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Abstract

A hyperoperation is a mapping from a domain to the powerset
of the domain. Hyperoperations can be composed together to form
new hyperoperations, and the resulting sets are called hyperclones.
In this paper we study the lattice of restriction-closed hyperclones
over finite domains. Such hyperclones form a natural subclass of
hyperclones but have received comparably little attention. We give a
complete description of restriction-closed hyperclones, relative to the
clone lattice, and also outline some important open questions to resolve
when studying hyperclones over partially defined operations.

1 Introduction
A clone is a set of operations over a given domain which (1) contains
all operations returning the value of a fixed argument, and (2) is closed
under composition. Clones occur naturally in universal algebra since
a clone generated by a set of operations F may be viewed as the
term algebra generated by F . From an applied point of view clones
are important in computational complexity due to their connection
to e.g. constraint satisfaction problems (CSPs) [2, 14]. For example,
computational properties of CSPs can be rephrased as properties of
clones, which in turn has a strong connection to sets of relations
closed under existentially quantified conjunctive formulas with equality,
primitive positive definitions (pp-definitions).

A hyperclone, or a clone of multifunctions, is a generalisation of a
clone where the operations may return sets instead of single elements
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from the domain [13, 11]. Despite being a natural generalisation of
clones, comparably little is known about hyperclones, except for a hand-
ful of completeness results [8, 3, 9]. One reason for this discrepancy,
or at least a complicating factor, is that the relational counterparts
to hyperclones are more complicated and less natural than closure
under pp-definitions (cf., Colic et al [4]). However, there exists a re-
striction of hyperclones admitting a natural relational description in
terms of existentially quantified conjunctive formulas (without equality),
equality-free primitive positive definition (efpp-definitions). The hyper-
clones resulting from this correspondence are then restriction-closed,
meaning that any restriction of a hyperoperation in the hyperclone also
belongs to it (see Section 2 for the definition of a restriction). Efpp-
definitions can e.g. be useful when the presence of equality constraints
affect the structure of a CSP instance, which has been used to relate
the complexity of degree-bounded CSPs to a complexity theoretical
conjecture known as the exponential-time hypothesis [6]. However, de-
spite the potential of applications in computational complexity, and a
natural connection to efpp-definitions, very little is known about the
restriction-closed case. One exception is Romov [11] who proved that
each Boolean clone splits up into at most two restriction-closed hyper-
clones, and classified the Boolean clones according to this property. In
contrast, the lattice of hyperclones is uncountably infinite even in the
Boolean domain [7], suggesting a large difference to restriction-closed
hyperclones.

In this paper we continue the study of restriction-closed hyperclones,
with a particular focus of describing the set, sometimes called an interval,
of restriction-closed hyperclones corresponding to a given clone. After
having defined the most important preliminaries (in Section 2) we in
Section 3 tackle this problem for arbitrary finite domains. We begin by
outlining various relational simplifications based on efpp-definability
in Section 3.1, and then apply this in Section 3.2 to give a precise
description of intervals of restriction-closed hyperclones. In particular,
our classification implies that each clone splits into a finite number of
restriction-closed hyperclones, meaning that the lattice of restriction-
closed hyperclones is not significantly more complicated than the clone
lattice. In Section 4 we also consider the corresponding classification
question for restriction-closed hyperclones over partial hyperoperations.
Although partial hyperoperations have been studied before, little is
known for the restricted-closed case. Here, our results are more example
driven, and we give examples where the corresponding intervals differ
from the total case. Last, we wrap up the paper by highlighting future
research directions in Section 5.
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2 Preliminaries
Throughout, we let D ⊆ N denote a fixed set of elements, usually called
a domain or a universe.

2.1 Relations
If R ⊆ Dn is an n-ary relation then we let ar(R) = n denote its arity.
For an n-tuple t = (d1, . . . , dn) ∈ Dn and 1 ≤ i ≤ n we let t[i] be the
ith element of t, i.e., t[i] = di. More generally, if i1, . . . , ik ∈ {1, . . . , n},
1 ≤ k ≤ n, are mutually distinct indices of an n-ary relation R we write
Proji1,...,ik

(R) for the projection of R onto i1, . . . , ik, i.e.,

Proji1,...,ik
(R) = {(t[i1], . . . , t[ik]) | t ∈ R}.

We write RD for the set of all relations over a given domain D.
A relation R ∈ RD is said to be irredundant if there does not exist
distinct indices i, j ∈ {1, . . . , ar(R)} such that t[i] = t[j] for each t ∈ R,
and we write IRD for the set of all irredundant relations over D. If
ϕ(x1, . . . , xn) is a first-order formula with free variables x1, . . . , xn then
we write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) to define the relation

R = {(f(x1), . . . , f(xn)) | f is a model of ϕ(x1, . . . , xn)}.

Write EqD = {(x, x) | x ∈ D} for the equality relation over D. Let
f = ∅ (viewed as a unary relation) and t = D, and observe that f(x) is
always false and that t(x) is always true (and equivalent to EqD(x, x)).

Definition 1. An n-ary relation R over D is said to have a primitive
positive definition (pp-definition) over Γ ⊆ RD if

R(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+n′ :
R1(x1) ∧ . . . ∧Rm(xm),

where each Ri ∈ Γ ∪ {EqD, f, t} and each xi is an ar(Ri)-ary tuple of
variables over x1, . . . , xn, xn+1, . . . , xn+n′ .

If, in addition, each Ri ∈ Γ ∪ {f, t} then we say that R has an
equality-free primitive positive definition (efpp-definition) over Γ. Let
〈Γ〉6= be the set of efpp-definable relations over Γ and 〈Γ〉 be the set
of pp-definable relations over Γ. Note that 〈Γ〉6= ⊆ 〈Γ〉 for each set
Γ ⊆ RD but that equality does not necessarily hold.

2.2 Operations
We now consider the functional counterparts to pp- and efpp-definitions
from the preceding section. Let P(D) be the powerset of a set D.
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A k-ary function f : Dk → P(D) \ {∅} is said to be a hyperoperation,
or multifunction, over D. If R is an n-ary relation over D then a
k-ary hyperoperation f is said to preserve R if f(t1, . . . , tk) ⊆ R for a
sequence of tuples t1, . . . , tk ∈ R, where

f(t1, . . . , tk) = f(t1[1], . . . , tk[1])× . . .× f(t1[n], . . . , tk[n]).

If this holds we also say that f is a hyperpolymorphism of R, or that R
is invariant under f . This notion easily generalises to sets of relations
and we say that f preserves Γ ⊆ RD if f preserves each relation in Γ. If
f and g are two k-ary hyperoperations we say that g is a restriction of f
if g(x1, . . . , xk) ⊆ f(x1, . . . , xk) for all x1, . . . , xk ∈ D. It is well-known,
and easy to verify, that if f preserves a set of relations Γ then each
restriction g of f also preserves Γ. If F is a set of hyperoperations
where f ∈ F implies that g ∈ F for each restriction g of f , then F is
said to be restriction-closed.

A hyperoperation f : Dk → P(D) \ {∅} is said to be elementary if
|f(x1, . . . , xk)|= 1 for all sequences of arguments x1, . . . , xk ∈ D, and
for simplicity we typically do not make a sharp distinction between
elementary hyperoperations and operations from Dk to D. The set of
all hyperpolymorphisms of a set of relations Γ is written as hPol(Γ),
and we similarly let Pol(Γ) be the set of all polymorphisms, i.e., the set
of all elementary hyperpolymorphisms of Γ. Sets of the form Pol(Γ) are
called clones, and sets of the form hPol(Γ) restriction-closed hyperclones
or clones of multifunctions.

Dually, we let Inv(F ) be the set of relations invariant under the set
of (hyper)operations F . It is then known that 〈Γ〉6= = Inv(hPol(Γ))
and that 〈Γ〉 = Inv(Pol(Γ)). Morevoer, hyperoperations, operations,
efpp-definitions, and pp-definitions can be related as follows.
Theorem 2 ([5, 10]). Let Γ and ∆ be two sets of relations. Then (1)
Γ ⊆ 〈∆〉6= if and only if hPol(∆) ⊆ hPol(Γ) and (2) Γ ⊆ 〈∆〉 if and
only if Pol(∆) ⊆ Pol(Γ).

The definition of a hyperoperation is easy to tweak into the setting
of partially defined operations: say that f is a partial hyperoperation if
f : Dn → P(D). Here, f(x1, . . . , xn) = ∅ is treated as an undefined value
(recall that the definition of a hyperoperation prohibited the empty set
in the image of a hyperoperation). The basic definitions immediately
carry over to this setting, and we let hpPol(Γ) be the set of all partial
hyperpolymorphisms of a set of relations Γ. Such sets have been referred
to as restriction-closed partial hyperclones [12]. On the relational side
the corresponding closure operator is then closure under efpp-definitions
without existential quantification, and we write 〈Γ〉 6=6∃ for the smallest
set of relations containing Γ which is closed under such definitions.
Similarly to the total case we say that a partial hyperoperation is
elementary if its image consists only of singleton sets and ∅, in which
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case it is simply called a partial operation, and a partial, elementary
hyperpolymorphism of Γ is called a partial polymorphism of Γ. We
write pPol(Γ) for the set of all partial polymorphisms of Γ, a strong
partial clone, and let 〈Γ〉6∃ be the smallest set of relations containing
Γ closed under pp-definitions without existential quantification. It is
then known that 〈Γ〉6=6∃ = Inv(hpPol(Γ)), that 〈Γ〉6∃ = Inv(pPol(Γ)),
and that the operators can be related as follows.

Theorem 3 ([10, 12]). Let Γ and ∆ be two sets of relations. Then (1)
Γ ⊆ 〈∆〉 6=6∃ if and only if hpPol(∆) ⊆ hpPol(Γ) and (2) Γ ⊆ 〈∆〉6∃ if
and only if pPol(∆) ⊆ pPol(Γ).

Last, let us remark that clones, hyperclones, and their partial
variants can all be defined purely from the functional side by defining
a suitable notion of functional composition. However, in this paper we
settle with relational definitions since most of our results are proven in
this setting.

3 The Lattice of Restriction-Closed Hyper-
clones
In this section we tackle the main problem in the paper, i.e., that
of describing the restriction-closed hyperclones over a fixed, finite
domain. In Section 3.2 we will see that this question to a great extent
can be simplified by first fixing a clone C and then concentrate on
describing the restriction-closed hyperclones whose set of elementary
operations equals C. However, let us first begin by establishing some
fundamental properties of efpp-definitions, which will greatly simplify
the forthcoming proofs.

3.1 Properties of Efpp-Definitions
For an n-ary relation R over D we let

ER = {(i, j) ∈ {1, . . . , n}2 | i 6= j,∀t ∈ R: t[i] = t[j]}.

Thus, ER returns a set of indices where each pair witnesses an argument
in R which is not irredundant.

Example 1. For any irredundant relation R we have that ER = ∅. For
the equality relation EqD we instead get EEqD

= {(1, 2), (2, 1)}.

Lemma 4. If R ∈ 〈Γ〉 then there exists a pp-definition of R over Γ
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such that

R(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+m:

ϕ(x1, . . . , xn, xn+1, . . . , xn+m) ∧
∧

(i,j)∈ER

EqD(xi, xj)

where ϕ(x1, . . . , xn, xn+1, . . . , xn+m) is equality-free.

Proof. Let ER = {(i1, j1), . . . , (ik, jk)}, and take a pp-definition

R(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+m:

ϕ(x1, . . . , xn, xn+1, . . . , xn+m) ∧
∧

(i,j)∈I

EqD(xi, xj)

for a set I ⊆ {1, . . . , n, n + 1, . . . , n + m}2, where

ϕ(x1, . . . , xn, xn+1, . . . , xn+m)

is equality-free. We first observe that there cannot exist (i, j) ∈ I ∩
{1, . . . , n}2 such that (i, j) /∈ {(i1, j1), . . . , (ik, jk)} since this contradicts
the definition of the latter set. Take (i, j) ∈ I and assume first that i = j.
In this case we replace the constraint EqD(xi, xi) with the constraint
t(xi). Next, assume without loss of generality that i < j, where j ≥ n+1.
Then there exists an equality constraint EqD(xi, xj) in the pp-definition
of R, and we can then obtain a shorter pp-definition by (1) removing
the equality constraint, (2) removing xj from ∃xn+1, . . . , xn+m, and (3)
repeatedly replacing each occurrence of xj with xi. If we repeat this
for each (i, j) ∈ I where (i, j) /∈ {(i1, j1), . . . , (ik, jk)} we will obtain a
pp-definition of R over Γ satisfying the form stated in the lemma.

The following useful lemma, roughly stating that efpp-definitions
have the same expressive strength as pp-definitions if the relation in
question is irredundant, is now a straightforward consequence

Lemma 5. Let R ∈ IRD and let Γ ⊆ RD. If R ∈ 〈Γ〉 then R ∈ 〈Γ〉6=.

Proof. Assume that R ∈ 〈Γ〉 ∩ IRD is n-ary. Lemma 4 then directly
implies that

R(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+m: ϕ(x1, . . . , xn, xn+1, . . . , xn+m),

since the set of indices ER is empty whenever the relation R is irredun-
dant.
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3.2 Intervals of Restriction-Closed Hyperclones
Our main technical simplification is to study sets of restriction-closed
hyperclones corresponding to a given clone C. Since many of our
technical lemmas are stated via relational tools we therefore begin by
defining the corresponding sets from the relational side.

Definition 6. Let C be a clone over D. We let L|Inv(C) = {〈Γ〉6= | Γ ⊆
RD, 〈Γ〉 = Inv(C)}.

We can then readily prove that L|Inv(C) has a greatest and least
element.

Theorem 7. Let C be a clone over D. Then the greatest element in
L|Inv(C) is Inv(C), and the least element is 〈Inv(C) ∩ IRD〉 6=.

Proof. Inv(C) is trivially the greatest element in L|Inv(C). To see that
〈Inv(C)∩IRD〉 6= is the least element, take an arbitrary 〈Γ〉 6= ∈ L|Inv(C).
It follows that R ∈ 〈Γ〉6= for each R ∈ Inv(C) ∩ IRD (by Lemma 5)
from which we conclude that 〈Inv(C) ∩ IRD〉 6= ⊆ 〈Γ〉 6=.

Our principal task is now to describe the sets L|Inv(C) for each clone
C, which we will henceforth refer to as intervals.

Theorem 8. Let C be a clone over a finite D. For each 〈Γ〉6= ∈ L|Inv(C)
there exists D1, . . . , Dd ⊆ D such that 〈Γ〉6= = 〈(Inv(C) ∩ IRD) ∪
{EqD1 , . . . , EqDd

}〉6=.

Proof. Let 〈Γ〉6= ∈ L|Inv(C), and for simplicity of notation let ∆ =
Inv(C) ∩ IRD. We claim that 〈Γ〉 6= = 〈∆ ∪ {EqD1 , . . . , EqDd

}〉 6= for
some D1, . . . , Dd ⊆ D. First, partition Γ into two disjoint sets Γ1 and
Γ2 such that Γ1 ∪ Γ2 = Γ, Γ1 ⊆ 〈∆〉 6=, and R /∈ 〈∆〉 6= for each R ∈ Γ2.
In other words each relation in Γ1 is efpp-definable by ∆, but no relation
in Γ2 is efpp-definable by ∆. For each relation R ∈ Γ2 then take the
pp-definition

R(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+m:
ϕ(x1, . . . , xn+m) ∧ EqD(xi1 , xj1) ∧ . . . ∧ EqD(xik

, xjk
)

of R over ∆ from Lemma 4, where i1, j1, . . . , ik, jk ∈ {1, . . . , n} and
ϕ(x1, . . . , xn+m) is equality-free. Let Di1 , . . . , Dik

be defined so that
Di1 = Proji1(R), . . . , Dik

= Projik
(R), and consider the relations

EqDi1
, . . . , EqDik

. Then we first observe that

R(x1, . . . , xn) ≡ ∃xn+1, . . . , xn+m:
ϕ(x1, . . . , xn+m) ∧ EqDi1

(xi1 , xj1) ∧ . . . ∧ EqDik
(xik

, xik
),
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implying that R ∈ 〈∆ ∪ {EqDi1
, . . . , EqDik

}〉 6=. Second, also note that
each EqDil

= Projil,jl
(R), 1 ≤ l ≤ k, implying that each EqDil,jl

∈
〈{R}〉 6= ⊆ 〈Γ〉6=. Let E ⊆ {EqDi

| Di ⊆ D} be the set of equality
relations resulting from repeating this for each R ∈ Γ2. From the
construction of E it follows that 〈∆ ∪ E〉6= = 〈Γ〉 6= and that E is a
finite set since D is finite.

In particular, Theorem 8 implies that L|Inv(C) is finite for every
clone C over a finite domain D, since there only exists a finite number
of subsets of D. We can make the description of L|Inv(C) even more
precise by also describing the inclusion structure of its elements, but
before we turn to this problem we first need to describe the expressive
strength of 〈(Inv(C) ∩ IRD) ∪ E〉 6= ∈ L|Inv(C).

Lemma 9. Let Inv(C) be a co-clone over D. Let D1, . . . , Dk ⊆ D be
the unary relations such that
1) EqDi

/∈ 〈Inv(C) ∩ IRD〉6=, and
2) Di ∈ Inv(C) for each 1 ≤ i ≤ k.

Let E ⊆ {EqD1 , . . . , EqDk
}. Then EqDi

∈ 〈(Inv(C) ∩ IRD) ∪ E〉 6=,
1 ≤ i ≤ k, if and only if there exists EqDj

∈ E such that Di ⊆ Dj.

Proof. Let ∆ = Inv(C) ∩ IRD. First, let EqDj
∈ E, pick a subset

Di ⊆ Dj where Di ∈ Inv(C). Since Di by definition is irredundant it is
efpp-definable by ∆ (from Lemma 5), and it follows that EqDi

(x1, x2) ≡
EqDj

(x1, x2) ∧Di(x1).
Second, assume that EqDi

∈ 〈∆∪E〉6=, but that there does not exist
any EqDj

∈ E such that EqDi
⊆ EqDj

(again, Di ∈ 〈∆〉6= since Di is
irredundant). Let EqDi

(x1, x2) ≡ ∃y1, . . . , yn: ϕ(x1, x2, y1, . . . , yn) be
an efpp-definition of EqDi

over ∆ ∪E. Pick a constraint R(z1, . . . , zm)
in ϕ(x1, x2, y1, . . . , yn), where each zi ∈ {x1, x2, y1, . . . yn}. Assume
that R = EqDj

for some EqDj
∈ E (in which case m = 2). First,

assume that z1 ∈ {x1, x2} or that z2 ∈ {x1, x2}. Since we assumed
that EqDi

is not included in EqDj
for any EqDj

∈ E, there exists
d ∈ Di where d /∈ Dj . But then the constraint EqDj

(z1, z2) violates the
assumption that ∃y1, . . . , yn: ϕ(x1, x2, y1, . . . , yn) defines EqDi

. Hence,
z1, z2 ∈ {y1, . . . , ym}. But then we may simply remove z2, replace
each occurrence by z1, and replace the constraint EqDj

(z1, z2) by
Dj(z1), which is efpp-definable over ∆ via Lemma 5. Note also that
the case when z1 = z2 may be handled simply by replacing the con-
straint by Di(z1). If we repeat this for each constraint R(z1, . . . , zm)
in ϕ(x1, x2, y1, . . . , yn) where R ∈ E then we will obtain an efpp-
definition of EqDi

over ∆, which contradicts the original assumption
EqDi

/∈ 〈∆〉 6=.
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Equipped with Lemma 9 the description of L|Inv(C) is now straight-
forward.

Theorem 10. Let Inv(C) be a co-clone over D and let ∆ = Inv(C) ∩
IRD. Let D1, . . . , Dk ⊆ D be the unary relations such that (1) EqDi

/∈
〈∆〉 6= and (2) Di ∈ Inv(C) for each 1 ≤ i ≤ k. Then, for E1, E2 ⊆
{EqD1 , . . . , EqDk

},
1) 〈∆ ∪ E1〉6= ⊆ 〈∆ ∪ E2〉6= if for each EqDi

∈ E1 there exists
EqDj

∈ E2 such that Di ⊆ Dj, and
2) 〈∆ ∪ E1〉 6= 6⊆ 〈∆ ∪ E2〉6= otherwise.

Proof. First, assume that there exists EqDi
∈ E1 but no EqDj

∈ E2
such that Di ⊆ Dj . It follows that EqDi

/∈ 〈∆ ∪ E2〉6= via Lemma 9,
and 〈∆ ∪ E1〉 6= cannot be included in 〈∆ ∪ E2〉6=. Similarly, Lemma 9
also implies that if for each EqDi

∈ E1 there exists EqDj
∈ E2 where

Di ⊆ Dj , then EqDi
∈ 〈∆∪E2〉6=. Hence, 〈∆∪E1〉 6= ⊆ 〈∆∪E2〉 6=.

The combination of Theorem 8 and Theorem 10 gives a complete
description of L|Inv(C), with the caveat that the relations D1, . . . , Dk ⊆
D where EqD1 , . . . , EqDk

/∈ 〈Inv(C) ∩ IRD〉6= need to be provided.
While we have not been able to isolate a general criterion for this, we
may at least reformulate this property using hyperpolymorphisms.

Definition 11. A hyperoperation h: Dk → P(D) \ {∅} is said to be D′-
elementary for a set D′ ⊆ D if |h(x1, . . . , xk)|= 1 for all x1, . . . , xk ∈
D′.

The existence of EqDi
∈ 〈Inv(C) ∩ IRD〉6= may then be related to

the existence of D′-elementary hyperoperations, as follows.

Theorem 12. Let Γ be a set of relations over D and let D′ ⊆ D be a
unary relation such that D′ ∈ 〈Γ〉. Then EqD′ ∈ 〈Γ〉 6= if and only if
each h ∈ hPol(Γ) is D′-elementary.

Proof. First, assume that EqD′ /∈ 〈Γ〉 6=. Hence, there exists at least
one hyperoperation h ∈ hPol(Γ) which does not preserve EqD′ . Thus,
if we let n be the arity of h, then there exists t1, . . . , tn ∈ EqD′ such
that h(t1, . . . , tn) /∈ EqD′ . First, assume that

|h(t1[1], . . . , tn[1])|= |h(t1[2], . . . , tn[2])|= 1.

It follows that

h(t1[1], . . . , tn[1]) = h(t1[2], . . . , tn[2]) /∈ D′,

and that h does not preserve D′. This contradicts the assumption that
D′ ∈ 〈Γ〉 since the fact that D′ is irredundant also implies that D′ ∈
〈Γ〉 6=, and that D′ must be preserved by every h ∈ hPol(Γ). Hence, if
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h(t1, . . . , tn) /∈ EqD′ it must be the case that either |h(t1[1], . . . , tn[1])|>
1 or that |h(t1[2], . . . , tn[2])|> 1.

Second, assume that EqD′ ∈ 〈Γ〉6=, and consider an application
h(t1, . . . , tn) for t1, . . . , tn ∈ EqD′ for an n-ary h ∈ hPol(Γ). If
h(t1[1], . . . , tn[1]) = X for |X|> 1, then X contains at least two distinct
elements d1, d2. Pick one additional element d3 from h(t1[2], . . . , tn[2]).
Then h(t1, . . . , tn) = h(t1[1], . . . , tn[1]) × h(t1[2], . . . , tn[2]) = X ×
h(t1[2], . . . , tn[2]) 6⊆ EqD′ since (d1, d3) and (d2, d3) are both included
in h(t1[1], . . . , tn[1])× h(t1[2], . . . , tn[2]) but cannot both be included
in EqD′ .

Example 2. We begin with a straightforward example from the Boolean
domain. Define the binary relation R as R = {(0, 1), (1, 0), (1, 1)}, and
the unary hyperoperation h as h(0) = {0, 1}, h(1) = {1}. Then h pre-
serves R since h(0, 1) = {(0, 1), (1, 1)} ⊆ R, h(1, 0) = {(1, 0), (1, 1)} ⊆
R, and h(1, 1) = {(1, 1)} ⊆ R. However, h is not {0, 1}-elementary
since |h(0)|= 2, and Theorem 12 then implies that Eq{0,1} /∈ 〈Γ〉 6=.
Using Theorem 8 and Theorem 10 we conclude that that L〈{R}〉 =
{〈{R}〉6=, 〈{R, Eq{0,1}}〉 6=} and that |L〈{R}〉|= 2.

For a more general example over D = {0, 1, 2}, let Γ = {R1, R2}
where R1 = {0, 1, 2}2 \ {(0, 0)} and R2 = {0, 1}, and consider the co-
clone 〈Γ〉. We invite the reader to verify that D′ ∈ 〈Γ〉 for a unary D′ ⊂
D if and only if D′ = {0, 1}, D′ = {1, 2}, or D′ = {1}. Next, define
the two hyperoperations h1 and h2 where: h1(0) = {0, 1}, h1(1) = {1},
h1(2) = {2}, and h2(0) = {0}, h2(1) = {1}, h2(2) = {1, 2}. It is then
readily verified that h1, h2 ∈ hPol(Γ) but that h1 is not {0}-elementary
and that h2 is not {2}-elementary. Hence, Theorem 12 implies that
Eq{0,1}, Eq{1,2}, Eq{0,1,2} /∈ 〈Γ〉 6=, and we conclude that L|〈Γ〉 consists
of the five elements 〈Γ〉6=, 〈Γ ∪ {Eq{0,1}}〉 6=, 〈Γ ∪ {Eq{1,2}}〉 6=, 〈Γ ∪
{Eq{0,1}, Eq{1,2}}〉 6=, 〈Γ ∪ {Eq{0,1,2}}〉6=.

4 Partial Restriction-Closed Hyperclones
In this section we consider the problem of describing restriction-closed
hyperclones in the partial setting. We first observe that the set of all
restriction-closed partial clones hpPol(Γ) is equal to the continuum
even in the Boolean domain since it (trivially) includes all Boolean
strong partial clones, whose cardinality is known to equal the contin-
uum [1]. However, might it still be possible to describe the restriction
closed partial hyperclones relative to the strong partial clones, sim-
ilarly to how Theorem 8 and Theorem 10 revealed that the lattice
of restriction-closed hyperclones is not significantly more complicated
than the ordinary clone lattice? We thus begin by defining the partial
analogue of Definition 6.
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Definition 13. For Γ ⊆ RD over D we define the set P|Γ = {〈∆〉@ 6= |
∆ ⊆ RD, 〈∆〉 6∃ = 〈Γ〉 6∃}.

If we for the moment concentrate on the Boolean domain, then we
would at least expect to find examples of P|Γ consisting of two distinct
elements 〈Γ〉6=6∃ and 〈Γ ∪ {Eq{0,1}}〉 6=6∃. However, all intervals that we
have been able to identify either has only one element, or consists
of at least three elements. A straightforward example of the former
kind is the relation R≤ = {(0, 0), (0, 1), (1, 1)}, where Eq{0,1} can be
defined as Eq{0,1}(x1, x2) ≡ R≤(x1, x2) ∧ R≤(x2, x1). For examples
of the latter kind, let us consider two examples of such intervals for
very simple languages Γ. Define R0 = {0}, R6= = {(0, 1), (1, 0)}, and
observe that Pol({R 6=}) is the clone consisting of all Boolean, self-dual
operations, while Pol({R0}) consists of all Boolean operations f such
that f(0, . . . , 0) = 0.

Theorem 14. |P|{R0}|≥ 3 and |P|{R 6=}|≥ 3.

Proof. We begin with R0. Define the relation R=
0 = {(0, 0, 0), (0, 1, 1)}.

Then we immediately have that R0(x) ≡ R=
0 (x, x, x) and R=

0 (x1, x2, x3) ≡
R0(x1)∧Eq{0,1}(x2, x3). We claim that the proper inclusions 〈{R0}〉6=6∃ ⊂
〈{R=

0 }〉 6=6∃ ⊂ 〈{R0, Eq{0,1}}〉6=6∃ hold. Let h0(0, 0) = {0}, h0(0, 1) =
{0, 1}, and h0(x, y) = ∅ otherwise. Then h0(0, 0) = {0} ⊆ R0, and h0
preserves R0, but h0((0, 0, 0), (0, 1, 1)) = h0(0, 0)× h0(0, 1)× h0(0, 1) =
{0} × {0, 1}2 6⊆ R=

0 . Similarly, let h1(0) = ∅ and h1(1) = {0, 1}. Then
h1(t) = ∅ for t ∈ R=

0 , but h1((1, 1)) = h1(1)×h1(1) = {0, 1}2 6⊆ Eq{0,1},
and h1 does not preserve {R0, Eq{0,1}}.

For R6=, define the relation

R(x1, x2, x3, x4) ≡ R6=(x1, x2) ∧ Eq{0,1}(x3, x4)

and observe that R = {(0, 1, 0, 0), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 1, 1)}. We
claim that 〈{R 6=}〉6=6∃ ⊂ 〈{R}〉 6=6∃ ⊂ 〈{R 6=, Eq{0,1}}〉 6=6∃. First, it is
straightforward to see that R 6= ∈ 〈{R}〉 6=6∃ since

R 6=(x1, x2) ≡ R(x1, x2, x2, x2).

Second, define the partial hyperoperation h2(0, 0) = {0, 1}, h2(0, 1) =
{0}, h2(1, 0) = {1}, and h2(1, 1) = ∅. Then h2((0, 1, 0, 0), (1, 0, 0, 0)) =
h2(0, 1)× h2(1, 0)× h2(0, 0)× h2(0, 0) = {(0, 1)} × {0, 1}2 6⊆ R. Hence,
h2 does not preserve R. However, h2(t1, t2) ⊆ {t1, t2} for t1, t2 ∈ R6=
since h2(t1, t2) = ∅ if t1 = t2, and h2(t1, t2) = {t1} or h2(t1, t2) = {t2}
otherwise. For the inclusion 〈{R}〉 6=6∃ ⊂ 〈{R 6=, Eq{0,1}}〉 6=6∃ we simply
define h3(0) = {0, 1} and h3(1) = ∅. Then h3((0, 0)) = {0, 1}2 6⊆
Eq{0,1}, but h3(t) = ∅ ⊆ R for each t ∈ R.

It is also not hard to come up with more complicated languages
where |P|Γ|≥ 3 (but where it is even less obvious whether |P|Γ|> 3).
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Define the relations R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and R01= =
{(0, 1, 0, 0), (0, 1, 1, 1)}. It can then be verified, with similar arguments
as in the proof of Theorem 14, that 〈R1/3〉6=6∃ ⊂ 〈{R1/3, R01=〉6=6∃ ⊂
〈{R1/3, Eq{0,1}}〉 6=6∃.

5 Concluding Remarks
We have studied intervals of hyperclones, and managed to give a full
description of all possible restriction-closed hyperclones induced by
a given clone. Here, the main open question is to describe when
EqDi

∈ 〈Inv(C) ∩ IRD〉6=, given a unary relation Di ∈ Inv(C). Does
there exist a general condition or is it something that has to be proven
on an individual basis depending on the operations in C?

The question of describing the corresponding intervals of partial,
restriction-closed hyperclones appears much harder, and it seems dif-
ficult to obtain a general and precise description of |P|Γ|. Hence, at
this stage we have to settle by considering more fundamental questions.
For example, does there exist Γ where |P|Γ|= 2, where P|Γ is countably
infinite, and where the cardinality of P|Γ equals the continuum?
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