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Abstract

The inverse satisfiability problem over a set of relations Γ (Inv-SAT(Γ)) is the problem
of deciding whether a relation R can be defined as the set of models of a SAT(Γ) instance.
Kavvadias and Sideri (SIAM Journal on Computing, 28(1), 1998) obtained a dichotomy
between P and co-NP-complete for finite Γ containing the two constant Boolean relations.
However, for arbitrary constraint languages the complexity has been wide open, and in
this article we finally prove a complete dichotomy theorem for finite languages. Kavva-
dias and Sideri’s techniques are not applicable and we have to turn to the more recent
algebraic approach based on partial polymorphisms. We also study the complexity of the
inverse constraint satisfaction problem prove a general hardness result, which in particular
resolves the complexity of inverse k-colouring, mentioned as an open problem in Chen
(Computational Complexity, 17(1), 2008).

1 Introduction

A constraint language is a set of Boolean relations. The parameterized satisfiability problem
over a constraint language Γ (SAT(Γ)) is the computational decision problem of deter-
mining whether a conjunctive formula over Γ is satisfiable. In a seminal paper by Schae-
fer it was proven that SAT(Γ) is always either tractable, i.e., polynomial-time solvable,
or is NP-complete [24]; a property that should not be taken for granted in light of the
NP-intermediate problems constructed by Ladner [16]. In this article we will study the
computational complexity of the inverse satisfiability problem over a constraint language
Γ (Inv-SAT(Γ)), which, as the name suggests, is the exact opposite of SAT(Γ). Hence,
instead of a SAT(Γ) instance, we are given a relation R, and the question is then to de-
termine if there exists an instance of SAT(Γ) with precisely R as its sets of models. In

∗A preliminary version of this article appeared in Proceedings of the 37th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017).

†victor.lagerkvist@liu.se
‡cse.biman@gmail.com

1



1 INTRODUCTION 2

fact, for every problem in NP there exists a corresponding inverse problem, and we refer
the reader to Chen [8] for a survey on this topic. Contrary to SAT(Γ), Inv-SAT(Γ) is
in general co-NP-complete, and its computational complexity was studied by Kavvadias
and Sideri [15]. While a complete dichotomy theorem was not obtained, Kavvadias and
Sideri proved that for finite constraint languages Γ containing the constant relations {(0)}
and {(1)}, Inv-SAT(Γ) is always either tractable or co-NP-complete. We will strengthen
this result and give a complete dichotomy theorem for Inv-SAT(Γ) for finite constraint
languages, and thus solve a long-standing open problem. At a first glance, the condition
that Γ contains the constant relations might only look like a minor technical difficulty, but
there are several reasons why Inv-SAT(Γ) has previously escaped a complete complexity
classification. First, for SAT and its multi-valued generalization CSP, it is known that
the introduction of constant relations does not affect the complexity of the problem, pro-
vided that the constraint language satisfies the algebraic property of being a core. No such
property is known to hold (a priori) for Inv-SAT(Γ), essentially making the cases that are
normally trivial the most difficult to handle. Second, and perhaps most importantly, the
majority of dichotomies for CSP and for Boolean problems parameterized by constraint
languages, have been obtained via the so-called algebraic approach. For a thorough survey
of this approach we refer the reader to Creignou et al. [10] and to Barto [2]. In short, the
algebraic approach allows us to relate the complexity of a problem parameterized by a set
of relations Γ to properties of the polymorphisms of Γ (Pol(Γ)), which we may think of as a
collection of functions preserving the structure of the relations in Γ. The main applicability
of this connection is that sets of polymorphisms are well-studied and are in fact completely
determined in the Boolean domain [21]. Hence, instead of directly reasoning by properties
of constraint languages, it is possible to prove complexity results by exploiting properties
of well-known polymorphisms. The Inv-SAT(Γ) problem, however, is fundamentally in-
compatible with polymorphisms, and instead we turn to the more refined concept of partial
polymorphisms of Γ (pPol(Γ)). The necessary algebraic background for these concepts will
be formally defined in Section 2, and at the moment the most important observation is that
there is a strong connection between pPol(Γ) and the expressive power of Γ with respect to
conjunctive formulas called quantifier-free primitive positive definitions (qfpp-definitions).
Since a SAT(Γ) instance consists of a conjunctive formula over Γ, we would therefore expect
a correspondence between the complexity of Inv-SAT(Γ) and pPol(Γ). Unfortunately, this
is not as straightforward as one might be led to believe, and we have only been able to find
such a connection for certain classes of constraint languages Γ. For example, as we will
prove, Inv-SAT(Γ) is polynomial-time reducible to Inv-SAT(∆) if pPol(∆) ⊆ pPol(Γ) but
there does not exist Γ′ such that pPol(∆) ⊂ pPol(Γ′) ⊂ pPol(Γ).

Despite these complicating factors we are able to leverage partial polymorphisms in
the context of Inv-SAT(Γ). This is accomplished by using algebraic techniques developed
by Schnoor and Schnoor [25] and Lagerkvist [17], allowing us to classify the constraint
languages under consideration according to their expressive power, in an extremely fine-
grained way. These expressibility results turn out to be vital when we prove our dichotomy
theorem for Inv-SAT(Γ) in Section 3. More precisely, our dichotomy result states that
Inv-SAT(Γ) is co-NP-complete for finite Γ if the polymorphisms of Γ can be generated by a
set of unary Boolean operations — a property which in the literature is also sometimes called
non-Schaefer. This complexity classification in fact exactly coincides with the complexity
of enumerating the solutions of SAT(Γ) with polynomial delay [11]. Using our dichotomy
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we can for example say that inverse 1-in-k-SAT and inverse nae-k-SAT are co-NP-
complete; two natural problems that are missing from the aforementioned complexity result
by Kavvadias and Sideri.

After having proven the dichotomy theorem for Inv-SAT(Γ) for finite Γ we investigate
the case when Γ is infinite in Section 4. For SAT(Γ), Schaefer’s dichotomy theorem remain
valid also for infinite languages, and given the similarity between SAT(Γ) and Inv-SAT(Γ),
one might conjecture that the same is also true for Inv-SAT(Γ). Surprisingly, this turns
out to be false: we show that there exists an infinite constraint language Γ such that (1)
Inv-SAT(Γ) is tractable, (2) SAT(Γ) is NP-hard, and (3) there exists finite ∆ ⊂ Γ such
that Inv-SAT(∆) is co-NP-complete. The existence of such a Γ is perhaps not so clear from
the relational side, but becomes more evident when viewing Inv-SAT(Γ) through the lens of
pPol(Γ). We provide an algebraic criterion for this phenomena based on the expressive power
of pPol(Γ), and conjecture that this property is both necessary and sufficient, in the sense
that Inv-SAT(Γ) is tractable if it holds and is co-NP-complete otherwise. Furthermore, we
are not aware of any other problems parameterized by constraint languages where finiteness
implies hardness and infiniteness implies tractability, in the above sense. In fact, problems
where the complexity between finite and infinite languages does not coincide are extremely
rare, and the closest example is a variant of the propositional abduction problem where
it is known that there exists an infinite constraint language resulting in NP-hardness even
though every finite subset results in tractability [13].

Last, in Section 5 we turn to the multi-valued generalization of SAT known as the con-
straint satisfaction problem over Γ (CSP(Γ)). This problem also admits a natural inverse
problem Inv-CSP(Γ) which has not been systematically studied before. Generalizing the
constructions from Kavvadias and Sideri [15] we are able to prove that Inv-CSP(Γ) is co-
NP-complete if Pol(Γ) only contains trivial polymorphisms of the form π(x1, . . . , xi, . . . , xn) =
xi. Extending this to other cases where CSP(Γ) is NP-complete does not appear to be
straightforward, but we manage to use our general result to show that Inv-CSP({6=D}),
where 6=D is the binary inequality relation over a finite set D, is co-NP-complete. Further-
more, Inv-CSP({6=D}) for |D| = k is an alternative formulation of inverse k-colouring;
a problem whose complexity status was left as an open question in Chen [8].

2 Preliminaries

A Boolean relation is a subset of {0, 1}n for some n ≥ 1, and if R is a relation we write ar(R)
to denote its arity. For a tuple t = (x1, . . . , xn) we write t[i] to denote the ith element xi,
and Pri1,...,in′ (t) = (t[i1], . . . , t[in′ ]) to denote the projection on the coordinates i1, . . . , in′ ∈
{1, . . . , n}. Similarly, for an n-ary relation R we let Pri1,...,in′ (R) = {Pri1,...,in′ (t) | t ∈ R}.
We will typically use first-order logical formulas to define relations, and write

R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn)

to define the relation

R = {(f(x1), . . . , f(xn)) | f is a model of ϕ(x1, . . . , xn)}.

Let BR denote the set of all Boolean relations and ΠB the set of all Boolean projections,
i.e., operations of the form πn

i (x1, . . . , xi, . . . , xn) = xi.
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A (not necessarily finite) Γ ⊆ BR is called a Boolean constraint language, or, if there is
no risk for confusion, simply a constraint language. If {(0)}, {(1)} ∈ Γ then we say that
Γ is ultraidempotent. We prefer the term ultraidempotent over idempotent since the latter
typically only requires that the constant relations are primitively positively definable (see
Section 2.2 for a definition of this concept).

2.1 The Inverse Satisfiability Problem

The parameterized satisfiability problem over a constraint language Γ (SAT(Γ)) is the com-
putational decision problem defined as follows.

Instance: A tuple (V,C) where V is a set of variables and C a set of constraint
applications of the form R(x1, . . . , xar(R)) where R ∈ Γ and x1, . . . , xar(R) ∈ V .
Question: Does there exist a function f : V → {0, 1} such that (f(x1), . . . , f(xar(R))) ∈
R for every R(x1, . . . , xar(R)) ∈ C?

If Γ = {R} is singleton then we write SAT(R) instead of SAT(Γ).

Example 1. Let R1/3 be the ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Then SAT(R1/3)
can be viewed as a formulation of the 1-in-3-SAT problem without negation, and is well-
known to be NP-complete. More generally, if we for each k ≥ 3 define R1/k = {(x1, . . . , xk) ∈
{0, 1}k | x1 + . . . + xk = 1} then SAT(R1/k) is an alternative formulation of 1-in-k-SAT
without negation.

Depending on the constraint language in question many additional satisfiability problems
may be viewed as SAT(Γ) problems. For example, if we for k ≥ 1 let Γk

SAT be the constraint
language where each R ∈ Γk

SAT is the set of models of a k-clause, then SAT(Γk
SAT) is a

natural formulation of the k-SAT problem.

We will sometimes view a SAT(Γ) instance ({x1, . . . , xn}, C) as a conjunctive formula ϕ
and write Sols(ϕ) to denote its set of models. Note that Sols(ϕ) is not formally a relation,
but can easily be treated as a relation of arity n by ordering the variables x1, . . . , xn and
treating each model as an n-ary tuple. The inverse satisfiability problem over a constraint
language Γ (Inv-SAT(Γ)) can then be viewed as the problem of, given a relation R, deter-
mining whether there exists a SAT(Γ) instance with precisely R as it set of models. More
precisely, the problem is defined as follows.

Instance: A Boolean relation R.
Question: Does there exist a SAT(Γ) instance ϕ such that Sols(ϕ) = R?

If this question can be answered in polynomial time with respect to the number of bits
required to represent R then we say that Inv-SAT(Γ) is tractable. For simplicity, we will
represent the input relation R as a list of tuples. In general the Inv-SAT(Γ) problem is co-
NP-complete and a dichotomy theorem is known for finite and ultraidempotent constraint
languages Γ [15].

Theorem 1. Let Γ be a finite and ultraidempotent Boolean constraint language. Then
Inv-SAT(Γ) is either co-NP-complete or tractable.
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Example 2. Consider the relation R1/3 from Example 1. Then Inv-SAT(R1/3) is the prob-
lem of, given a relation R, deciding if there exists a 1-in-3-SAT instance without negation
with exactly R as its set of models. Since {R1/3} is not ultraidempotent we cannot however
use Theorem 1 to conclude that Inv-SAT(R1/3) is co-NP-complete. We will return to this
problem in Section 3 where we prove our dichotomy theorem for Inv-SAT(Γ).

2.2 Closure Operators on Relations

In this section we introduce two closure operators on sets of relations that will be important
when explaining the algebraic approach in the forthcoming section. First, if R is an n-ary
Boolean relation and Γ a constraint language we say thatR has a primitive positive definition
over Γ if

R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ : R1(x1) ∧ . . . ∧Rm(xm),

where each Ri ∈ Γ ∪ {(0, 0), (1, 1)} and each xi is a tuple of variables over x1, . . . , xn,
y1, . . . , yn′ of length ar(Ri). In other words R is definable over Γ by a (possibly) existentially
quantified, conjunctive formula of constraints over Γ and the equality relation {(0, 0), (1, 1)}.
Given a constraint language Γ we then write 〈Γ〉 to denote the smallest set of relations
containing Γ and which is closed under taking pp-definition. Sets of the form 〈Γ〉 are called
relational clones or co-clones.

Similarly, say that an n-ary Boolean relation has a quantifier-free primitive positive
definition (qfpp-definition) over a constraint language Γ if

R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm),

where each Ri ∈ Γ∪{(0, 0), (1, 1)} and each xi is a tuple of variables over x1, . . . , xn of length
ar(Ri). Let 〈Γ〉6∃ denote the smallest set of relations containing Γ and which is closed under
taking qfpp-definitions. If Γ = {R} is singleton then we for simplicity write 〈R〉6∃ instead of
〈Γ〉6∃. These sets are usually called weak systems or weak partial co-clones. We remark that
there is a very strong connection between Inv-SAT(Γ) and the set 〈Γ〉6∃. To see this, note
that an instance of Inv-SAT(Γ) is simply a relation R, and the question of whether there
exists an instance ϕ of SAT(Γ) with Sols(ϕ) = R, can be rephrased as whether R admits
a qfpp-definition over Γ, i.e., R ∈ 〈Γ〉 6∃. Whenever convenient we will therefore assume that
Inv-SAT(Γ) is the problem of checking whether R ∈ 〈Γ〉 6∃. We remark that the related
problem of checking whether R admits a pp-definition over Γ is tractable for Boolean Γ [9]
but co-NEXPTIME-hard for sufficiently large, but finite, domains [26].

2.3 Closure Operators on Operations

Let f : {0, 1}k → {0, 1} be a k-ary Boolean operation and R an n-ary Boolean relation. We
say that f preserves R, that f is a polymorphism of R, or that R is invariant under f , if
f(t1, . . . , tk) ∈ R for every sequence of tuples t1, . . . , tk ∈ R, where

f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , (f(t1[n], . . . , tk[n]))).

We write Pol(R) for the set of polymorphisms of the relation R and if Γ is a constraint
language we let Pol(Γ) =

⋂
R∈Γ Pol(R). Sets of the form Pol(Γ) are usually called clones and

are known to be sets of operations containing all projections (i.e., ΠB ⊆ Pol(Γ)) and closed
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under composition (i.e., if f, g1, . . . , gm ∈ Pol(Γ) where f has arity m and each gi arity n
then the n-ary operation f ◦ g1, . . . , gm(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))
is included in Pol(Γ)). We let [F ] be the smallest clone containing the set F , i.e., the
intersection of all clones containing F .

We will now describe a powerful connection between clones and co-clones. First, if we
let Inv(F) be the set of all relations invariant under the set of operations F , it is known that
Inv(F) is in fact closed under pp-definitions, i.e., is a co-clone. Second, for any constraint
language Γ it is known that Inv(Pol(Γ)) = 〈Γ〉, and that for any set of operations F ,
Pol(Inv(F)) = [F]. This results in the following inverse relationship between Inv(·) and
Pol(·).
Theorem 2 ([4, 5, 12]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉 if and
only if Pol(Γ′) ⊆ Pol(Γ).

There is a similar connection between weak systems and sets of partial operations.
Formally, we view a (Boolean) partial operation f of arity k as a mapping X → {0, 1}
where X ⊆ {0, 1}k is called the domain of f and denoted by domain(f). Then a k-ary
partial operation f is said to be a partial polymorphism of an n-ary relation R if either
f(t1, . . . , tk) ∈ R or there exists 1 ≤ i ≤ n such that (t1[i], . . . , tk[i]) /∈ domain(f), for every
sequence t1, . . . , tk ∈ R. We write pPol(R) for the set of all partial polymorphisms of R
and pPol(Γ) for the set

⋂
R∈Γ pPol(Γ). These sets are usually referred to as strong partial

clones and are known to be sets of partial operations containing all projections, closed under
composition, and closed under taking subfunctions. More precisely, composition of partial
operations is defined in exactly the same way as composition of total operations, but the
resulting partial operation is only defined for a sequence of arguments if every partial opera-
tion in the composition is defined; and by closed under taking subfunctions we mean that if
f ∈ pPol(Γ) then g ∈ pPol(Γ) for every g such that domain(g) ⊆ domain(f) and such that
g agrees with f for the tuples in domain(g). We write [F ]s for the smallest strong partial
clone containing F , and say that [F ]s is finitely generated if there exists finite G ⊆ [F ]s
such that [F ]s = [G]s, is infinitely generated otherwise, and in both cases we say that G is
a base of [F ]s. For additional background concerning these concepts we refer the reader to
Lau [20]. The reason why we define these technical concepts will be explained in Section 4
where we study the complexity of Inv-SAT(Γ) when pPol(Γ) is finitely generated.

Similar to the total case, if we let Inv(F) be the set of relations invariant under the
set of partial operations F , then it is known that Inv(F) is closed under qfpp-definitions,
and is therefore a weak system. Moreover, 〈Γ〉 6∃ = Inv(pPol(Γ)) and [F ]s = pPol(Inv(F)).
We then have the following connection between Inv(·) and pPol(·), due to Geiger [12] and
Romov [22].

Theorem 3 ([12, 22]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉 6∃ if and
only if pPol(Γ′) ⊆ pPol(Γ).

Using the concepts in this section we can now present the dichotomy theorem from
Kavvadias and Sideri [15] more precisely as follows.

Theorem 4. Let Γ be a finite and ultraidempotent constraint language. Then Inv-SAT(Γ)
is co-NP-complete if Pol(Γ) = ΠB and is tractable otherwise.

We remark that the tractable cases in Theorem 4 stem from the observation that if one
can enumerate the solutions of SAT(Γ) with polynomial delay, then Inv-SAT(Γ) must be
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tractable. To see this, let R be an instance of Inv-SAT(Γ). We begin by computing a qfpp-
definition ϕ over Γ with the property that Sols(ϕ) ⊇ R. This can be accomplished by letting
ϕ be the conjunction of all possible Γ-constraints over ar(R) = n variables not contradicting
R, and since we have at most O(nr) such constraints, where r = maxS∈Γ ar(S), ϕ can be
constructed in polynomial time. Then it is sufficient to enumerate at most |R|+ 1 solutions
to ϕ (viewed as an instance of SAT(Γ)) and stop if any of these solutions do not match the
tuples in R.

3 A Dichotomy Theorem for Inv-SAT(Γ)

In this section we will extend Theorem 4 to finite constraint languages that are not neces-
sarily ultraidempotent, in order to obtain a complete dichotomy theorem for Inv-SAT(Γ).
First observe that the tractable cases of Theorem 4 remain valid even if Γ is not ultra-
idempotent since solutions to SAT(Γ) can be enumerated with polynomial delay in those
cases [11]. To better describe the remaining cases we will need to define the following
Boolean operations.

Definition 5. We define the following Boolean operations.

1. f0(x) = 0,

2. f1(x) = 1,

3. x = 1− x
Then, using the terminology from Böhler et al. [6, 7], [{f0, f1, x}] = N, [{f0, f1}] = I,

[{f0}] = I0, [{f1}] = I1, [{x}] = N2, and [{π1
1}] = I2 = ΠB. Our aim is now to prove the

following theorem, which is visualized in Figure 1.

Theorem 6. Let Γ be a finite constraint language. Then Inv-SAT(Γ) is co-NP-complete
if Pol(Γ) ⊆ [F ] for F ⊆ {f0, f1, x} and is tractable otherwise.

The intuition behind the theorem is that one cannot enumerate the solutions of SAT(Γ)
with polynomial delay if Pol(Γ) ⊆ [F ] for F ⊆ {f0, f1, x}, unless P = NP [11]. However,
before we turn to these proofs, it might be helpful to review how dichotomy theorems
for problems parameterized by Boolean constraint languages are usually obtained. Hence,
assume that X(Γ) is a computational decision problem for which it is true that X(Γ)
admits a polynomial-time reduction to X(∆) whenever Pol(∆) ⊆ Pol(Γ). Then, what one
needs to do is simply to take every clone Pol(Γ) in Post’s lattice [21] and determine the
complexity of X(Γ), since the results then automatically carry over to every X(∆) such
that Pol(∆) = Pol(Γ). This is e.g. the case for SAT and many Boolean optimization and
logical reasoning problems [10]. For the Inv-SAT(Γ) problem we do not have such a result,
implying that the proof strategy for Theorem 6 intrinsically will be more complex. We will
show that this difficulty can be mitigated by using properties of weak systems in Section 3.1,
and in Section 3.2 we use these results in order to prove Theorem 6.

3.1 Algebraic Simplifications

Even though we do not have a general reduction result for Inv-SAT(Γ) it is still possible
to provide a characterization of the qfpp-definable relations over a constraint language Γ.
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Figure 1: The complexity of Inv-SAT(Γ) for finite Γ.
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The following lemma is helpful in the sense that it for each distinct case precisely describes
the relations that can be freely employed when constructing qfpp-definitions.

Lemma 7. Let Pol(Γ) ⊆ [F ] for F ⊆ {f0, f1, x}. Then

1. τ01 = {(0, 1)}, τ01
6= = {(0, 1, 0, 1), (1, 0, 0, 1)} ∈ 〈Γ〉6∃ if Pol(Γ) = ΠB,

2. τ6= = {(0, 1), (1, 0)} ∈ 〈Γ〉 6∃ if Pol(Γ) = [{x}],
3. τf0,f1,x = {(0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0)} ∈ 〈Γ〉6∃ if

Pol(Γ) = [{f0, f1, x}],
4. τ→ = {(0, 0), (1, 0), (1, 1)} ∈ 〈Γ〉6∃ if Pol(Γ) = [{f0, f1}],
5. τ01

6= ∪ {(0, 0, 0, 0)} = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 0, 1)} ∈ 〈Γ〉6∃ if Pol(Γ) = [{f0}], and

6. τ01
6= ∪ {(1, 1, 1, 1)} = {(0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 1, 1)} ∈ 〈Γ〉6∃ if Pol(Γ) = [{f1}].

Proof. We consider each case in turn. The various cases follow a similar structure and make
use of the algebraic machinery developed by Schnoor and Schnoor [25] and Lagerkvist [17].
We first remark that for Pol(Γ) ∈ {[{f0}], [{f1}], [{f0, f1, x}]} the relations follow immedi-
ately from Theorem 11 in Lagerkvist [17]. Hence, the remaining cases are when Pol(Γ) = ΠB,
Pol(Γ) = [x], and Pol(Γ) = [{f0, f1}]. First assume that Pol(Γ) = ΠB. From Lagerkvist [17]
we know that R 6= 6= 6=01

1/3 ∈ 〈Γ〉 6∃ where

R 6= 6=6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)},

and using this relation we can qfpp-define τ01
6= as

τ01
6= (x1, x2, x3, x4) ≡ R 6= 6=6=01

1/3 (x1, x2, x3, x2, x1, x4, x3, x4)

and τ01 as τ01(x1, x2) ≡ τ01
6= (x1, x2, x1, x2). Now assume that Pol(Γ) = [{x}]. In this case it

is known that the relation R 6= 6= 6= 6=2/4 = R 6=6= 6=01

1/3 ∪{t | t ∈ R 6= 6= 6=01

1/3 } is qfpp-definable by Γ [14, 17].
Using this relation one can verify that τ6=(x1, x2) ≡ R 6= 6= 6=6=2/4 (x1, x1, x2, x2, x2, x1, x1, x2).
Last, for Pol(Γ) = [{f0, f1}], the relation R = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 1)} ∈
〈Γ〉6∃ [17], and this relation can qfpp-define τ→ by τ→(x1, x2) ≡ R(x1, x1, x2, x2).

For example, if Pol(Γ) = [{x}] then we know that Γ is expressive enough to qfpp-define
the binary inequality relation τ6=. Before we begin to prove Theorem 6 in the forthcoming
section we present a lemma that simplifies some of the arguments. If R is an n-ary relation
then the ith argument is redundant if there exists j 6= i such that t[i] = t[j] for every t ∈ R,
and R is said to be irredundant if it does not have any redundant arguments. It is not
difficult to see that there for any R exists an irredundant relation Rirr with the property
that 〈R〉6∃ = 〈Rirr〉6∃, and we obtain the following lemma.

Lemma 8. Let Γ be a constraint language and R an n-ary relation. Then R ∈ 〈Γ〉 6∃ if and
only if Rirr ∈ 〈Γ〉6∃.
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3.2 The Hard Cases

In this section we handle the various hardness proofs necessary for proving Theorem 6. The
various cases will be be proved in Lemma 9, Lemma 10, Lemma 13, and Lemma 15. In these
reductions we need the ability to output an arbitrary yes- or no-instance of Inv-SAT(Γ).
Clearly, a yes-instance can easily be produced by simply outputting R ∈ Γ, but to find
R /∈ 〈Γ〉6∃ requires a bit more work. We will provide a proof sketch for how such a relation
can be constructed. Begin by enumerating all partial polymorphisms of Γ up to arity k+ 1,
where k is the maximum arity of any relation in Γ. It is well-known that any finite Boolean
constraint language containing only relations of arity k contains a partial polymorphism
of arity at most k + 1 which is not a partial projection [19]. Hence, let f denote such a
partial polymorphism of arity n ≤ k + 1, and let domain(f) = {t1, . . . , tm}. Now consider
the relation R obtained by for each 1 ≤ i ≤ n adding the tuple (t1[i], . . . , tm[i]). By
construction, f does not preserve R since it is not a subfunction of a projection, which by
Theorem 3 implies that R /∈ 〈Γ〉6∃.

With this observation we are now ready to prove our first hardness result, and begin
with the case when Pol(Γ) consists only of projections (which due to Theorem 2 implies
that Γ can pp-define every Boolean relation).

Lemma 9. Let Γ be a finite constraint language such that Pol(Γ) = ΠB. Then Inv-SAT(Γ)
is co-NP-complete.

Proof. First consider the constraint language

∆ = {τ × {(0, 1)}} | τ ∈ Γ} ∪ {{(0)}, {(1)},
i.e., each relation in Γ is adjoined with two constant arguments, and in addition ∆ contains
both {(0)} and {(1)}. Since ∆ is ultraidempotent and Pol(∆) = Pol(Γ) = ΠB it follows from
Theorem 4 that Inv-SAT(∆) is co-NP-complete, and we will therefore prove NP-hardness
of Inv-SAT(Γ) by reducing from Inv-SAT(∆).

Hence, let R be an n-ary relation, i.e., an instance of Inv-SAT(∆). For simplicity
we assume that R does not contain any redundant arguments, which we without loss of
generality may assume by Lemma 8. The basic idea behind the reduction is now to perform
a case analysis on the number of constant arguments in the relation R, which influences the
existence of a qfpp-definition of R over ∆ or Γ. For example, if there exists 1 ≤ i, j ≤ n such
that Pri,j(R) = {(0, 1)}, then any qfpp-definition of R over ∆ can be assumed to contain
the two constraints {(0)}(xi) and {(1)}(xj).

Let us now proceed as follows. If there exists 1 ≤ i ≤ n such that Pri(R) = {(0)} but no
1 ≤ j ≤ n such that Prj(R) = {(1)}, then R ∈ 〈∆〉6∃ if and only if R ∈ 〈{(0)}〉 6∃. Similarly, if
there exists 1 ≤ i ≤ n such that Pri(R) = {(1)} but no 1 ≤ j ≤ n such that Prj(R) = {(0)},
then R ∈ 〈∆〉6∃ if and only if R ∈ 〈{(1)}〉6∃. In both these cases we can compute the answer
in polynomial time and output an arbitrary yes- or no-instance to Inv-SAT(Γ). Similarly,
if R does not contain any constant argument, i.e., there does not exist 1 ≤ i ≤ n where
|Pri(R)| = 1, then R /∈ 〈∆〉6∃ and we output an arbitrary no-instance.

Hence, assume that there exist both i and j such that Pri(R) = {(0)} and Prj(R) =
{(1)}. We then claim that R ∈ 〈∆〉6∃ if and only if R ∈ 〈Γ〉6∃. Hence, first assume that
R ∈ 〈∆〉6∃, and let

R(x1, . . . , xi, . . . , xj , . . . , xn) ≡ ϕ(x1, . . . , xn) ∧ {(0)}(xi) ∧ {(1)}(xj)
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be a qfpp-definition witnessing this, where we without loss of generality assume that every
constraint in ϕ(x1, . . . , xn) is of the form τk×{(0, 1)}(xk, xi, xj) for τk×{(0, 1)} ∈ ∆, where
xk is a tuple of variables of length ar(τk) not containing xi or xj . Then we may obtain a
qfpp-definition of R over Γ by first replacing {(0)}(xi) ∧ {(1)}(xj) by the single constraint
{(0, 1)}(xi, xj), and then replacing every constraint τk×{(0, 1)}(xk, xi, xj) in ϕ(x1, . . . , xn)
by τk(xk). This is clearly a valid qfpp-definition of R over Γ since {(0, 1)} ∈ 〈Γ〉6∃ by
Lemma 7. For the other direction, assume that R ∈ 〈Γ〉6∃ and let

R(x1, . . . , xi, . . . , xj , . . . , xn) ≡ ϕ(x1, . . . , xn)

be a qfpp-definition of R over Γ, where every constraint in ϕ(x1, . . . , xn) is of the form
τ(x) for τ ∈ Γ. Then we can construct a qfpp-definition of R over ∆ by first intro-
ducing the constraints {(0)}(xi) and {(1)}(xj), and then replacing every τk(xk) by τk ×
{(0, 1)}(xk, xi, xj).

Note that Pol(Γ ∪ {(0, 1)}) = ΠB for every remaining case. Hence, equipped with
Lemma 9 we now have a canonical problem to reduce from.

Lemma 10. Let Γ be a finite constraint language such that Pol(Γ) = [{x}]. Then Inv-SAT(Γ)
is co-NP-complete.

Proof. We will give a polynomial-time reduction from Inv-SAT(Γ ∪ {(0, 1)}), which is
co-NP-complete by Lemma 9, since Pol(Γ ∪ {(0, 1)}) = ΠB. Hence, let R be an n-ary
relation, i.e, an instance of Inv-SAT(Γ ∪ {(0, 1)}}). If there exist neither i nor j such that
Pri(R) = {(0)} and Prj(R) = {(1)} then R ∈ 〈Γ〉 6∃ if and only if R ∈ 〈Γ ∪ {(0, 1)}〉 6∃, and
the output of the reduction is simply R. Furthermore, if there exists 1 ≤ i ≤ n such that
Pri(R) = {(0)} but no 1 ≤ j ≤ n such that Prj(R) = {(1)}, or vice versa, then it cannot
be the case that R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ or R ∈ 〈Γ〉 6∃, which again implies that we may simply
output R. This implies that the only remaining case is when there exist both i and j such
that Pri(R) = {(0)} and Prj(R) = {(1)}. By Lemma 8 we may without loss of generality
assume that R does not contain any other constant arguments.

In this case we claim that R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ if and only if (R ∪ ¬(R)) ∈ 〈Γ〉6∃, where
¬(R) = R ∪ {t | t ∈ R}. In other words the relation R ∪ ¬(R) consists of R and the
complement of each tuple in R. Assume first that R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ and let

R(x1, . . . , xi, . . . , xj , . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj)

denote a qfpp-definition over Γ∪{(0, 1)}, where R1, . . . , Rm ∈ Γ. We will construct a qfpp-
definition of (R∪¬(R)) over Γ as follows. First, we replace {(0, 1)}(xi, xj) by the constraint
τ6=(xi, xj), which is qfpp-definable over Γ by Lemma 7. Then every other constraint is kept
unchanged and we obtain the qfpp-definition

R′(x1, . . . , xi, . . . , xj , . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ τ6=(xi, xj)

over Γ. We claim that R′ = (R ∪ ¬(R)). It is easy to see that (R ∪ ¬(R)) ⊆ R′. Hence,
let t ∈ R′, and note that t[i] 6= t[j] holds due to the constraint τ6=(xi, xj) in the above
qfpp-definition. If t[i] = 0 and t[j] = 1 then t ∈ R ⊆ R ∪ ¬(R). Otherwise, t[i] = 1 and
t[i] = 0, and it must then instead hold that t ∈ ¬(R) ⊆ R ∪ ¬(R). For the other direction,
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assume that (R ∪ ¬(R)) ∈ 〈Γ〉 6∃ and let (R ∪ ¬(R))(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧ Rm(xm)
be a qfpp-definition over Γ where R1, . . . , Rm ∈ Γ. We can then qfpp-define R using Γ and
{(0, 1)} as R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧ Rm(xm) ∧ {(0, 1)}(xi, xj), since this only keeps
t ∈ (R ∪ ¬(R)) satisfying t[i] = 0 and t[j] = 1.

For the case when Γ is preserved by a constant operation it is not easy to directly
reduce from Inv-SAT(Γ ∪ {(0, 1)}), and we will first need to show co-NP-completeness of
an auxiliary problem, where input relations satisfy the following additional property.

Definition 11. An n-ary Boolean relation R is complementary saturated if (1) there exists
1 ≤ i, j ≤ n such that Pri(R) = {(0)} and Prj(R) = {(1)}, and (2) for every 1 ≤ i ≤ n
there exists 1 ≤ j ≤ n such that t[i] 6= t[j] for every t ∈ R.

In other words the relation contains the two constant Boolean arguments, and for each
argument of the relation there exists an argument which is its complement. For a finite
constraint language Γ we then by Inv-SAT 6=(Γ) denote the following structurally restricted
Inv-SAT(Γ) problem.

Instance: A complementary saturated Boolean relation R.
Question: R ∈ 〈Γ〉6∃?

We will now prove that Inv-SAT 6=(Γ) remains co-NP-complete when Pol(Γ) = ΠB.

Lemma 12. Let Γ be a finite constraint language such that Pol(Γ) = ΠB. Then Inv-SAT 6=(Γ)
is co-NP-complete.

Proof. We will first construct the language Γ 6= for every R ∈ Γ by letting R 6= ∈ Γ6= where
R 6= is obtained by adding the minimum number of arguments to R such that R 6= is com-
plementary saturated. Without loss of generality we assume that the arguments to each
relation R 6= ∈ Γ 6= are ordered such that Pr1,...,ar(R)(R

6=) = R. Observe that Pol(Γ6=) = ΠB,

which by Lemma 9 implies that Inv-SAT(Γ6=) is co-NP-complete, and that we can prove
the claim of the lemma by reducing from Inv-SAT(Γ6=).

Hence, let R be an n-ary relation, which we for simplicity assume is irredundant by
Lemma 8. Assume that R is not complementary saturated and is not a valid instance of
Inv-SAT 6=(Γ). Then R /∈ 〈Γ 6=〉6∃ since every qfpp-definition over Γ 6= defining an irredundant
relation can only use constraints over complementary saturated relations from Γ6=. Hence,
we may simply output an arbitrary no-instance.

Otherwise, R is already a valid instance of Inv-SAT 6=(Γ), and in this case we claim that
R ∈ 〈Γ6=〉6∃ if and only if R ∈ 〈Γ〉 6∃. First assume that R ∈ 〈Γ 6=〉 6∃. Via Lemma 7 we know
that τ01

6= ∈ 〈Γ〉6∃, and from this property it follows that Γ6= ⊆ 〈Γ〉6∃, implying that R ∈ 〈Γ〉6∃.
For the other direction, assume that R ∈ 〈Γ〉6∃. Let

R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm)

be a qfpp-definition over Γ, and for each tuple of variables xi let yi denote the corresponding
tuple of complementary variables. It then follows that

R(x1, . . . , xn) ≡ R 6=1 (x1,y1) ∧ . . . ∧R 6=m(xm,ym)

is a valid qfpp-definition of R over Γ6=.
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We can now handle the remaining cases by reducing from Inv-SAT 6=(Γ∪{(0, 1)}) instead
of Inv-SAT(Γ ∪ {(0, 1)}), which is significantly easier.

Lemma 13. Let Γ be a finite constraint language such that Pol(Γ) = [{f0}] or Pol(Γ) =
[{f1}]. Then Inv-SAT(Γ) is co-NP-complete.

Proof. We present the proof for the case when Pol(Γ) = [{f0}] since the other case is
entirely analogous. In order to prove this we will give a polynomial-time reduction from
Inv-SAT 6=(Γ ∪ {(0, 1)}) to Inv-SAT(Γ). The problem Inv-SAT 6=(Γ ∪ {(0, 1)}) is co-NP-
complete by Lemma 12 since Pol(Γ ∪ {(0, 1)}) = ΠB.

Let R be an instance of Inv-SAT6=(Γ ∪ {(0, 1)}) of arity n. From Lemma 8 we may in
addition assume that R is irredundant. If there does not exist i, j ∈ {1, . . . , n} such that
Pri(R) = {(0)} and Prj(R) = {(1)} then it is already the case that R ∈ 〈Γ〉6∃ if and only if
R ∈ 〈Γ∪{(0, 1)}〉 6∃; therefore we assume that such i and j exist. First construct the relation
R′ = R ∪ {(0, . . . , 0)}, i.e., the relation R adjoined with the constant 0 tuple. We will now
prove that R′ ∈ 〈Γ〉6∃ if and only if R ∈ 〈Γ ∪ {(0, 1)}〉 6∃. Hence, first assume that R′ ∈ 〈Γ〉6∃
and let

R′(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm)

be a qfpp-definition over Γ. Then consider the qfpp-definition

R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj).

This qfpp-definition is correct since the additional constraint {(0, 1)}(xi, xj) will ensure that
the constant 0 tuple, included in R′ but not in R, cannot be a model. For the other direction
assume that R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ and let

R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj)

denote a qfpp-definition, where we without loss of generality assume that R1, . . . , Rm belong
to Γ. Now recall the relation

τ01
6= ∪ {(0, 0, 0, 0)} = {(0, 1, 0, 1), (1, 0, 0, 1), (0, 0, 0, 0)}

from Lemma 7, and observe that this relation is nothing else than the binary inequality
relation with two constant arguments, adjoined with the constant 0 tuple. We will use
this relation as a gadget in order to enforce that the correct inequalities hold between the
complementary variables. Hence, assume that the arity of R is 2k + 2, that the variables
occurring in positions k+ 1, . . . , 2k are the complement of the k first, and that the last two
arguments are constant 0 and constant 1, respectively. These assumptions can be made
without loss of generality since R is irredundant. Then consider the qfpp-definition

R′′(x1, . . . , x2k, x2k+1, x2k+2) ≡ R1(x1) ∧ . . . ∧Rm(xm)∧
k∧

i=1

τ01
6= ∪ {(0, 0, 0, 0)}(xi, xi+k, x2k+1, x2k+2).

We claim that R′′ = R′. The direction R′ ⊆ R′′ is clear, and we therefore concentrate
on proving that R′′ ⊆ R′. Consider a tuple t ∈ R′′. If t[i] 6= t[i] for each 1 ≤ i ≤ k
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then t[2k + 1] = 0 and t[2k + 2] = 1, and t ∈ R ⊆ R′. Otherwise there exists i where
t[i] = t[i+ k]. However, t[i] = t[i+ k] = 1 cannot happen since such a tuple is inconsistent
with the constraint τ01

6= ∪{(0, 0, 0, 0)}(xi, xi+k, x2k+1, x2k+2) in the above definition. Hence,
t[i] = t[i+ k] = 0. But then t[2k + 2] = 0, which in turn implies that t[j] = t[j + k] = 0 for
each 1 ≤ j ≤ k, and that t is the constant 0 tuple (0, . . . , 0) ∈ R′.

Lemma 14. Let Γ be a finite constraint language such that Pol(Γ) = [{f0, f1}]. Then
Inv-SAT(Γ) is co-NP-complete.

Proof. In order to prove the result we will give a polynomial-time reduction from Inv-SAT 6=(Γ∪
{(0, 1)}), which is co-NP-complete since Pol(Γ ∪ {(0, 1)}) = ΠB. Hence, let R be an n-
ary relation. Since R is complementary saturated there exists 1 ≤ i, j ≤ n such that
Pri = {(0)} and Prj = {(1)}. Construct the relation R′ = R ∪ {(0, . . . , 0), (1, . . . , 1)}. We
claim that R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ if and only if R′ ∈ 〈Γ〉 6∃. For the first direction, assume that
R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ and let

R(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(xi, xj)

denote a qfpp-definition such thatR1, . . . , Rm ∈ Γ. Recall that the relation τ→ = {(0, 0), (0, 1), (1, 1)}
from Lemma 7 is qfpp-definable by Γ. Now construct the qfpp-definition

R′(x1, . . . , xn) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧
n∧

k=1

(τ→(xi, xk) ∧ τ→(xk, xj).

To see that this definition is correct, observe that the additional constraints of the form
(τ→(xi, xk) ∧ τ→(xk, xj) ensure that either xi and xj are assigned 0 and 1, respectively, or
every variable is assigned 0 or 1, resulting in the two constant tuples (0, . . . , 0) and (1, . . . , 1).
The other direction (R ∈ 〈Γ∪{(0, 1)}〉6∃ if R′ ∈ 〈Γ〉6∃) can be proven using similar arguments
as in the proof of Lemma 13.

Lemma 15. Let Γ be a finite constraint language such that Pol(Γ) = [{f0, f1, x̄}]. Then
Inv-SAT(Γ) is co-NP-complete.

Proof. As Pol(Γ) = [{f0, f1, x̄}] it follows that Pol(Γ ∪ {(0, 1)}) = ΠB. We will give a
polynomial-time reduction from Inv-SAT 6=(Γ ∪ {(0, 1)}) to Inv-SAT(Γ) (Inv-SAT 6=(Γ ∪
{(0, 1)}) is co-NP-complete since Pol(Γ∪{(0, 1)}) = ΠB). LetR be an instance of Inv-SAT 6=(Γ∪
{(0, 1)}). Since R is complementary saturated there exist i and j such that Pri(R) = {(0)}
and Prj(R) = {(1)}. For simplicity we will also assume that R is irredundant, n = 2k + 2,
i = 2k+1, j = 2k+2, and that the arguments in positions k+1, . . . , 2k are the complement
of the k first. Construct the relation

R′ = R ∪ {t|t ∈ R} ∪ {(0, . . . , 0), (1, . . . , 1)}.

We will prove that R′ ∈ 〈Γ〉 6∃ if and only if R ∈ 〈Γ∪{(0, 1)}〉6∃. Therefore, first assume that
R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ and let

R(x1, . . . , x2k+2) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧ {(0, 1)}(x2k+1, x2k+2)
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be a qfpp-definition over Γ where R1, . . . , Rm ∈ Γ. Now consider the qfpp-definition

R
′′
(x1, . . . x2k+2) ≡ R1(x1) ∧ . . . ∧Rm(xm) ∧

∧
l∈{1,...,n}

τf0,f1,x(xl, xl+k, x2k+1, x2k+2),

where τf0,f1,x = {(0, 0, 0, 0), (1, 1, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0)} ∈ 〈Γ〉6∃ is

the relation from Lemma 7. We claim that R′ = R
′′
, i.e., then the above qfpp-definition

defines R′. It is clearly the case that R ⊆ R′′, and this also implies that R′ ⊆ R′′ since
R′′ is closed under f0, f1, and x. For the other direction, assume there exists t ∈ R′′ \ R′.
It must then be the case that t is not constant 0 or constant 1, and furthermore also that
t /∈ R′. Assume first that there exists 1 ≤ l ≤ k such that t[l] = t[l + k]. Then, due to the
constraints ∧

l∈{1,...,n}

τf0,f1,x(xl, xl+k, x2k+1, x2k+2),

it is easy to verify that this will force t[2k+ 1] = t[2k+ 2] = t[l], which in turn implies that
t[l] = t[l′] for every 1 ≤ l′ ≤ 2k + 2, and also that t ∈ R. This contradicts the assumption,
and we conclude (1) that t[l] 6= t[l + k] for every 1 ≤ l ≤ k and (2) that t[2k + 1] = 0 and
t[2k + 2] = 1 or t[2k + 1] = 1 and t[2k + 2] = 0. In the first case it directly follows that
t ∈ R ⊆ R′, and in the second case that t ∈ R, and hence that t ∈ R′.

To prove the reverse direction we assume that

R′(x1, . . . x2k+2) ≡ R1(x1) ∧ . . . ∧Rm(xm)

where R1, . . . , Rm ∈ Γ. We can then qfpp-define R by

R(x1, . . . x2k+2) ≡ R′(x1, . . . x2k+2) ∧ {(0, 1)}(x2k+1, x2k+2).

Hence, R ∈ 〈Γ ∪ {(0, 1)}〉 6∃ if and only if R′ ∈ 〈Γ〉 6∃. This concludes the reduction.

By combining Lemma 9– 10 and Lemma 13– 15 we have thus finally proven Theorem 6.

Example 3. We can now answer the question regarding the complexity of Inv-SAT(R1/3)
from Example 2. Any existing reduction from 3-SAT to 1-in-3-SAT can be converted to
a pp-definition of Γ3

SAT over R1/3 implying that R1/3 is preserved only by the projections.
Hence, Pol(R1/3) = ΠB, and Theorem 6 then reveals that Inv-SAT(R1/3) is indeed co-NP-
complete. More generally Theorem 6 also implies that Inv-SAT(R1/k) is co-NP-complete
for every k ≥ 3. Another, perhaps more illuminating example, is the inverse problem
for not-all-equal-k-SAT. This problem can be formulated as Inv-SAT(Γk

NAE) where
Γk

NAE = {0, 1}k \ {(0, . . . , 0), (1, . . . , 1)}.It is known that Γk
NAE for k ≥ 3 is only closed under

complement [9], so using Theorem 6 we conclude that Inv-SAT(Γk
NAE) is co-NP-complete

for every k ≥ 3. Note that this case is entirely absent from Theorem 4 since Γk
NAE cannot

even pp-define the constant relations.

By Theorem 6 we know that Inv-SAT(Γ) is polynomial-time reducible to Inv-SAT(∆)
if Γ ⊆ 〈∆〉6∃ (indeed, even Γ ⊆ 〈∆〉) for finite languages Γ and ∆. When such a relationship
holds it is sometimes said to hold a posteriori for the problem in question. However, proving
that Inv-SAT(Γ) is polynomial-time reducible to Inv-SAT(∆) if Γ ⊆ 〈∆〉 6∃ unconditionally
of Theorem 6 appears to be highly challenging. We may state this conjecture as follows.
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Conjecture 1. Let Γ and ∆ be two finite, Boolean constraint languages. If Γ ⊆ 〈∆〉6∃
then Inv-SAT(Γ) is polynomial-time many-one reducible to Inv-SAT(∆) (independent of
Theorem 6).

Thus far we have been unable to make significant progress. However, it is possible to
give important special cases where such a result is true.

Theorem 16. Let Γ and ∆ be two finite, Boolean constraint languages. If there exist partial
operations g1, . . . , gm such that pPol(Γ) = [pPol(∆) ∪ {g1, . . . , gm}]s then Inv-SAT(Γ) is
polynomial-time many-one reducible to Inv-SAT(∆).

Proof. Let R be an n-ary Boolean relation. We first check if gi ∈ pPol(R) for every 1 ≤ i ≤
n. This can be done in polynomial time since m is a fixed constant. If no, then R /∈ 〈Γ〉6∃
(Theorem 3) and the result of the reduction is an arbitrary no-instance of Inv-SAT(∆).
Hence, assume that every gi preserves R. In this case we claim that R ∈ 〈Γ〉6∃ if and only
if R ∈ 〈∆〉 6∃. First, assume that R ∈ 〈Γ〉6∃. Then R ∈ 〈∆〉 6∃ since Γ ⊆ 〈∆〉6∃ from the
assumption that pPol(Γ) = [pPol(∆)∪ {g1, . . . , gm}]s and Theorem 3. Second, assume that
R ∈ 〈∆〉 6∃, and, thus, that pPol(∆) ⊆ pPol(R). But then pPol(Γ) ⊆ pPol(R), too, since
(1) g1, . . . , gm ∈ pPol(R) and (2) pPol(Γ) = [pPol(∆) ∪ {g1, . . . , gm}]s. We conclude that
R ∈ 〈Γ〉6∃ if and only if R ∈ 〈∆〉6∃, and the output of the reduction is simply R itself.

This, for example, holds in the important special case when 〈∆〉 6∃ covers 〈Γ〉6∃, i.e.,
when there does not exist Γ′ such that 〈Γ〉6∃ ⊂ 〈Γ′〉6∃ ⊂ 〈∆〉 6∃. Generalizing Theorem 16 to
arbitrary Γ and ∆ such that 〈Γ〉 6∃ ⊆ 〈∆〉6∃ appears difficult. The fundamental problem is
that, even if we were given an infinite set G = {g1, g2, . . .} of partial operations such that
pPol(Γ) = [pPol(∆) ∪ G]s, the condition G ⊆ pPol(R) cannot necessarily be checked in
polynomial time.

4 The Inv-SAT(Γ) Problem over Infinite Constraint Lan-
guages

Since we have proven that Inv-SAT(Γ) is always either tractable or co-NP-complete for
finite constraint languages Γ, it is tempting to investigate the case when Γ is infinite. First,
it is important to note that Schaefer’s dichotomy theorem for SAT(Γ) is also valid for in-
finite constraint languages, and in fact that many natural satisfiability problems such as
CNF-SAT, Horn-SAT, and linear equations modulo 2, can only be represented as SAT(Γ)
problems over infinite Γ. It thus makes sense to ask whether it is possible to extend Theo-
rem 6 to infinite constraint languages.

First, note that if SAT(Γ) is NP-complete then SAT(∆) is NP-complete whenever
∆ ⊆ Γ. This straightforward property does not hold for Inv-SAT(Γ), since, for example,
Inv-SAT({R1/3}) is co-NP-complete but Inv-SAT(BR) is trivially solvable in polynomial
time by always answering “yes”. We will now describe a more general class of tractable
Inv-SAT(Γ) problems based on properties of the partial polymorphisms of Γ. Here, we
need the property that pPol(Γ) is finitely generated, i.e., that there exists a finite set of
partial operations F such that [F ]s = pPol(Γ).
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Theorem 17. Let Γ be a constraint language such that pPol(Γ) is finitely generated with
respect to a set F of partial operations. Then Inv-SAT(Γ) is solvable in polynomial time.

Proof. Let R be an instance of Inv-SAT(Γ) of arity n. Due to Theorem 3 the question
R ∈ 〈Γ〉6∃ is equivalent to checking whether F ⊆ pPol(R), or, put otherwise, whether R is
preserved by every partial operation in F . Now consider the following algorithm.

1. Let k be the maximum arity among the partial operations in F .

2. For each 1 ≤ i ≤ k enumerate all sequences t1, . . . , ti ∈ R.

3. For each f ∈ F of arity i compute f(t1, . . . , ti) = t. If t /∈ R then answer “no”.

4. Answer “yes”.

As remarked, this algorithm is sound and complete since R ∈ 〈Γ〉6∃ if and only if every
f ∈ F preserves R, and an i-ary partial operation f preserves R if and only if there does
not exist t1, . . . , ti ∈ R such that f(t1, . . . , ti) /∈ R. Regarding the time complexity, we in
the ith iteration enumerate all sequences of tuples from R of length i, which takes O(|R|i)
time, and for each f ∈ F check whether f applied to this sequence results in a tuple
included in R, which takes O(i · n · |R|) time. Put together this gives a running time of
O(k · |F | · |R|k · k · n · |R|) = O(k2 · |F | · |R|k+1 · n) which is bounded by a polynomial since
k is a fixed constant.

It is worth remarking that Γ is always infinite when pPol(Γ) is finitely generated and
Pol(Γ) ⊇ [{f0, f1, x}] [18] — hence there is no possible overlap between Theorem 6 and
Theorem 17. This result may be seen as surprising since computational problems param-
eterized by Boolean constraint languages tend to be rather well-behaved. To the best of
our knowledge only a variant of the propositional abduction problem, exhibits a similar
difference in complexity between finite and infinite constraint languages [13], but with the
crucial distinction that the finite language results in tractability while the infinite language
results in NP-hardness.

At this stage it is fair to ask if Inv-SAT(Γ) is always tractable when Γ is infinite. This is
however not the case. First take any finite constraint language Γ such that Inv-SAT(Γ) is
co-NP-complete by Theorem 6. Then consider the infinite constraint language 〈Γ〉6∃ obtained
by closing Γ under qfpp-definitions. Clearly, Inv-SAT(Γ) and Inv-SAT(〈Γ〉6∃) are the same
computational problem, and in particular Inv-SAT(〈Γ〉6∃) is co-NP-complete even though
〈Γ〉6∃ is infinite. Based on these observations and Theorem 17, it is natural to conjecture
that the question of whether Inv-SAT(Γ) is co-NP-complete or tractable does not depend
on whether Γ is finite or infinite, but rather whether pPol(Γ) is sufficiently simple. We thus
make the following conjecture.

Conjecture 2. Let Γ be a Boolean constraint language such that Pol(Γ) ⊇ [{f0, f1, x}].
Then Inv-SAT(Γ) is tractable if pPol(Γ) is finitely generated and is co-NP-hard otherwise.

In general terms the situation is therefore as follows. There exists infinite F such that
Inv-SAT(Inv(F)) is co-NP-complete (simply by letting F = pPol(Γ) for any finite Γ where
Pol(Γ) = ΠB) even though Inv-SAT(Inv(G)) is tractable for every finite subset G ⊂ F . The
reader familiar with Ladner’s technique for constructing NP-intermediate problems [16] will
at this stage likely see some resemblances. Ladner’s technique is based on “blowing holes”
in the set of instances of a computational problem in such a way that the resulting problem
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is too dense to be tractable but too sparse too be intractable. The technique has also been
generalized to blow holes in constraint languages in order to construct NP-intermediate
(infinite-domain) CSPs and NP-intermediate abduction problems [13]. Thus, it is tempting,
although not straightforward, to apply this technique to Inv(F) and attempt to construct
F ′ ⊂ F which is not finite but such that Inv-SAT(Inv(F)) is not polynomial-time reducible
to Inv-SAT(Inv(F′)).

5 The Inverse Constraint Satisfaction Problem

In this section we investigate the complexity of a multi-valued generalization of Inv-SAT(Γ)
based on the constraint satisfaction problem (CSP). This problem can be defined analogously
to SAT(Γ) with the exception that the constraint language Γ is allowed to contain non-
Boolean relation. Hence, if D is a domain and Γ is a constraint language over D, then
an instance of the CSP problem over Γ (CSP(Γ)) is a tuple (V,C) consisting of a set of
variables V and a set of constraints C over V and Γ, and the objective is to determine if
there exists f : V → D satisfying all constraints. Similarly to the Boolean case it is possible
to associate an instance (V,C) of CSP(Γ) with a logical formula ϕ, and we write Sols(ϕ)
for the set of all models of ϕ. We then define the inverse constraint satisfaction problem
over a constraint language Γ (Inv-CSP(Γ)) over a domain D as follows.

Instance: A relation R over D.
Question: Does there exist a CSP(Γ) instance ϕ such that Sols(ϕ) = R?

All of the algebraic techniques introduced in Section 2 are valid for arbitrary finite
domains in the context of CSPs, and we refrain from defining them again. Thus, for example,
if Γ is a constraint language over D then we write Pol(Γ) for the set of polymorphisms over
D, and Pol(Γ) is again called a clone. In addition, if Γ = {R} is singleton then we write
CSP(R) instead of CSP({R}).
Example 4. The k-colouring problem is a well-known problem of determining if a
graph (V,E) can be coloured using at most k colours. This problem can be easily formulated
as a CSP as follows. Let D = {0, 1, . . . , k − 1} and define the inequality relation over D
as 6=D= {(x, y) ∈ D2 | x 6= y}. Then we create an instance of CSP(6=D) by viewing V as
a set of variables, and for each {x, y} ∈ E we introduce a constraint 6=D (x, y). It is then
straightforward to verify that the resulting CSP(6=D) instance admits a solution if and only
if (V,E) admits a k-colouring.

The k-colouring problem also has a natural inverse problem inverse k-colouring:
given set of k-colourings over n vertices, determine if there exists a graph over n vertices
which is colourable precisely according to this set. By the preceding example it is clear that
the inverse k-colouring problem can be formulated as Inv-CSP(6=D). This problem
was mentioned as an open problem in Chen [8], and as we will see later in this section,
inverse k-colouring is in P for k = 2 but is co-NP-complete for every k ≥ 3.

Let us now proceed by studying the complexity of Inv-CSP(Γ). Inclusion in co-NP can
easily be proved using similar arguments as in the Boolean domain [15], i.e., a no-instance
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R /∈ 〈Γ〉6∃ can be witnessed by a formula ϕ and a tuple t where (1) ϕ is the conjunction of all
Γ-constraints over ar(R) variables consistent with each model in R, and (2) t ∈ Sols(ϕ)\R.

Lemma 18. Let Γ be a finite constraint language over a finite domain D. Then Inv-CSP(Γ)
is included in co-NP.

Before we can state our hardness results we need a few technical definitions. Let R be a k-
ary relation. Say that the argument i ∈ {1, . . . , k} is determined inR if |Pr1,...,i−1,i+1,...,k(R)| =
|R|. Similarly, if

∃y1, . . . , yi, . . . , yl : ϕ(x1, . . . , xk, y1, . . . , yi, . . . , yl)

is a pp-definition with free variables x1, . . . , xk we say that yi is determined by x1, . . . , xk
if the (k + 1)th argument is determined in the relation R defined by

R(x1, . . . , xk, yi) ≡ ∃y1, . . . , yi−1, yi+1, . . . , yl : ϕ(x1, . . . , xk, y1, . . . , yl).

Definition 19. Let Γ be a constraint language over a finite domain. We say that Γ
faithfully defines a k-ary relation R with a if there exists a pp-definition R(x1, . . . , xk) ≡
∃y1, . . . , yl : ϕ(x1, . . . , xk, y1, . . . , yl) over Γ where each yi is determined by x1, . . . , xn.

Hence, existential quantification is only allowed if the variable is determined by the free
variables in the pp-definition. Using algebra we can prove that any constraint language Γ
over a finite domain whose only polymorphisms are the projections, can faithfully define
every Boolean relation. Kavvadias and Sideri [15] proved this for the Boolean domain using
a complicated case analysis over all possible Boolean formulas. Thus, the following result
is a significant strengthening.

Lemma 20. Let Γ be a constraint language over a finite domain D preserved only by the
projections over D. Then Γ can faithfully define all Boolean relations.

Proof. The idea behind the proof is that first we create a relation R such that Pol(Γ) =
Pol(R) and which is qfpp-definable by Γ. Then we prove that this particular relation R can
faithfully define all the Boolean relations. Let D = {0, 1, . . . , k − 1} for k > 2. We begin
by constructing the relation R = {t1, . . . , tk} of arity kk consisting of k tuples t1, . . . , tk
such that there for each t ∈ {0, 1, . . . , k − 1}k exists a unique i ∈ {1, . . . , kk} such that
(t1[i], . . . , tk[i]) = t. Next, we claim that Pol(R) consists only of projections. Otherwise,
by Rosenberg’s classification of minimal clones [23], it follows that [{g}] ⊆ [{f}] where g
is either a unary operation which is not a projection, an idempotent binary operation, a
ternary majority operation, a ternary minority operation, or an m-ary semiprojection, for
3 ≤ m ≤ k. For each such operation g of arity 1 ≤ n ≤ k there then exists t1, . . . , tn ∈ R
such that there for every t ∈ Dn exists i such that (t1[i], . . . , tn[i]) = t. Furthermore, since
g is not a projection, g(t1, . . . , tn) /∈ {t1, . . . , tn}, and it is straightforward to also show that
g(t1, . . . , tn) /∈ R. Hence, Pol(R) = Pol(Γ). Theorem 4.11 in Schnoor and Schnoor [25] then
implies that, for this particular relation R, R ∈ 〈Γ〉 6∃, which also implies that Γ faithfully
defines R since a qfpp-definition is a restricted case of a faithful definition. Next, it is clear
that there exist (distinct) i1, . . . , ik ∈ {1, . . . , kk} such that Pri1,...,ik(R) = R1/k. Moreover,
since |R1/k| = k it follows that every other argument in R is determined by i1, . . . , ik, and
R can therefore faithfully define R1/k. Then it follows that Γ faithfully defines R, which
faithfully defines R1/k which in turn faithfully defines every Boolean relation by Theorem 3
in Kavvadias and Sideri [15].
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In order to prove co-NP-hardness of Inv-CSP(Γ) we will modify the proof from Kavva-
dias and Sideri [15], and will need the following two definitions.

Definition 21. Let I = (V,C) be an instance of CSP(Γ) over D, and let f : V ′ →
D, V ′ ⊆ V , be a partial function. Say that f is consistent with I if there for every
Ri(xi1 , . . . , xiar(Ri)

) ∈ C exists an extension of f satisfying Ri(xi1 , . . . , xiar(Ri)
).

Thus, a consistent (partial) assignment of variables in a CSP instance does not directly
contradict any single constraint in the instance.

Definition 22. Let Γ be a finite constraint language over a finite domain which faithfully
defines all Boolean relations. Let I = (V,C) be an instance of SAT(Γ3

SAT) where |V | = n.
Let x1, . . . , xn be an enumeration of V . For r ≥ 1 we define the relation γrI as follows.

1. Let (W1, f1), . . . , (Wk, fk) be an enumeration such that Wi ⊆ V , |Wi| = 3r, and
fi : Wi → {0, 1} a partial function which is consistent with I.

2. Given (Wi, fi) and a variable x ∈ V we let

τWi,fi(x) =



(0, 1,

k︷ ︸︸ ︷
0, . . . , 0) if x ∈Wi, fi(x) = 1

(1, 0,

k︷ ︸︸ ︷
0, . . . , 0) if x ∈Wi, fi(x) = 0

(0, 0,

i−1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

k−i+1

) if x /∈Wi.

(1)

3. βWi,fi is the concatenation of τWi,fi(x1), . . . , τWi,fi(xn).

4. Let (V ′, C ′) be the instance of SAT(Γ3
SAT) consisting of all possible constraints (i.e., 3-

clauses) not contradicted by any βWi,fi (viewed as a model). In particular, Sols((V ′, C ′)) ⊇
{βW1,f1 , . . . , βWk,fk}.

5. Let

Sols((V ′, C ′))(x1, . . . , xn(k+2)) ≡ ∃y1, . . . , yr : ϕ(x1, . . . , xn(k+2), y1, . . . , yr)

denote a faithful definition over Γ.

6. Let γrI be the relation

γrI (x1, . . . , xn(k+2), y1, . . . , yr) ≡ ϕ(x1, . . . , xn(k+2), y1, . . . , yr).

Although not obvious from the definition, |γrI | = k, since each βWi,fi can be uniquely
matched with the freshly introduced arguments, and γrI can thus for each fixed r ≥ 1 be
constructed in polynomial time with respect to I. In order to lift the result from Kavvadias
and Sideri [15] we will also need the following lemma, relating the expressive power of finite
constraint languages to the expressive power of Γk

SAT.

Lemma 23. Let Γ be a constraint language over a finite domain D where maxS∈Γ ar(S) =
r − 1, and let R be an r-ary Boolean relation. If R /∈ 〈Γr−1

SAT〉 6∃ then R /∈ 〈Γ〉6∃.
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Proof. For a relation R over D let R|B = {t | t ∈ R, t ∈ {0, 1}ar(R)} ⊆ R be the largest
subset of R which is Boolean, and let Γ|B = {R|B | R ∈ Γ}. Now, let R be an r-ary Boolean
relation such that R /∈ 〈Γr−1

SAT〉 6∃, and assume that R is qfpp-definable over Γ with a qfpp-
definition R(x1, . . . , xr) ≡ R1(x1) ∧ . . . ∧Rm(xm) for R1, . . . , Rm ∈ Γ ∪ {EqD} (EqD is the
equality relation {(x, x) | x ∈ D}). Let R′(x1, . . . , xr) ≡ R1|B(x1) ∧ . . . ∧ Rm|B(xm). We
claim that R = R′. Since each Ri|B ⊆ Ri it directly follows that R′ ⊆ R, and we only need
to show that t ∈ R \ R′ cannot exist. If t ∈ R \ R′ exists then there must exist Ri|B(xi),
xi = (xi1 , . . . , xiar(Ri)

), such that Pri1,...,iar(Ri)
(t) /∈ Ri|B , which is clearly impossible since

t is Boolean and since Ri|B is the largest Boolean subset of Ri. It is then known that
〈∆〉 6∃ ⊆ 〈Γr−1

SAT〉6∃ for any Boolean ∆ such that maxR∈∆ ar(R) = r− 1 [9], which in particular
implies that Γ|B ⊆ 〈Γr−1

SAT〉6∃ and that R ∈ 〈Γr−1
SAT〉6∃.

We can then prove co-NP-hardness with a reduction from the 3-unsatisfiability prob-
lem, i.e., the co-NP-complete problem of checking if an instance of SAT(Γ3

SAT) is unsatisfi-
able.

Theorem 24. Let Γ be a finite constraint language over a finite domain D = {0, 1, . . . , k−
1}. If Γ is preserved only by the projections over D then Inv-CSP(Γ∪{{(0)}, {(1)}, . . . , {(k−
1)}}) is co-NP-complete.

Proof. Membership in co-NP follows from Lemma 18. Let r = maxR∈Γ ar(R). To prove
co-NP-hardness we will give a reduction from 3-unsatisfiability. Hence, let I = (V,C) be
an instance of 3-unsatisfiability. We then construct the relation γrI from Definition 22,
which is well-defined since Γ can faithfully define all Boolean relations by Lemma 20. Let
k be the value from Definition 22. We claim that γrI ∈ 〈Γ〉6∃ if and only if I is unsatisfiable.

First assume that I is satisfiable. Then γrI /∈ 〈Γr
SAT〉6∃ by Theorem 4 in Kavvadias and

Sideri [15], and Lemma 23 then implies that γrI /∈ 〈Γ ∪ {{(0)}, {(1)}, . . . , {(k − 1)}}〉6∃.
Second, assume that I is unsatisfiable. Let γ = Pr1,...,n(k+2)(γ

r
I ). Then γ can be qfpp-

defined by Γ3
SAT by Kavvadias and Sideri [15][Theorem 4], implying that Sols((V ′, C ′)) =

γ = {βW1,f1 , . . . , βWk,fk} for the SAT(Γ3
SAT) instance (V ′, C ′) from step (4) in Definition 22.

By recapitulating step (5) and step (6) in Definition 22 we then see that

γrI (x1, . . . , xn(k+2), y1, . . . , yr) ≡ ϕ(x1, . . . , xn(k+2), y1, . . . , yr)

where ϕ(x1, . . . , xn(k+2), y1, . . . , yr) is a qfpp-definition of Sols((V ′, C ′)) = γ over Γ. Hence,
γrI ∈ 〈Γ ∪ {{(0)}, {(1)}, . . . , {(k − 1)}}〉6∃.

It is straightforward to prove that Theorem 24 can be leveraged to show co-NP-completeness
for Inv-CSP(Γ) when Pol(Γ) contains only projections.

Theorem 25. Let Γ be a finite constraint language over a finite domain D, preserved only
by the projections over D. Then Inv-CSP(Γ) is co-NP-complete.

Proof. Since the proof is similar to Lemma 9, handling the Boolean case, we show the con-
struction in detail but only provide a sketch of the correctness proof. Let D = {0, 1, . . . , k−
1} and construct the constraint language

∆ = {R× {(0, 1, . . . , k − 1)} | R ∈ Γ} ∪ {{(0)}, {(1)}, . . . , {(k − 1)}}).
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The problem Inv-CSP(∆) is co-NP-complete by Theorem 24, and it is therefore sufficient
to give a reduction from Inv-CSP(∆) to Inv-CSP(Γ).

Hence, let R be an n-ary, irredundant instance of Inv-CSP(∆). Similar to the Boolean
case we can first check if R ∈ 〈χ〉 6∃ for each χ ⊆ {{(0)}, {(1)}, . . . , {(k − 1)}}, and if this is
the case for some χ we then check if χ ⊆ 〈Γ〉6∃ and either output R itself or a no-instance of
Inv-CSP(Γ). In other words we for each subset χ of the constant relations over D check
whether the relation R can be qfpp-defined with χ, and if χ is not qfpp-definable by Γ then
we need to output a no-instance. These checks can be performed in polynomial time since
|D| = k is fixed and since Γ is finite.

If, on the other hand, R /∈ 〈χ〉6∃ for every χ ⊆ {{(0)}, {(1)}, . . . , {(k−1)}}, then we check
whether there exists i1, . . . , ik ∈ {1, . . . , n} such that Pri1,...,ik(R) = {(0, 1, . . . , k − 1)}. If
yes, then the output of the reduction is R itself, and if not then we output an arbitrary
no-instance. The reason for outputting a no-instance is simply that any relation which
does not contain all the constant arguments over D cannot be defined by a qfpp-definition
using a relation from {R× {(0, 1, . . . , k − 1)} | R ∈ Γ} ⊆ ∆. Correctness then follows from
recapitulating the proof of Lemma 9, and the observation that {(0, 1, . . . , k− 1)} ∈ 〈Γ〉6∃ [1,
Theorem 3.6].

To exemplify this result we will prove that inverse k-colouring problem mentioned
in Example 4 is co-NP-complete for every k ≥ 3 (for k = 2 or k = 1 tractability follows
from Theorem 6).

Theorem 26. inverse k-colouring is co-NP-complete for k ≥ 3.

Proof. Recall that inverse k-colouring can be realized as Inv-CSP(6=D) forD = {0, . . . k−
1} and 6=D= {(x, y) ∈ D2 | x 6= y}. Furthermore it is known that Pol({6=D, {(0)}, . . . , {(k−
1)}) consists only of projections [1]. Theorem 24 then implies that Inv-CSP({6=D, {(0)}, . . . , {(k−
1)}) is co-NP-complete, and Theorem 25 furthermore implies that Inv-CSP({6=D, {(0, 1, . . . , k−
1)}) is co-NP-complete, too. Hence, we will show co-NP-hardness of inverse k-colouring
by a reduction from Inv-CSP({6=D, {(0, 1, . . . , k − 1)}).

Let R be an n-ary relation over D. First, if there does not exist i ∈ {1, . . . , n} such
that |Pri(R)| = 1 then it is already the case that R ∈ 〈6=D〉6∃ if and only if R ∈ 〈{6=D

, {(0, 1, . . . , k − 1)}}〉6∃. Second, if there exists i ∈ {1, . . . , n} such that |Pri(R)| = 1
then R ∈ 〈{6=D, {(0, 1, . . . , k − 1)}}〉 6∃ only if there for every d ∈ {0, . . . , k − 1} exists
j ∈ {1, . . . , n} such that Prj(R) = {(d)}. The reason why this holds is that the language
{6=D, {(0, 1, . . . , k− 1)}} can only qfpp-define a relation with constant arguments using the
k-ary relation {(0, 1, . . . , k − 1)}, which enforces the remaining constant values.

Therefore, we may without loss of generality assume that

Prn−k+1,n−k+2,...,n(R) = {(0, 1, . . . , k − 1)}
and that no other argument in R is constant. Let m = n − k + 1. We then construct
a relation R′ by, for each permutation ρ : D → D, adding the set {(ρ(x1), . . . , ρ(xn)) |
(x1, . . . , xn) ∈ R}. This may be viewed as a finite-domain generalisation of the relation
constructed in Lemma 10, obtained from closing the input relation under the permutation
x. Here, it is important to note that every unary f ∈ Pol( 6=D) is in fact a permutation of
this form. Assume that R ∈ 〈{6=D, {(0, 1, . . . , k − 1)}}〉6∃ and let

ϕ(x1, . . . , xn) ∧ {(0, 1, . . . , k − 1)}(xm,...,xn)
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be a qfpp-definition where ϕ(x1, . . . , xn) consists only of 6=D-constraints. Let

R1(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) ∧
∧

i,j∈{m,...,n},i6=j

(xi 6=D xj).

We claim that R1 = R′. Indeed, we trivially have that R ⊆ R1, and if

(τ(x1), . . . , τ(xn)) ∈ R′

for a permutation τ and tuple (x1, . . . , xn) ∈ R, it also holds that

(τ(x1), . . . , τ(xn)) ∈ R1

since R1 ∈ 〈6=D〉 6∃ ⊆ 〈6=D〉 implies that R1 is closed under all permutations. For the other
direction, let t ∈ R1, and let ρ be the permutation ρ(0) = t[m], . . . , ρ(k − 1) = t[n]. This is
indeed a well-defined permutation due to the constraints∧

i,j∈{m,...,n},i6=j

(xi 6=D xj)

in the qfpp-definition of R1. But then ρ−1(t) = s (applied componentwise) is included in
R, implying that ρ(s) = t ∈ R′.

For the other direction, assume that R′ ∈ 〈6=D〉6∃ and let

R′(x1, . . . , xn) ≡ φ(x1, . . . , xn)

be a qfpp-definition. Then we may qfpp-define R as

R(x1, . . . , xn) ≡ φ(x1, . . . , xn) ∧ {(0, 1, . . . , k − 1)}(xm, . . . , xn).

Hence, R ∈ 〈{6=D, {(0, 1, . . . , k−1)}}〉6∃ if and only ifR′ ∈ 〈6=D〉6∃, implying that Inv-CSP(6=D

) is co-NP-complete.

6 Concluding Remarks

We have studied the complexity of Inv-SAT(Γ) and obtained a complete dichotomy theo-
rem for finite Γ. To prove this we first limited the number of cases we needed to consider
with polymorphisms, and for each such case then used expressibility results based on par-
tial polymorphisms, in order to proceed with the required reductions. We also showed that
Inv-SAT(Γ) is a relevant problem for infinite constraint languages, even though the com-
plexity landscape differs drastically from the finite case. Last, we demonstrated that the
inverse CSP problem is an interesting topic in its own right, and used our general results
to resolve the complexity status of inverse k-colouring, mentioned as an open problem
in Chen [8]. Let us now consider a few different directions for future research.

A Dichotomy Theorem for Infinite Constraint Languages A good starting
point for proving Conjecture 2 is to find examples of infinite Γ such that (1) there does not
exist any finite ∆ ⊂ Γ such that 〈Γ〉6∃ = 〈∆〉6∃ and (2) pPol(Γ) is infinitely generated. One
candidate for such a language is ΓXSAT = {R1/k | k ≥ 3}, where both these properties can
be proven to hold. Is Inv-SAT(ΓXSAT) tractable or co-NP-complete?
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Inverse Logical Reasoning Problems A wide range of problems parameterized
by Boolean constraint languages have been considered in the literature (cf. the survey by
Creignou et al. [9]). Natural inverse problems can be defined for many of these problems
and seem especially interesting for logical reasoning problems such as abduction and cir-
cumscription. While dichotomy results akin to our dichotomy for Inv-SAT(Γ) might not
be easy, the approach used in this article at least suggests the possibility. It would be
particularly interesting to find examples where the inverse problem is tractable while the
original problem is intractable. Theorem 17 already gives such examples for Inv-SAT(Γ),
but it is not obvious that this argument is valid for different problems.

The Inverse Constraint Satisfaction Problem over Infinite Domains An-
other tempting problem is to study Inv-CSP(Γ) over infinite domains. In this case some
extra care is needed since the instance R cannot always be represented explicitly as a list
of tuples. However, there exist well-studied, so called ω-categorical, constraint languages
where the Inv-CSP problem could be interesting, since there exist better methods to rep-
resent relations than listing its tuples. However, even the problem of checking if R ∈ 〈Γ〉
for Γ over infinite domains is in general undecidable [3], so there is little hope in obtaining
a complete dichotomy.
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