0, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)} which is a
weak base of IV.

In addition, for each n ≥ 2, we let hn(x1, . . . , xn+1) =
∨n+1

i=1 x1 · · ·xi−1xi+1 · · ·xn+1, and for

each n-ary Boolean operation f , we let dual(f)(x1, . . . , xn) = f(x1, . . . , xn). Definitions of the
additional relations used in Table 2.1 can be found in Table 2.

3 Structure of Boolean Weak Bases

Given a Boolean weak base Γw, our goal is to describe every weak base ∆w such that pPol(Γw) ⊂
pPol(∆w). To simplify the notation, given a Boolean clone C, we write WC for the weak base of
Inv(C) from Table 2.1 and PC for pPol(WC). Furthermore, let LW = {PC | C is a Boolean clone}.
Hence, we need to describe the set LW with respect to the partial order ⊆. At a first glance
this problem might appear to be straightforward due to Table 2.1 in combination with Post’s
lattice of Boolean clones [14]. What one needs to do is to, for every Boolean clone C and every
Boolean clone C′ such that C ⊂ C′, verify whether the inclusion PC ⊂ PC′ holds or not. This can
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Table 3: Qfpp-definition of WC2 over WC1.
C2 C1 WC2 ∈ 〈{WC1}〉6∃
D1 I2 WD1(c0, x1, x2, c1)≡ WI2(c0, c0, x1, x2, c1, x2, c1, c1)
R0 I0 WR0(c0) ≡WI0(c0, c0, c0, c0)
R1 I1 WR1(c1) ≡WI1(c1, c1, c1, c1)
M I WM(x1, x2) ≡WI(x1, x1, x2, x2)
D N2 WD(x1, x2) ≡WN2(x1, x2, x1, x2, x1, x2, x1, x2)
S2

00 V2 WS200(c0, x1, x2, x3, c1) ≡WV2(c0, x2, x3, c1, c1) ∧WV2(c0, x2, x1, x2, c1) ∧WV2(c0, x3, x1, x3, c1)
M0 V0 WM0(c0, x1, x2) ≡WV0(c0, x1, x2, x2)
S201 V1 WS201(x1, x2, x3, c1) ≡WV1(x1, x2, x3, c1, c1)
M V WM(x1, x2) ≡WV(x2, x2, x1, x1)
S210 E2 WS210(c0, x1, x2, x3, c1) ≡WE2(c0, c0, x2, x3, c1) ∧WE2(c0, x2, x1, x2, c1) ∧WE2(c0, x3, x1, x3, c1)
S211 E0 WS211(c0, x1, x2, x3) ≡WE0(c0, c0, x3, x2, x1)
M1 E1 WM1(x1, x2, c1) ≡WE1(x1, x2, x2, c1)
D1 L2 WD1(c0, x1, x2, c1) ≡WL2(c0, c0, x1, x1, x2, x2, c1, c1)
D L3 WD(x1, x2) ≡WL3(x1, x2, x2, x1, x1, x2, x1, x1, x2)
R1 L1 WR1(c1) ≡WL1(c1, c1, c1, c1)
R0 L0 WR0(c1) ≡WL1(c0, c0, c0, c0)
D1 D2 WD1(c0, x1, x2, c1) ≡WD2(c0, c1, x1, c0, x2, c1)
R2 D1 WR2(c0, c1) ≡WD1(c0, c0, c1, c1)
R2 M2 WR2(c0, c1) ≡WM2(c0, c0, c0, c1)
R1 M1 WR1(c1) ≡WM1(c1, c1, c1)
R0 M0 WR0(c0) ≡WM0(c0, c0, c0)
M2 S200 WM2(c0, x1, x2, c1) ≡WS200(c0, x1, x2, c1, c1)
M1 S201 WM1(x1, x2, c1) ≡WS201(x1, x2, c1, c1)
R2 S202 WR2(c0, c2) ≡WS202(c0, c1, c1, c0)
R1 S20 WR1(c1) ≡WS20(c1, c1, c1)
M2 S210 WM2(c0, x1, x2, c1) ≡WS210(c0, x1, c0, x2, c1)
M0 S211 WM0(c0, x1, x2) ≡WS211(c0, x1, c0, x2)
R2 S212 WR2(c0, c2) ≡WS212(c0, c0, c0, c1)
R0 S21 WR2(c0) ≡WS21(c0, c0, c0)

be done by either showing that WC′ ⊂ 〈WC〉6∃, implying that PC ⊂ PC′, or by finding a partial
operation f preserving WC but not WC′. All inclusions of the former kind are visualised in
Figure 1 and are proved in Table 3 and Lemma 8. This figure makes it clear that a large number
of inclusions valid in Post’s lattice are no longer valid in LW . However, to prove this rigorously
we for each pair of clones C,C′ where C ⊂ C′ but not connected by an edge in Figure 1, would
need to provide an operation preserving WC but not WC′. This is conceptually easy but rather
impractical due to the large number of cases that needs to be considered, and we propose a
simpler method. First, if C1 ⊂ C2 are two clones, then C2 is said to cover C1 if there does not
exist a clone C′ such that C1 ⊂ C′ ⊂ C2, and we let Cov(C) be the set of all clones covering C.
We then make the following observation.

Theorem 6. Let C1 ⊂ C3 ⊆ C2 be Boolean clones such that C3 ∈ Cov(C1). If [PC1∪C3]s∩BF 6⊆
C2, then PC1 6⊆ PC2.

Proof. If PC1 ⊂ PC2, then PC2 ⊇ [PC1 ∪ C3]s since C3 ⊆ C2. But then WC2 cannot be a weak
base of Inv(C2) since Pol(WC2) 6= C2 by the assumption that C2 does not contain [PC1∪C3]s∩BF.
Hence, PC1 6⊆ PC2.

The advantage of Theorem 6 is therefore that we in practice only need to consider Cov(C)
instead of an arbitrary clone, in order to rule out possible inclusions in LW . Hence, for each
Boolean clone C and C′ ∈ Cov(C) we need to determine the strong partial clone [PC ∪ C′]s.
In other words we need to determine which total operations that are definable using partial
polymorphisms of WC together with the new total operations from C′. To this aid we begin by
defining the following.

7



Definition 7. Let f, f1, . . . , fm ∈ OP{0,1} be operations of arity n. Define the (m + n)-ary
partial operation gff1,...,fm with domain dom(gff1,...,fm) = {(f1(x), . . . , fm(x),x) | x ∈ {0, 1}n},
such that gff1,...,fm(f1(x), . . . , fm(x),x) = f(x) for each x ∈ {0, 1}n.

The point of Definition 7 is therefore to construct a partial operation gff1,...,fm using given
operations f1, . . . , fm such that f ∈ [{f1, . . . , fm, gff1,...,fm}]s. In the case when some fi does
not depend on all its arguments, i.e., there exists gi ∈ [{fi}] of arity less than n such that
fi ∈ [{gi}], we will typically write gff1,...,gi,...,fm instead of gff1,...,fi,...,fm since the intended ordering
of arguments will always be clear from the context. Let us illustrate how this construction can
be used together with Theorem 6 by an example.

Example 1. Consider the three clones BF, I2,N2. Using the bases from Table 2.1 we have
that BF = [{x∧̄y}], I2 = [{π11}], and N2 = [{x}]. In order to apply Theorem 6 we show that
x∧̄y ∈ [PI2∪{x}]s. Let f(x, y) = x∧̄y and f1(x) = x. Using Definition 7 we construct the ternary
partial operation gff1, resulting in a partial operation with domain {(f1(x), x, y) | x, y ∈ {0, 1}}
defined such that gff1(f1(x), x, y) = x∧̄y for all x, y ∈ {0, 1}. In other words gff1(1, 0, 0) = 1
and gff1(1, 0, 1) = gff1(0, 1, 0) = gff1(0, 1, 1) = 0, and it is readily verified that gff1 preserves WI2.
Theorem 6 then implies that PI2 6⊆ PC for every clone C such that N2 ⊆ C and C 6= BF.

The main technical difficulty is to choose the operations f1, . . . , fm in a suitable way such
that the resulting partial operation gff1,...,fm actually preserves WC. We have organised these
definitions in Table 3, which should be interpreted as follows. First, each entry begins with
three distinct clones C1,C2,C3 where C3 ∈ Cov(C1) and PC1 ⊂ PC2. This is followed by one, or
possibly two, operations f, f ′ such that [C3 ∪ {f, f ′}] = C2. The last element of the entry then
consists of operations f1, . . . , fm, f

′
1, . . . , f

′
m ∈ C3 such that gff1,...,fm and gf

′

f ′1,...,f
′
m

preserve WC1
1.

Hence, Theorem 6 implies that PC1 6⊆ PC′ for any C′ such that C3 ⊆ C′ ⊂ C2.

Example 2. Consider the entry in Table 3 for R2, I2, E2. Then f(x, y) = x ∨ y, f ′(x, y, z) =
x ∧ (y ↔ z), and E2 = [{∧}]. The provided definitions of f1, f ′1, and f ′2 are f1(x, y) = x ∧ y,

f ′1(x, y, z) = x ∧ y, and f ′2(x, y, z) = x ∧ z, resulting in partial operations gff1 and gf
′

f ′1,f
′
2

defined

such that gff1(x ∧ y, x, y) = f(x, y) = x ∨ y and gf
′

f ′1,f
′
2
(f ′1(x, y, z), f

′
2(x, y, z), x, y, z) = gf

′

f ′1,f
′
2
(x ∧

y, x ∧ z, x, y, z) = f ′(x, y, z) = x ∧ (y ↔ z). Hence, [PI2 ∪ E2]s contains R2, and Theorem 6 then
implies that PI2 6⊆ PC for every E2 ⊆ C ⊂ R2.

We now turn to the infinite chains in Post’s lattice, i.e., clones C containing S00 but contained
in S20, or their dual clones S10 and S21.

Lemma 8. Let n ≥ 2. Then PSn+1
0 ⊂ PSn0 , PSn+1

02 ⊂ PSn02, PSn+1
01 ⊂ PSn01, PSn+1

00 ⊂ PSn00, and
PSn00 ⊂ PSn02. Moreover, PC 6⊆ PC′ for any other two clones C,C′ ∈ {Sn0 ,Sn02, Sn01,Sn00 | n ≥ 2}.

Proof. The inclusions can be proved via the qfpp-definitions:

WSn0 (x1, . . . , xn, c1) ≡WSn+1
0 (x1, x1, x2, . . . , xn, c1),

WSn02(c0, x1, . . . , xn, c1) ≡WSn+1
02 (c0, x1, x1, x2, . . . , xn, c1),

WSn01(x1, . . . , xn, c1) ≡WSn+1
01 (x1, x1, x2, . . . , xn, c1),

1The preservation condition has been formally verified by a computer program for all entries in the table.
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Table 4: Partial operations witnessing non-inclusions in Figure 1.
C2,C1,C3 f, f ′ (f1, . . . , fm), (f ′1, . . . , f

′
m)

D1, I2,D2 xy ∨ xz̄ ∨ yz̄ (h2(x, y, z))
D1, I2, L2 xy ∨ xz̄ ∨ yz̄ (x⊕ y ⊕ z)
R2, I2,E2 x ∨ y, x ∧ (y ↔ z) (x ∧ y), (x ∧ y, x ∧ z)
R2, I2,V2 x ∧ y, x ∧ (y ↔ z) (x ∨ y), (x ∨ y, x ∨ z)
BF, I2, I0 x∧̄y (0)
BF, I2, I1 x∧̄y (1)
BF, I2,N2 x ∧ y (x)
R1, I1,V1 x↔ y (x ∨ y)
R1, I1, L1 x ∨ y (x↔ y)
R1, I1,E1 x ∨ y, x↔ y (x ∧ y), (x ∧ y)
R1, I1, I x ∨ y, x↔ y (0), (0)
R0, I0,E0 x⊕ y (x ∧ y)
R0, I0, L0 x ∧ y (x⊕ y)
R0, I0,V0 x ∧ y, x⊕ y (x ∨ y), (x ∨ y)
R0, I0, I x ∧ y, x⊕ y (1), (1)
M, I,V x ∧ y (x ∨ y)
M, I,E x ∨ y (x ∧ y)
M, I,N x ∨ y, x ∧ y (1), (1)
D,N2,N xy ∨ xz̄ ∨ ȳz̄ (1)
D,N2, L3 xy ∨ xz̄ ∨ ȳz̄ (x⊕ y ⊕ z ⊕ 1)
BF,N, L x∧̄y (x⊕ y)
BF,V2,V1 x∧̄y (1)
BF,V2,V0 x∧̄y (0)
S200,V2, S00 h2(x, y, z) (x ∨ yz, y ∨ xz, z ∨ xy)
S201,V1, S01 h2(x, y, z) (x ∨ yz, y ∨ xz, z ∨ xy)
S201,V1,V h2(x, y, z) (0)
M0,V0,V x ∧ y (1)
S210,E2,E1 x ∧ (y ∨ z), h2(x, y, z) (1), (1)
S210,E2,S10 h2(x, y, z) (xy ∨ xz, yx ∨ yz, zx ∨ zy)
S210,E2,E0 x ∧ (y ∨ z), h2(x, y, z) (0), (0)
M1,E1,E (x ∧ y) (0)
S211,E0,S11 h2(x, y, z) (xy ∨ xz, yx ∨ yz, zx ∨ zy)
S211,E0,E h2(x, y, z) (1)
BF, L2, L0 x∧̄y (x⊕ y)
BF, L2, L3 x∧̄y (y ⊕ y ⊕ x⊕ 1)
BF, L2, L1 x∧̄y (x↔ y)
D, L3, L xy ∨ xz̄ ∨ ȳz̄ (1)
R1, L1, L x ∨ y (1)
R0, L0, L x ∧ y (1)
D1,D2, S

2
00 xy ∨ xz̄ ∨ yz̄ (x ∨ yz)

BF,D1,D x∧̄y (xy ∨ x̄ȳ)
BF,R2,R1 x∧̄y (x↔ y)
BF,R2,R0 x∧̄y (x⊕ y)
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WSn00(c0, x1, . . . , xn, c1) ≡WSn+1
00 (c0, x1, x1, x2, . . . , xn, c1),

and
WSn02(c0, x1, . . . , xn, c1) ≡WSn00(c0, c0, x1, . . . , xn, c1).

For a case PC 6⊆ PC′ where inclusion does not hold we provide a partial operation f preserving
WC′ but not WC. Let f be the unary partial operation f(1) = 0. We claim that f ∈ PSk02 \ PSn0 ,
where n ≥ 2. From Table 2.1 we see that t[1] = 0 for every t ∈ WSk02, implying that f(t) is
always undefined and that f preserves WSk02. On the other hand, 1n ∈ WSn0 but 0n 6∈ WSn0 ,
where 1n = (1, . . . , 1) and 0n = (0, . . . , 0) (both n-ary tuples) implying that f(1n) /∈WSn0 . Using
similar arguments it can be seen that f ∈ Pol Sk

00 \ Pol Sn
0 and f ∈ PSk

00 \ Pol Sn
01.

For the remaining case we define a binary partial operation f ′ such that dom(f ′) =
{(0, 1), (1, 0), (1, 1)} and f ′(0, 1) = f ′(1, 0) = 0, f ′(1, 1) = 1. From Table 2.1 we see that
WSk01 = {(0, x1, . . . , xn)|(x1, . . . , xn) ∈ {0, 1}k−1 \ 0k−1} ∪ {1k+1}. This means that f ′(s, t) is
defined for s, t ∈WSk01 only if there does not exist i ∈ {1, . . . , k} such that s[i] = t[i] = 0. Hence,
if f(s, t) is defined, then at least one of s and t is equal to 1n. If s = t = 1k, then f ′(s, t) = 1k,
and if s 6= t, then from the definition of f ′ it must be the case that f ′(s, t) = s assuming t = 1k

(the case when s = 1k is symmetric). This proves that f ′ ∈ PSk01. On the other hand, there exists
u, v ∈ WSn0 such that u[i] ⊕ v[i] = 1 for i ∈ {1, . . . , n}, and such that u[n + 1] = v[n + 1] = 1.
This implies that f ′(u, v) is defined and returns a tuple w where w[i] = 0 for i ∈ {1, . . . , n}, and
where w[n + 1] = 1. But then w 6∈ WSn0 . Hence, we conclude that f ′ preserves WSk01 but not
WSn0 .

Lemma 8 is also valid for PS0,PS02,PS01,PS00, and can be proved for the dual clones in
Figure 1 using entirely analogous arguments. Finally, by combining the results in this section
we may now prove the main result of the paper.

Theorem 9. Let C,C′ be two Boolean clones. Then PC ⊂ PC′ if and only if there exists a path
consisting of upward edges connecting PC to PC′ in Figure 1.

Proof. All positive inclusions in Figure 1 follow from Table 3 and Lemma 8. Assume that
PC 6⊆ PC′ according to Figure 1 but that C ⊂ C′. If S00 ⊆ C ⊆ S20, or S10 ⊆ C ⊆ S21, then the
non-inclusion follows from Lemma 8. Otherwise there exists an entry C2,C,C3 in Table 3 such
that C3 ∈ Cov(C), C3 ⊆ C ′, f, f ′ ∈ C2, g

f
f1,...,fm

, gf
′

f ′1,...,f
′
m
∈ PC and f1, f

′
1, . . . , fm, f

′
m ∈ C3 such

that [{gff1,...,fm , g
f ′

f ′1,...,f
′
m
, f1, . . . , fm, f

′
1, . . . , f

′
m}]s ⊆ [PC ∪ C3]s ∩ BF 6⊆ C′. Theorem 6 then gives

the desired result that PC 6⊆ PC′.

Theorem 9 can also be used to prove a stronger result for the two weak bases PI2 and PD1.
These two weak bases have appeared in the literature before: PI2 has been proved to result in
the “easiest NP-complete satisfiability problem” [10], and PD1 is known to be a submaximal
strong partial clone, i.e., is covered by a maximal strong partial clone. We can then prove that
PI2 is uniquely covered by PD1.

Theorem 10. PI2 is covered by PD1 and by no other Boolean strong partial clone.

Proof. According to Theorem 9 and Figure 1, PI2 ⊂ PD1 ⊂ PR2 ⊂ PBF, and there does not exist
any other clone C such that PI2 ⊂ PC. Assume, with the aim of reaching a contradiction, that
there exists pPol(Γ) covering PI2 but which is distinct from PD1, and let Pol(Γ) = C. First, we
observe that it must then be the case that I2 ⊆ C ⊆ D1, since PI2 is incomparable to PC ⊇ pPol(Γ)
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otherwise. Second, I2 ⊂ C ⊂ D1 cannot happen either since pPol(Γ) ⊆ PC, and we have already
established that PI2 6⊆ PC. Hence, either C = I2 or C = D1. The first case cannot occur since
it would imply that WI2 is not a weak base of II2, which leaves only the case when C = D1.
According to Haddad & Simons [9] this can only occur if pPol(Γ) is equal to pPol({WD1,F}),
pPol({WD1,T}), pPol({Neq× T}), pPol({Neq× F}), or pPol({Neq,F× T}). For each of these
cases it is then readily verified that PI2 6⊆ pPol(Γ). For example, if Γ = {WD1,F} then the
partial operation f(0) = 1 preserves WI2 but does not preserve F ∈ Γ.

4 Concluding Remarks

In this paper we have fully described the inclusion structure of Boolean weak bases. An interesting
continuation, especially in light of Theorem 10, is to verify, or disprove, that an inclusion between
PC and PC′ in Figure 1 also implies that PC is covered by PC′. Another suitable topic is to
study weak bases over arbitrary finite domains. In this setting we cannot hope for a complete
classification akin to Figure 1, but even partial results could be of interest. For example, given a
minimal clone C over a finite domain D, is it possible to describe a weak base of Inv(C)?
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