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Abstract. Two well-studied closure operators for relations are based on existentially quanti�ed conjunctive
formulas, primitive positive (p.p.) de�nitions, and primitive positive formulas without existential quanti�-
cation, quanti�er-free primitive positive de�nitions (q.f.p.p.) de�nitions. Sets of relations closed under p.p.
de�nitions are known as co-clones and sets of relations closed under q.f.p.p. de�nitions as weak partial
co-clones. The latter do however have limited expressivity, and the corresponding lattice of strong partial
clones is of uncountably in�nite cardinality even for the Boolean domain. Hence, it is reasonable to consider
the expressiveness of p.p. de�nitions where only a small number of existentially quanti�ed variables are
allowed. In this paper we consider p.p. de�nitions allowing only polynomially many existentially quanti-
�ed variables, and say that a co-clone closed under such de�nitions is polynomially closed, and otherwise
superpolynomially closed. We investigate properties of polynomially closed co-clones and prove that if the
corresponding clone contains a k-ary near-unanimity operation for k ≥ 3 then the co-clone is polynomially
closed, and if the clone does not contain a k-edge operation for any k ≥ 2, then the co-clone is superpolyno-
mially closed. For the Boolean domain we strengthen these results and prove a complete dichotomy theorem
separating polynomially closed co-clones from superpolynomially closed co-clones. Using these results, we
then proceed to investigate properties of strong partial clones corresponding to superpolynomially closed
co-clones. We prove that if Γ is a �nite set of relations over an arbitrary �nite domain such that the clone
corresponding to Γ is essentially unary, then the strong partial clone corresponding to Γ is of in�nite order
and cannot be generated by a �nite set of partial functions.

Keywords: Clone theory, partial clone theory, universal algebra, primitive positive de�nitions, constraint
satisfaction problems

1 Introduction

A �nite or in�nite set of relations Γ over a �nite domain is known as a constraint language. Given a constraint
language Γ , a natural question to ask is which other relations R can be expressed by �rst order formulas over
Γ , or, equivalently, what is the smallest set of relations that contains Γ and is closed under such de�nitions. In
practice one often considers restricted �rst order formulas, and two common restrictions are primitive positive
de�nitions (p.p. de�nitions), where one is allowed to use existential quanti�cation, conjunction and equality
constraints, and quanti�er-free primitive positive de�nitions (q.f.p.p. de�nitions) where only conjunction and
equality constraints are allowed. A relational clone, or a co-clone, is a set of relations closed under p.p. de�ni-
tions. Any set of relations which generates a given co-clone using p.p. de�nitions is called a base of the co-clone.
Similarly, a set of relations closed under q.f.p.p. de�nitions is referred to as a weak partial co-clone, or a weak
system. Both co-clones and weak partial co-clones have interesting applications in theoretical computer science,
and in particular, for the study of the computational complexity of problems parameterized by constraint lan-
guages. One noteworthy example is the constraint satisfaction problem over a constraint language Γ (CSP(Γ )),
which is the problem of determining whether a conjunctive formula over Γ has a model. The use of algebraic
techniques to study the complexity of CSP(Γ ) is usually referred to as the algebraic approach and was �rst
pioneered by Jeavons [15]. The success of the algebraic approach can be mainly attributed to the fact that for
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every constraint language Γ one can associate a particular function algebra, known as the clone of Γ , or the
polymorphisms of Γ . The exact details of this relationship between a constraint language and its polymorphisms
will be covered later, but for the moment we merely state that this relationship provides a powerful method
for analyzing the complexity of constraint satisfaction and related problems. Using this relationship Jeavons
proved that the complexity of CSP(Γ ) up to polynomial-time reductions is determined by the polymorphisms
of Γ [15]. Since then, this result has been extended and used in numerous applications, cf. the excellent survey
by Creignou et al. [10] for a broad introduction to this topic.

There is also a similar relationship between weak partial co-clones and sets of partial functions closed under
composition, containing all total and partial projection functions, strong partial clones. Again, we omit the exact
de�nitions of these concepts for the moment, and just state that for every weak partial co-clone there exists a
set of partial functions, partial polymorphisms, which completely characterizes this set. With this relationship
Jonsson et al. proved that the partial polymorphisms of a constraint language Γ determines the complexity of
CSP(Γ ) up to O(cn) complexity [18], where n denotes the number of variables in a given CSP(Γ ) instance. This
result was used to give lower bounds for all NP-complete Boolean CSP(Γ ) problems. Similar results were given
in Jonsson et al. [19] but in the context of Boolean optimization problems. Hence, strong partial clones and
weak partial co-clones lead to interesting applications when comparing and relating computational problems
vis-à-vis O(cn) time complexity.

Unfortunately, the seemingly subtle steps from p.p. de�nitions to q.f.p.p. de�nitions, and from total to
partial functions, makes reasoning much more complex. One of the reasons is that, unlike Post's lattice of
Boolean clones [24], the lattice of strong partial clones is of uncountably in�nite cardinality even for the Boolean
domain [1]. Given this fact it is reasonable to consider the expressive power of closure operators which lie between
q.f.p.p. de�nitions and p.p. de�nitions. To �nd logical formulas of such intermediate complexity we in this article
restrict the number of existentially quanti�ed variables occurring in formulas, and are therefore interested in
which n-ary relations that can be p.p. de�ned with 1, 2, . . . , p(n) existentially quanti�ed variables, for some
reasonably slowly growing function p. In the sequel we assume that p is a polynomial function. If p(n) variables
are su�cient to de�ne every n-ary relation R in a co-clone then we say that the co-clone is polynomially closed.
We remark that if p(n) ≤ 2 then the resulting set of de�nable relations over some language Γ closely corresponds
to the closure operator considered in Nordh and Zanuttini [23].

The �rst contribution of this article is a complete classi�cation of the polynomially closed Boolean co-clones
(in Section 3). Our proofs are based on comparing the least expressive base of the co-clone with the most
expressive base of the co-clone, in order to obtain an upper bound of p. These languages are known as the
weak base and plain base, respectively, and were introduced by Schnoor and Schnoor [28], and Creignou et
al. [9]. We �rst give a general result and provide a su�cient condition for a co-clone over any �nite domain to
be polynomially closed: a co-clone X is polynomially closed if the clone corresponding to X contains a k-ary
near-unanimity function for some k ≥ 3. We then complete this classi�cation for the Boolean domain and in
addition prove that a Boolean co-clone X is polynomially closed if the polymorphisms of X can be represented
by a�ne functions, or if X is of in�nite order (i.e., that X does not have a �nite base). To handle the last case
we extend Schnoor and Schnoor's result [28] for constructing weak bases and give a condition for the existence
of weak bases for co-clones of in�nite order. In Section 5 we then proceed with the problem of determining
whether a co-clone is superpolynomially closed. We �rst prove that if the number of n-ary relations in a co-
clone is su�ciently large, then, for any �nite base of the co-clone, there exists relations which cannot be p.p.
de�ned using a polynomial number of existentially quanti�ed variables. By a result of Berman et al. [3] we
then obtain a su�cient condition for verifying whether a co-clone over any �nite domain is superpolynomially
closed. We remark that for the Boolean domain, a co-clone of �nite order is polynomially closed if and only if the
corresponding clone contains a k-edge function for some k ≥ 2, or, equivalently, if the clone has few subpowers [3].
Interestingly, this does not hold for co-clones of in�nite order, which suggests a quantitative di�erence between
our notion and that of Berman et al.

The second contribution of this article (in Section 6) is an investigation of the structure of the partial
polymorphisms of �nite constraint languages corresponding to superpolynomially closed co-clones. Before we
can present this result, we need a few additional preliminaries. Given a constraint language Γ , say that the
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set of partial polymorphisms of Γ is of �nite order if there exists a �nite set of partial functions F which
can generate this set, using the standard notion of functional composition, and of in�nite order otherwise.
The set F is in this case called a base of the set of partial polymorphisms of Γ . Assume e.g. that R1/3 =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}, and observe that CSP({R1/3}) is an alternative formulation of the well-known NP-
complete problem 1-in-3-SAT. It is easy to verify that the co-clone of {R1/3} is the set of all Boolean relations,
and from the results in Section 5 we know that this set is superpolynomially closed. Given the fact that the
partial polymorphisms of a constraint language has a close relationship with the worst-case time complexity
of the corresponding CSP problem [18], obtaining a �nite base of the set of partial polymorphisms of R1/3

would likely increase our understanding of the time complexity of 1-in-3-SAT. We prove that such a �nite base
cannot exist (irregardless of any complexity theoretical assumptions). In fact, we prove something stronger: let
Γ be a �nite constraint language over an arbitrary �nite domain. If the co-clone of Γ is superpolynomially
closed, and if the polymorphisms of Γ are essentially unary, then the set of partial polymorphisms of Γ is of
in�nite order. This result can be seen as a continuation of the research by Haddad and Börner [7] who gave
a condition for checking whether a strong partial clone is in�nitely generated, but our result also has many
practical consequences for the applicability of partial clone theory to the study of the computational complexity
of NP-hard CSP problems. Also, it is worth noting that even though a given strong partial clone is of in�nite
order, it might still be possible to give a reasonably simple characterization of its functions. This problem was
investigated in Lagerkvist et al. [22] by considering stronger notions of closure than functional composition.

2 Preliminaries and Notation

If Γ is a constraint language we let Γ (n) be de�ned as {R | R ∈ Γ, ar(R) ≤ n}, where ar(R) is the arity of
the relation R. Given a �nite domain D, we let RelD be the set of all �nitary relations over D, OPD be the
set of all functions over D, and we let EqD denote the equality relation {(x, x) | x ∈ D} over D. For a tuple
t = (x1, . . . , xi, . . . , xn) ∈ Dn we let t[i] = xi. An n-ary projection function over D is a function πni which for
some i ∈ {1, . . . , n} satis�es πni (x1, . . . , xi, . . . , xn) = xi for all (x1, . . . , xi, . . . , xn) ∈ Dn. We typically represent
relations and constraint languages by their de�ning logical formulas, and write R(x1, . . . , xn) ≡ φ, where φ is
a logical �rst-order formula, to denote the n-ary relation R = {(f(x1), . . . , f(xn)) | f is a model of φ}. As a
convenience we often write x̄ instead of ¬x.

2.1 Clones, Co-Clones and Galois Connection

Let Γ be a constraint language over a �nite domain D. If f is a function over D it is said to be a polymorphism
of Γ , or that Γ is invariant under f , if, for every relation R ∈ Γ , f(t1, . . . , tn) ∈ R for all t1, . . . , tn ∈ R. Here
f(t1, . . . , tn) denotes the ar(R)-ary tuple obtained by the component-wise application of f to t1, . . . , tn, i.e.,
f(t1, . . . , tn) = (f(t1[1], . . . , tn[1]), . . . , f(t1[ar(R)], . . . , tn[ar(R)])). If F is a set of functions over D and Γ a set
of relations we let PolD(Γ ) denote the set of all polymorphisms over D of Γ , and InvD(F ) denote the set of all
relations over D that are invariant under F . If the domain is clear from the context we simply write Inv(F ) and
Pol(Γ ), respectively.

Sets of the form Pol(Γ ) are usually referred to as clones, and, as can be veri�ed, are composition-closed sets of
functions containing all projection functions. That is, if f ∈ Pol(Γ ) is an n-ary function and g1, . . . , gn ∈ Pol(Γ )
are m-ary functions, then Pol(Γ ) also contains the m-ary function

(f ◦ (g1, . . . , gn))(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)).

Dually, sets of the form Inv(F ) are referred to as co-clones, and are sets of relations closed under primitive
positive de�nitions (p.p. de�nitions), i.e, whenever Γ ⊆ Inv(F ) then Inv(F ) also contains all n-ary relations R
of the form R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ . R1(x1) ∧ . . . ∧ Rm(xm), where each Ri ∈ Γ ∪ {Eq} and each xi is
an ar(Ri)-ary tuple of variables over x1, . . . , xn, y1, . . . , yn′ . Let [F ] = Pol(Inv(F )) and 〈Γ 〉 = Inv(Pol(Γ )), and
note that [F ] is then the smallest clone containing F , while 〈Γ 〉 is the smallest co-clone containing Γ . The sets
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Fig. 1. The lattice of Boolean co-clones. The co-clones of �nite order which are polynomially closed are coloured in grey.
The co-clones of in�nite order that are polynomially closed are coloured in white. The superpolynomially closed co-clones
are coloured in dark grey.
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F and Γ are said to be bases of [F ] and 〈Γ 〉, respectively, and a clone or a co-clone is said to be of �nite order
if it has a �nite base, and is said to be of in�nite order otherwise. We have the following Galois connection
between Inv(·) and Pol(·).

Theorem 1 ([4, 5, 12]). Let Γ and ∆ be two constraint languages. Then Γ ⊆ 〈∆〉 if and only if Pol(∆) ⊆
Pol(Γ ).

If D is a �nite domain it is well known that the set of all clones over D form a lattice structure when
ordered by set inclusion, where the meet-operator u is de�ned as X u Y = X ∩ Y and the join-operator t as
XtY = [X∪Y ]. Similarly, the set of all co-clones over D also form a lattice structure under set inclusion, where
X u Y = X ∩ Y and X t Y = 〈X ∪ Y 〉. For the Boolean domain, all clones have been completely determined,
and the lattice of Boolean clones is typically referred to as Post's lattice due to Post's original classi�cation [24].
See Table 1 for a complete list of Boolean clones and their bases [6]. As a shorthand we let BF denote the set of
all Boolean functions and BR the set of all Boolean relations. Due to the Galois connection in Theorem 1, each
clone C in Table 1 uniquely determines a co-clone Inv(C), and it is not di�cult to see that the lattice of Boolean
co-clones is dually isomorphic to the lattice of Boolean clones. See Figure 1 for a visualization of the Boolean
co-clone lattice. In this �gure, each node IC is an abbreviation of Inv(C), where C is a clone from Table 1.

In this article we in addition need more restricted closure operators. Say that an n-ary relation R has a
quanti�er-free primitive positive (q.f.p.p.) de�nition in a constraint language Γ if R(x1, . . . , xn) ≡ R1(x1) ∧
. . . ∧Rk(xk), where each Ri ∈ Γ ∪ {Eq} and each xi is an ar(Ri)-ary tuple of variables over x1, . . . , xn. Hence,
q.f.p.p. de�nitions are more restricted than p.p. de�nitions since we do not allow existential quanti�cation. We
also need an alternative notion of polymorphisms. An n-ary partial function over a �nite domain is a map
f : X → D, where X ⊆ Dn. In other words X is the set of arguments for which the function is de�ned.
We let domain(f) = X, and say that f is unde�ned for all (x1, . . . , xn) ∈ Dn \ domain(f). Composition of
partial functions is de�ned in an analogous manner to the case of total functions, but the resulting function is
only de�ned for those arguments where all involved functions are de�ned. Say that an n-ary partial function
f is a partial polymorphism of a constraint language Γ , or that Γ is invariant under f , if, for every R ∈ Γ ,
f(t1, . . . , tn) ∈ R for all t1, . . . , tn ∈ R such that f(t1, . . . , tn) is de�ned. Let pPolD(Γ ) denote the set of all partial
polymorphisms over D of a constraint language Γ and InvD(F ) the set of all relations over D invariant under
the set of partial functions F . Sets of the form pPol(Γ ) are known as strong partial clones, and are composition-
closed sets of partial functions, containing all projection functions, and closed under subfunctions. The latter
means that whenever f ∈ pPol(Γ ) then pPol(Γ ) also contains all functions g such that domain(g) ⊆ domain(f)
and such that g(x1, . . . , xn) = f(x1, . . . , xn) for all (x1, . . . , xn) ∈ domain(g). Sets of the form Inv(pPol(Γ )) are
known as weak partial co-clones or weak systems, and are sets of relations closed under q.f.p.p. de�nability. Given
a set of partial functions F and a constraint language Γ let [F ]s = pPol(Inv(F )) and 〈Γ 〉6∃ = Inv(pPol(Γ )).
As is easily veri�ed [F ]s is the smallest strong partial clone containing F and 〈Γ 〉 6∃ the smallest weak partial
co-clone containing Γ . Observe that this implies that 〈Γ 〉 6∃ is the smallest set of relations which is closed under
q.f.p.p. de�nitions over Γ . Similar to the de�nitions for clones and co-clones the sets F and Γ are said to be
bases of [F ]s and 〈Γ 〉6∃, and we say that a strong partial clone or a weak partial co-clone is of �nite order if it
has a �nite base, and is of in�nite order otherwise. The relationship between strong partial clones and weak
partial co-clones is given by the following Galois connection.

Theorem 2 ([12, 26]). Let Γ and ∆ be two constraint languages. Then Γ ⊆ 〈∆〉6∃ if and only if pPol(∆) ⊆
pPol(Γ ).

2.2 Weak and Plain Bases of Co-Clones

The structure of the lattice of strong partial clones is largely undetermined, since it is of uncountably in�nite
cardinality for every non-trivial �nite domain [1]. Due to the Galois connection in Theorem 2, this also implies
that the dually isomorphic lattice of weak partial co-clones is of uncountably in�nite cardinality. Despite this,
it is possible to describe parts of this lattice by considering a particular kind of sublattice.
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Table 1. List of all Boolean clones with de�nitions and bases, where id(x) = x and hn(x1, . . . , xn+1) =∨n+1
i=1 x1 · · ·xi−1xi+1 · · ·xn+1, dual(f)(a1, . . . , an) = 1− f(a1, . . . , an).

Clone De�nition Base

BF All Boolean functions {x ∧ y,¬x}
R0 {f | f is 0-reproducing} {x ∧ y, x⊕ y}
R1 {f | f is 1-reproducing} {x ∨ y, x⊕ y ⊕ 1}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y ⊕ z ⊕ 1)}
M {f | f is monotonic} {x ∨ y, x ∧ y, 0, 1}
M1 M ∩ R1 {x ∨ y, x ∧ y, 1}
M0 M ∩ R0 {x ∨ y, x ∧ y, 0}
M2 M ∩ R2 {x ∨ y, x ∧ y}
Sn
0 {f | f is 0-separating of degree n} {x→ y, dual(hn)}

S0 {f | f is 0-separating} {x→ y}
Sn
1 {f | f is 1-separating of degree n} {x ∧ ¬y, hn}

S1 {f | f is 1-separating} {x ∧ ¬y}
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ ¬z), dual(hn)}
S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn
01 Sn

0 ∩M {dual(hn), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(hn)}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ ¬z), hn}
S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn
11 Sn

1 ∩M {hn, 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩M {x ∧ (y ∨ z), hn}
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f | f is self-dual} {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}
D2 D ∩M {h2}
L {f | f is a�ne} {x⊕ y, 1}
L0 L ∩ R0 {x⊕ y}
L1 L ∩ R1 {x⊕ y ⊕ 1}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩ D {x⊕ y ⊕ z ⊕ 1}
V {f | f is a disjunction or constant} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
E {f | f is a conjunction or constant} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
N {f | f depends on at most one variable} {¬x, 0, 1}
N2 N ∩ R2 {¬x}
I {f | f is a projection or a constant} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}
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De�nition 3. Let C be a clone over a �nite domain D. The interval of C, I(C), is the set I(C) = {pPol(∆) |
∆ ⊆ RelD,Pol(∆) = C)}.

Hence, the interval I(C) of a clone C is simply the set of all strong partial clones where the total component
equals C. Even though I(C) can still be of uncountably in�nite cardinality [29], it is known that there always
exists a largest and smallest element [28]. A constraint language Γw such that pPol(Γw) ∈ I(C) satisfying
pPol(Γw) ⊇ pPol(∆) for any pPol(∆) ∈ I(C) is called a weak base of Inv(C) [28]. Note that if a co-clone is
of �nite order then a weak base can always be given as a single relation. As one can verify with the Galois
connection, from the functional point of view, a weak base Γw results in the largest element pPol(Γw) in I(C),
but from the relational point of view, the weak base has the least expressive power with respect to q.f.p.p.
de�nability. Hence, we have the following theorem.

Theorem 4 ([28]). Let Γw be a weak base of a co-clone Inv(C). Then Γw ⊆ 〈Γ 〉 6∃ for any base Γ of Inv(C).

Dually, a constraint language Γp such that Γp ∈ I(C) and satisfying pPol(Γp) ⊆ pPol(Γ ) for any pPol(Γ ) ∈
I(C) is called a plain base of Inv(C) [9]. Again, using the Galois connection, we see that pPol(Γp) is the smallest
element in I(C) but that Γp is the most expressive language with respect to q.f.p.p. de�nability. Hence, we have
the following theorem.

Theorem 5. Let Γp be a plain base of a co-clone Inv(C). Then R ∈ 〈Γp〉6∃ for any R ∈ Inv(C).

It is not di�cult to verify that Inv(C) is a plain base of itself since [C]s = pPol(Inv(C)) and 〈Inv(C)〉 6∃ =
Inv(C). However, Creignou et al. [9] gave a much more systematic and highly regular description of plain bases
for Boolean co-clones. These bases can be found in Table 2, and we remark that every such plain base Γp in

addition full�ls the condition that R ∈ 〈Γ (n)
p 〉 6∃ for each n-ary R ∈ 〈Γp〉. Hence, we have the following theorem.

Theorem 6. Let Γp be the plain base from Table 2 for some Boolean co-clone Inv(C). Then R ∈ 〈Γ (n)
p 〉6∃ for

any n-ary R ∈ Inv(C).

For weak bases, Schnoor and Schnoor [28] gave a systematic procedure for obtaining weak bases, which was
later re�ned in Lagerkvist [20] in order to get a complete list of weak bases for all Boolean co-clones of �nite
order. These relations can be found in Table 2. We give a short description of some of the involved relations: for a
full description, see Lagerkvist [20, 21] and Creignou et al. [9]. We write F and T for the constant relations {(0)}
and {(1)}; ORn(x1, . . . , xn) for the disjunction x1 ∨ . . . ∨ xn, NANDn(x1, . . . , xn) for the relation x1 ∨ . . . ∨ xn;
and de�ne the (n+m)-ary relation Complm,n as

Complm,n(x1, . . . , xm+n) ≡ (x1 ∨ . . . ∨ xn ∨ xn+1 ∨ . . . ∨ xn+m) ∧ (x1 ∨ . . . ∨ xn ∨ xn+1 ∨ . . . ∨ xn+m).

2.3 The Constraint Satisfaction Problem

The constraint satisfaction problem over a constraint language Γ (CSP(Γ )) is the following computational
decision problem.

Instance: A set V of variables and a set C of constraint applications R(v1, . . . , vk) where R ∈ Γ , k = ar(R),
and v1, . . . , vk ∈ V .
Question: Is there a function f : V → D such that (f(v1), . . . , f(vk)) ∈ R for each R(v1, . . . , vk) in C?

The CSP(Γ ) problem is in general NP-complete and can be used to model many classical NP-complete
problems such as the k-colorability problem and the k-clique problem [15]. Jeavons et al. proved that the com-
plexity of CSP(Γ ), up to polynomial-time reductions, is determined by Pol(Γ ) [17]. With this result Schaefer's
dichotomy theorem for the Boolean satis�ability problem [27] can be formulated in a particularly simple way:
for Boolean constraint languages Γ , CSP(Γ ) is NP-complete if and only if Pol(Γ ) ⊆ [¬x]. Consulting Table 1
we see that this furthermore holds if and only if Pol(Γ ) ∈ {I2,N2}.
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Table 2. Weak and plain bases of all Boolean co-clones of �nite order.

Co-clone Weak base Plain base

Inv(BF) Eq(x1, x2) {Eq(x1, x2)}
Inv(R0) F(c0) {F(c0)}
Inv(R1) T(c1) {T(c1)}
Inv(R2) F(c0) ∧ T(c1) {F(c0),T(c1)}
Inv(M) (x1 → x2) {(x1 → x2)}
Inv(M0) (x1 → x2) ∧ F(c0) {(x1 → x2),F(c0)}
Inv(M1) (x1 → x2) ∧ T(c1) {(x1 → x2),T(c1)}
Inv(M2) (x1 → x2) ∧ F(c0) ∧ T(c1) {(x1 → x2),F(c0),T(c1)}
Inv(Sn

0 ), n ≥ 2 ORn(x1, . . . , xn) ∧ T(c1) {ORn(x1, . . . , xn)}
Inv(Sn

02), n ≥ 2 ORn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) {ORn(x1, . . . , xn),F(c0)}
Inv(Sn

01), n ≥ 2 ORn(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ T(c1) {ORn(x1, . . . , xn), (x1 → x2)}
Inv(Sn

00), n ≥ 2 ORn(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ F(c0) ∧ T(c1) {ORn(x1, . . . , xn), (x1 → x2),F(c0)}
Inv(Sn

1 ), n ≥ 2 NANDn(x1, . . . , xn) ∧ F(c0) {NANDn(x1, . . . , xn)}
Inv(Sn

12), n ≥ 2 NANDn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) {NANDn(x1, . . . , xn),T(c1)}
Inv(Sn

11), n ≥ 2 NANDn(x1, . . . , xn) ∧ ¬(x→ x1 · · · xn) ∧ F(c0) {NANDn(x1, . . . , xn), (x1 → x2)}
Inv(Sn

10), n ≥ 2 NANDn(x1, . . . , xn) ∧ ¬(x→ x1 · · · xn) ∧ F(c0) ∧ T(c1) {NANDn(x1, . . . , xn), (x1 → x2),T(c1)}
Inv(D) (x1 ⊕ x2 = 1) {(x1 ⊕ x2 = 1)}
Inv(D1) (x1 ⊕ x2 = 1) ∧ F(c0) ∧ T(c1) {(x1 ⊕ x2 = 1)} ∪ {F(c0),T(c1)}
Inv(D2) OR2

26=(x1, x2, x3, x4) ∧ F(c0) ∧ T(c1) {F(c0),T(c1), (x1 ∨ x2), (¬x1 ∨ x2), (¬x1 ∨ ¬x2)}
Inv(L) EVEN4(x1, x2, x3, x4) {(x1 ⊕ . . .⊕ xk = 0) | k even}
Inv(L0) EVEN3(x1, x2, x3) ∧ F(c0) {(x1 ⊕ . . .⊕ xk = 0) | k ∈ N}
Inv(L1) ODD3(x1, x2, x3) ∧ T(c1) {(x1 ⊕ . . .⊕ xk = c) | k ∈ N, c = k mod 2}
Inv(L2) EVEN3

36=(x1, . . . , x6) ∧ F(c0) ∧ T(c1) {(x1 ⊕ . . .⊕ xk = c) | k ∈ N, c ∈ {0, 1}}
Inv(L3) EVEN4

46=(x1, . . . , x8) {(x1 ⊕ . . .⊕ xk = c) | k even, c ∈ {0, 1}}
Inv(V) (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ≥ 1}
Inv(V0) (x1 ↔ x2x3) ∧ F(c0) {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ∈ N}
Inv(V1) (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ T(c1) {ORn(x1, . . . , xn) | n ∈ N} ∪ {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ≥ 1})
Inv(V2) (x1 ↔ x2x3) ∧ F(c0) ∧ T(c1) {ORn(x1, . . . , xn) | n ∈ N} ∪ {(x1 ∨ . . . ∨ xk ∨ ¬x) | k ∈ N})
Inv(E) (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1}
Inv(E0) (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ F(c0) {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N}
Inv(E1) (x1 ↔ x2x3) ∧ T(c1) {NANDn(x1, . . . , xn) | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ≥ 1})
Inv(E2) (x1 ↔ x2x3) ∧ F(c0) ∧ T(c1) {NANDn(x1, . . . , xn) | n ∈ N} ∪ {(¬x1 ∨ . . . ∨ ¬xk ∨ x) | k ∈ N})
Inv(N) EVEN4(x1, x2, x3, x4) ∧ x1x4 ↔ x2x3 {Complm,n | m,n ≥ 1}
Inv(N2) EVEN4

46=(x1, . . . , x8) ∧ x1x4 ↔ x2x3 {Complm,n | m,n ∈ N}
Inv(I) (x1 ↔ x2x3) ∧ (x4 ↔ x2x3) {(x1 ∨ . . . ∨ xm ∨ ¬y1 ∨ . . .¬yn) | m,n ≥ 1}
Inv(I0) (x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ F(c0) {(x1 ∨ . . . ∨ xm ∨ ¬y1 ∨ . . .¬yn) | m ∈ N, n ≥ 1}
Inv(I1) (x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ T(c1) {(x1 ∨ . . . ∨ xm ∨ ¬y1 ∨ . . .¬yn) | m ≥ 1, n ∈ N}
BR R

1/3
36= (x1, . . . , x6) ∧ F(c0) ∧ T(c1) {(x1 ∨ . . . ∨ xm ∨ ¬y1 ∨ . . .¬yn) | m,n ∈ N}
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Similarly, it has been shown that pPol(Γ ) determines the complexity of CSP(Γ ) up to O(cn) time complex-
ity [18], where n denotes the number of variables in a given CSP(Γ ) instance. Hence, a better understanding
of the partial polymorphisms of a constraint language Γ could lead to a better understanding of the worst-case
time complexity of CSP(Γ ). However, as we will see in Section 6, obtaining simple characterizations of strong
partial clones pPol(Γ ) is likely very di�cult for many natural choices of constraint languages such that CSP(Γ )
is NP-complete.

3 Polynomially Closed Co-Clones of Finite Order

In this section we formally introduce the notion of a polynomially closed co-clone. Intuitively, the notion means
that for any base of the co-clone, a polynomial amount of variables is su�cient to p.p. de�ne any relation in the
co-clone.

De�nition 7. Let Inv(C) be a co-clone over a �nite domain. We say that Inv(C) is polynomially closed if there
exists a polynomial p such that for all bases Γ of Inv(C) and all n-ary R ∈ Inv(C) it holds that R can be p.p.
de�ned in Γ with at most p(n) existentially quanti�ed variables.

Observe that Inv(C) in this de�nition is allowed to be of in�nite order. In this section, however, we restrict
our focus to co-clones of �nite order, while we in Section 4 investigate co-clones of in�nite order. If a co-clone
is not polynomially closed then we say that it is superpolynomially closed. As we will investigate in Section 5,
there is a relationship between polynomially closed co-clones and a concept in universal algebra known as few
subpowers [3]. More precisely, if a co-clone 〈Γ 〉 is polynomially closed then the corresponding algebra has few
subpowers, which implies that CSP(Γ ) is globally tractable [14]. The converse is not true for superpolynomially
closed co-clones, however, since there exists constraint languages ∆ such that CSP(∆) is trivially tractable even
though 〈∆〉 is superpolynomially closed.

We now turn to the problem of determining whether a co-clone is polynomially closed. First observe that
to prove that a co-clone is polynomially closed it is su�cient to prove that there exists some polynomial p such
that the weak base of the co-clone can p.p. de�ne any n-ary relation with p(n) variables. Say that a plain base
Γp of a co-clone Inv(C) is a polynomial base if there exists a polynomial p, such that every n-ary R ∈ Inv(C)

has a q.f.p.p. de�nition over Γ
(n)
p , with at most p(n) constraints. Polynomial bases and polynomially closed co-

clones are related by the following lemma, which states that a polynomial base for a co-clone implies polynomial
closure, under some additional conditions.

Lemma 8. Let Inv(C) be a co-clone with a weak base Rw. If there exists a polynomial, plain base Γp of Inv(C),

and a polynomial p such that, for each n ≥ 1, Rw can p.p. de�ne every relation in Γ
(n)
p with at most p(n)

existentially quanti�ed variables, then Inv(C) is polynomially closed.

Proof. Let R ∈ Inv(C) be an n-ary relation. By Theorem 5 and the assumption that Γp is a polynomial, plain

base it follows that Γ
(n)
p can q.f.p.p. de�ne R using at most g(n) constraints for some polynomial g. Let φ denote

the q.f.p.p. de�nition of R in Γ
(n)
p . For every constraint Ci in φ we then replace Ci with its p.p. de�nition in

{Rw,Eq}. Let the resulting formula be φ′. Since φ had g(n) constraints and each constraint in φ′ introduced
at most p(n) new existentially quanti�ed variables, the total number of variables in φ′ is g(n) · p(n), clearly
polynomial with respect to n. Hence, Inv(C) is polynomially closed. ut

It is not di�cult to see that this condition is satis�ed whenever a co-clone has a �nite plain base.

Lemma 9. If Inv(C) has a �nite plain base then Inv(C) is polynomially closed.

Proof. Assume that Inv(C) has a plain base Γp of �nite cardinality and let Rw denote a weak base of Inv(C).
Observe that Γp is trivially a polynomial base. Since Γp is �nite there exists a polynomial p such that Rw

can p.p. de�ne Γ
(n)
p for every n ≥ 1 with p(n) variables. To see this, simply take the number of existentially

quanti�ed variables of the relation requiring the largest number of quanti�ed variables in the p.p. de�nition in
Γp. Such a relation must exist since Γp is �nite. The result then follows from Lemma 8. ut
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For the Boolean domain one can simply consult Table 2 to see which co-clones have �nite plain bases. It is
however possible to give a general characterization of the co-clones admitting �nite plain bases. Let D be an
arbitrary �nite domain. A k-ary near-unanimity (NU) operation on D for k ≥ 3 is an operation f : Dk → D
such that f(x, y, . . . , y) = f(y, x, . . . , y) = . . . = f(y, y, . . . , x) = y for all x, y ∈ D (we may note that this is a
special case of a k-edge operation, used in Section 5).

Theorem 10. Let Inv(C) be a co-clone over a �nite domain D such that Pol(Inv(C)) contains a k-ary NU
operation for some k ≥ 3. Then Inv(C) is polynomially closed.

Proof. We recall some de�nitions from Jeavons et al. [16]. Let R ⊆ Dn be a relation and I = {i1, . . . , id} a set
of indices, 1 ≤ i1 < . . . < id ≤ n. The projection of R onto I is the relation πI(R) = {(t[i1], . . . , t[id]) | t ∈ R}.
A relation R ⊆ Dn over D is r-decomposable if it is equivalent to the conjunction of all its projections of arity
at most r, i.e., for every t ∈ (Dn \R) there is a set I = {i1, . . . , id} as above such that (t[i1], . . . , t[id]) /∈ πI(R).
It is known that any relation preserved by a k-ary, k ≥ 3, NU operation is (k − 1)-decomposable [16].

Now let R ∈ Inv(C), of arity n. Observe that πI(R) can be de�ned using existential quanti�cation over R,
hence πI(R) ∈ 〈{R}〉 for every set of indices I. Also note that

∧
I:|I|<k πI(R) is a q.f.p.p. de�nition of R. Hence

the set of all relations R′ ∈ Inv(C) of arity at most k − 1 is a plain base of Inv(C). Clearly, this is a �nite set
(since |D| is �nite). Thus Inv(C) is polynomially closed by Lemma 9.

Observe, however, that Lemma 9 or Theorem 10 are not applicable for Inv(L), Inv(L0), Inv(L1), Inv(L3) and
Inv(L2) since they do not admit �nite plain bases. Fortunately, it is rather straightforward to prove that these
co-clones admit polynomial bases, since the included relations can be viewed as linear equations over the �eld
GF(2).

Lemma 11. Inv(L), Inv(L0), Inv(L1), Inv(L3) and Inv(L2) have polynomial, plain bases.

Proof. We only consider Inv(L2) since the other cases follow through similar arguments. Every n-ary relation

R ∈ Inv(L2) can according to Theorem 6 be expressed by a Γ
(n)
p formula φ with m constraints, where Γp is

the plain base of Inv(L2) in Table 2. Thus every constraint Ci in φ is of the form (xi1 ⊕ . . .⊕ xin) = ci, where
ci ∈ {0, 1}. Create an m × (n + 1)-matrix M such that each entry ri,j , 1 ≤ j ≤ n, is equal to 1 if the variable
xj is included in the constraint Ci, and 0 otherwise. The entry ri,n+1 is equal to the constant ci in Ci. Then
it is not hard to verify that if the row ri+1 is linearly dependent on r1, . . . , ri then C1, . . . Ci entails Ci+1 in
any satisfying assignment. Hence we only need to keep the rows that are linearly independent, which gives the
bound min(n+ 1,m) on the number of constraints. ut

Lemma 12. Inv(L), Inv(L0), Inv(L1), Inv(L3) and Inv(L2) are polynomially closed.

Proof. We only present the proof of Inv(L2) since the other co-clones follow through entirely analogous ar-
guments. Let Γp and Rw be the plain and weak base of Inv(L2) from Table 2, respectively. Since Inv(L2)
has a polynomial base by Lemma 11 all we need to prove is that there exists a polynomial p such that

Rw can p.p. de�ne Γ
(n)
p using at most p(n) existentially quanti�ed variables. We �rst and most crucially

show that Γ
(n)
p can p.p. de�ne Γ

(n+1)
p with only one extra variable, for every n ≥ 3, with the de�nition

(x1 ⊕ . . . ⊕ xn+1 = c) ≡ ∃x.(x1 ⊕ . . . ⊕ xn−1 ⊕ x = c) ∧ (xn ⊕ xn+1 ⊕ x = 0). In addition to one quan-

ti�ed variable this requires one extra Γ
(3)
p -constraint. Hence if 3 ≤ n ≤ n′ then Γ

(n)
p can p.p. de�ne ev-

ery relation in Γ
(n′)
p with O(n′ − n) variables and n′ − n additional Γ

(3)
p -constraints. By this it �rst fol-

lows that Γ
(3)
p can p.p. de�ne any relation in Γ

(n)
p with at most n − 3 variables and n − 2 constraints. The

weak base Rw can then p.p. de�ne Γ
(3)
p with a �xed number of variables since the arity of each relation is

bounded, for example we have that (x1 ⊕ x2 ⊕ x3 = 0) ≡ ∃y1, y2, y3, c0, c1.Rw(x1, x2, x3, y1, y2, y3, c0, c1) and
(x1 ⊕ x2 ⊕ x3 = 1) ≡ ∃y1, y2, y3, c0, c1.Rw(y1, y2, y3, x1, x2, x3, c0, c1). Put together this implies that Rw can

p.p. de�ne any Γ
(n)
p with O(n) existentially quanti�ed variables, and by Lemma 8 that Inv(L2) is polynomially

closed. ut
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Combining all results so far in this section, we obtain the following characterization of the polynomially
closed Boolean co-clones of �nite order.

Theorem 13. If Inv(C) ⊆ Inv(X) for some X ∈ {L2,D2} ∪ {Sn00,S
n
10 | n ≥ 2} then Inv(C) is polynomially

closed.

4 Polynomially closed co-clones of in�nite order

So far we have only been concerned with polynomially closed co-clones of �nite order. For co-clones of in�nite
order, we cannot use any of the machinery introduced in Section 3. In particular, Lemma 9 breaks down since
there by de�nition cannot exist a �nite plain base of a co-clone of in�nite order. In this section we give a general
result to obtain weak bases of co-clones of in�nite order, and leverage this result to show that the eight Boolean
co-clones of in�nite order in Figure 1 are polynomially closed.

Theorem 14. Let Inv(C) be a co-clone of in�nite order over a �nite domain and let Inv(C1), Inv(C2), . . . be
an in�nite chain of co-clones of �nite order such that C =

⋃∞
i=1 Inv(Ci). Let RCi

denote the weak base of
each Inv(Ci). Assume that RCi

∈ 〈RCi+1
〉6∃ for each i ≥ 1. Then the weak base of Inv(C) is the language

ΓC = {RCi | i ≥ 1}.

Proof. First observe that each Inv(Ci) does indeed have a �nite weak base since by assumption they are of �nite
order. To prove that ΓC is a weak base of Inv(C) we must prove that it is a base of Inv(C) and that ΓC ⊆ 〈Γ 〉 6∃ for
each base Γ of Inv(C). It is easy to see that ΓC is a base of Inv(C) since Inv(Ci) = 〈{RCi}〉 ⊆ 〈ΓC〉 for every i ≥ 1
for some RCi ∈ ΓC . Let Γ be a constraint language such that 〈Γ 〉 = Inv(C). Observe that Γ must be in�nite,
and that there for every R ∈ Γ exists some m such that R ∈ Inv(Cm), since 〈Γ 〉 = Inv(C) =

⋃∞
i=1 Inv(Ci).

We must prove that ΓC ⊆ 〈Γ 〉6∃. Let R ∈ ΓC be an n-ary relation. Then there exists an m such that R is
the weak base of Inv(Cm). We prove that there exists ∆ ⊆ Γ such that 〈∆〉 = Inv(Cm′) for some m′ ≥ m, since
this implies that R ∈ 〈∆〉 6∃ ⊆ 〈Γ 〉6∃, by the original assumption. Assume for contradiction that no such set ∆
exists. But this implies that there exists some k < m such that 〈Γ 〉 = Inv(Ck), which is clearly impossible since
Ck is of �nite order. Hence, there exists ∆ ⊆ Γ such that R ∈ 〈∆〉6∃. Since R was choosen arbitrarily, this in
turn implies that ΓC ⊆ 〈Γ 〉6∃, and that ΓC is a weak base of Inv(C). ut

Table 3. Weak bases of all Boolean co-clones of in�nite order.

Co-clone Weak base

Inv(S0) {OR(x1, . . . , xn) ∧ T(c1) | n ≥ 2}
Inv(S02) {OR(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2}
Inv(S01) {OR(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ T(c1) | n ≥ 2}
Inv(S00) {OR(x1, . . . , xn) ∧ (x→ x1 · · · xn) ∧ F(c0) ∧ T(c1) | n ≥ 2}
Inv(S1) {NAND(x1, . . . , xn) ∧ F(c0) | n ≥ 2}
Inv(S12) {NAND(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2}
Inv(S11) {NAND(x1, . . . , xn) ∧ ¬(x→ x1 · · · xn) ∧ T(c1) | n ≥ 2}
Inv(S10) {NAND(x1, . . . , xn) ∧ ¬(x→ x1 · · · xn) ∧ F(c0) ∧ T(c1) | n ≥ 2}

We remark that since RCi
∈ 〈RCi+1

〉6∃ for every i ≥ 1 we can in fact remove any �nite number of relations
from the weak base ΓC and still obtain a weak base of Inv(C). According to Theorem 14 all that is needed to
obtain weak bases for the eight co-clones of in�nite order in the Boolean co-clone lattice, is to show that the
condition RCi ∈ 〈RCi+1〉 6∃ is satis�ed for every Ci ∈ {Si0,Si02,S

i
01,S

i
00,S

i
1,S

i
12,S

i
11,S

i
10}. We only consider the

case Inv(Sn00) since the remaining proofs are entirely analogous. Hence, we need to show that the weak base of
Inv(Sn00) can q.f.p.p. de�ne the weak base of Inv(Sn−1

00 ) for each n ≥ 3. For n ≥ 2 let RnS00
(x1, . . . , xn, x, c0, c1) ≡

OR(x1, . . . , xn)∧(x→ x1 · · ·xn)∧F(c0)∧T(c1). Then we can q.f.p.p. de�ne RnS00
with Rn+1

S00
using the de�nition

RnS00
(x1, . . . , xn, x, c0, c1) ≡ Rn+1

S00
(x1, . . . , xn, xn, x, c0, c1).

Hence, we obtain the following corollary, summarized in Table 3.
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Corollary 15. The following statements hold.

� {OR(x1, . . . , xn) ∧ T(c1) | n ≥ 2} is a weak base of Inv(S0),
� {OR(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2} is a weak base of Inv(S02),
� {OR(x1, . . . , xn) ∧ (x→ x1 · · ·xn) ∧ T(c1) | n ≥ 2} is a weak base of Inv(S01),
� {OR(x1, . . . , xn) ∧ (x→ x1 · · ·xn) ∧ F(c0) ∧ T(c1) | n ≥ 2} is a weak base of Inv(S00),
� {NAND(x1, . . . , xn) ∧ F(c0) | n ≥ 2} is a weak base of Inv(S1),
� {NAND(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2} is a weak base of Inv(S12),
� {NAND(x1, . . . , xn) ∧ (x→ x1 · · ·xn) ∧ T(c1) | n ≥ 2} is a weak base of Inv(S11),
� {NAND(x1, . . . , xn) ∧ (x→ x1 · · ·xn) ∧ F(c0) ∧ T(c1) | n ≥ 2} is a weak base of Inv(S10).

We are now in a position to prove that all Boolean co-clones of in�nite order are polynomially closed. For the
proof we use the fact that relations in Inv(S0), Inv(S1), Inv(S01) and Inv(S00) can be expressed by a particularly
simple form of Boolean formula. Before we can formally state this result we need a few additional preliminaries. If
ϕ = C1∧. . .∧Cm is a Boolean formula withm clauses we say that Ci is a prime implicate of ϕ if ϕ does not entail
any proper subclause of Ci. A formula ϕ is said to be prime if all of its clauses are prime implicates. Obviously
any �nite Boolean relation is representable by a prime formula. If R is an n-ary Boolean relation we can therefore
prove that R ∈ 〈Γ 〉 6∃ by showing that R(x1, . . . , xn) can be expressed as a conjunction ϕ1(y1) ∧ . . . ∧ ϕk(yk),
where each yi is a tuple of variables over x1, . . . , xn, and each ϕi is a prime formula representation of a relation
in Γ . This is advantageous since relations in Inv(Sn0 ), Inv(Sn02), Inv(Sn01), Inv(Sn00), Inv(Sn1 ), Inv(Sn12), Inv(Sn11)
and Inv(Sn10) are representable by prime implicative hitting set-bounded (IHSB) formulas [9]. We let IHSBn+ be
the set of formulas of the form (x1 ∨ . . . ∨ xm), 1 ≤ m ≤ n, (¬x1), (¬x1 ∨ x2), and dually for IHSBn−.

Theorem 16. Inv(S0), Inv(S02) , Inv(S01), Inv(S00),Inv(S1), Inv(S12) , Inv(S11) and Inv(S10) are polynomially
closed.

Proof. We only consider Inv(S00) since the other cases follow through similar arguments. Let ΓS00
= {RiS00

| i ≥
2} denote the weak base of Inv(S00) from Corollary 15. We must prove that there exists a polynomial p such
that ΓS00

can p.p. de�ne any n-ary R ∈ Inv(S00) using at most p(n) existentially quanti�ed variables. Since

R ∈ Inv(S00) it is easily seen that there exists some n′ ≥ 2 such that R ∈ Inv(Sn
′

00).
Hence, R can be written as a prime IHSBn

′

+ formula φ over x1, . . . , xn [9], and we need to show that it is
possible to p.p. de�ne this formula without requiring more than a polynomial number of existentially quanti�ed
variables. There are a few di�erent cases to consider depending on the clauses of φ. Let c0 and c1 be two fresh
variables distinct from x1, . . . , xn. First, we implement every clause in φ of the form (xi1 ∨ . . . ∨ xij ) for some

j ≤ n′ with the constraint RjS00
(xi1 , . . . , xij , c0, c0, c1). Second, we implement every clause of the form (¬xi) as

R2
S00

(c1, c1, c1, xi, c1). Third, we implement every clause of the form (¬xi1∨xi2) as R2
S00

(xi2 , c1, xi1 , c0, c1). Let φ′

be the ΓS00
-formula resulting from replacing every clause in φ in the above manner. We see that R(x1, . . . , xn) ≡

∃c0∃c1.φ′, and since we in total only require 2 existentially quanti�ed variables, it follows that Inv(S00) is
polynomially closed. ut

5 Superpolynomially closed co-clones

From Section 3 and Section 4 we now have straightforward, necessary conditions for verifying whether a given co-
clone is polynomially closed. We now turn to the problem of determining whether a co-clone is not polynomially
closed, i.e., superpolynomially closed. We show that this question is related to counting the number of n-ary
relations in a co-clone � a problem that has attracted signi�cant attention in universal algebra and conceptual
learning problems [3, 14]. Before we can present this result, we for every �nite domain D, introduce a particular
constraint language ΓD, which will turn out to be a plain base of RelD. The language ΓD is de�ned as

ΓD = {R | n ≥ 1, t ∈ Dn, R = Dn \ {t}}.
In other words each n-ary relation in ΓD contains all n-ary tuples over D except one. Observe that Γ{0,1} is
equivalent to the plain base of BR in Table 2.
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Lemma 17. For any �nite domain D the language ΓD is a plain base of RelD.

Proof. We must prove that 〈ΓD〉6∃ = RelD, i.e. that we can q.f.p.p. de�ne all relations over D. Hence, let
R ∈ RelD be an n-ary relation. For every t ∈ Dn \ R we let Rt ∈ ΓD denote the unique relation satisfying
Rt = Dn \ {t}. Hence, a constraint of the form Rt(x1, . . . , xn) implies that x1, . . . , xn can take any value except
for t[1], . . . , t[n]. With this observation it is then easy to see that we can de�ne R with the q.f.p.p. de�nition

R(x1, . . . , xn) ≡ Rt1(x1, . . . , xn) ∧ . . . ∧Rtm(x1, . . . , xn),

where {t1, . . . , tm} = Dn \R. ut

Also observe that 〈Γ (n)
D 〉6∃ ⊆ 〈Γ

(n+1)
D 〉6∃ for each n ≥ 1. To see this, simply note that there for every n-ary

relation R exists a (n + 1)-ary relation R′ de�ned as R′(x1, . . . , xn, xn+1) ≡ R(x1, . . . , xn) ∧ Eq(xn+1, xn+1),
which is equivalent with respect to q.f.p.p. de�nitions. We will now prove that if a co-clone Inv(C) contains
a su�ciently large number of n-ary relations, then for every polynomial p there will exist some n-ary relation
in Inv(C) that ΓD cannot p.p. de�ne using only p(n) existentially quanti�ed variables. To make this counting
argument more precise we, given a constraint language Γ , �rst let Γ=n = {R | R ∈ Γ, ar(R) = n}, and then
de�ne the function sΓ as

sΓ (n) = log2(|{R | R ∈ Γ, ar(R) = n}|).

With this notation we see that sInv(C)(n) denotes the exponent of the number of n-ary relations in the co-clone
Inv(C), and obtain the following lemma.

Lemma 18. Let Inv(C) be a co-clone of �nite order over a �nite domain D. If Inv(C) is polynomially closed,
then sInv(C)(n) ≤ g(n) for some polynomial g.

Proof. Let Γ be a �nite base of Inv(C) and let R be the relation with the highest arity k in Γ . We make a

few observations before the proof: �rst, 〈Γ 〉 6∃ ⊆ 〈Γ (=k)
D 〉 6∃; second, if some R′ /∈ 〈Γ (=k)

D 〉6∃ then R′ /∈ Γ . This also
implies that if Γ can p.p. de�ne some n-ary relation R with p(n) existentially quanti�ed then the same is true

for Γ
(=k)
D . By contraposition this also implies that if Γ

(=k)
D cannot p.p. de�ne some n-ary relation R with p(n)

variables then neither can Γ . It is not too di�cult to see that the number of q.f.p.p. de�nitions with Γ
(=k)
D over

n variables is bounded by 2|D|
knk

, since (1) Γ
(=k)
D contains |D|k relations and (2) for each relation in Γ

(=k)
D one

can form at most nk distinct constraints. Since Inv(C) is polynomially closed, we are allowed to introduce at
most p(n) existentially quanti�ed variables to de�ne any n-ary relation, hence, the number of de�nable relations

is at most 2|D|
k(p(n)+n)k , which implies that sInv(C)(n) ≤ |D|k(p(n) + n)k and that there exists a polynomial g

such that sInv(C)(n) ≤ g(n). ut

Since the number of n-ary relations over a �nite domain D is 2|D|
n

it immediately follows that RelD is
superpolynomially closed. To handle the other cases where it is not so obvious how to count the number of
n-ary relations we utilize a result from Berman et al. [3]. Before we can present their result, we need a few
additional preliminaries. If Γ is a constraint language over D the algebra AΓ = (D,Pol(Γ )) is said to have few
subpowers if s〈Γ 〉(n) ∈ O(nk) for some polynomial k ≥ 1, and to have many subpowers if cn ∈ O(s〈Γ 〉(n)) for
some real number c > 1. A k-edge operation over D, k ≥ 2, is a (k+1)-ary operation f satisy�ng the k identities

� f(x, x, y, y, y, . . . , y, y) = y,
� f(x, y, x, y, y, . . . , y, y) = y,
� f(y, y, y, x, y, . . . , y, y) = y,
� f(y, y, y, y, x, . . . , y, y) = y,
...

� f(y, y, y, y, y, . . . , x, y) = y,
� f(y, y, y, y, y, . . . , y, x) = y.
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We then have the following useful theorem from Berman et al. [3], restated in terms of our terminology of
clones and co-clones

Theorem 19. [3] Let Γ be a constraint language over a �nite domain D. If Pol(Γ ) does not contain a k-edge
operation for any k ≥ 2 then (1) the algebra (D,Pol(Γ )) has many subpowers and (2) s〈Γ 〉(n) /∈ O(nl) for any
l ≥ 0.

Hence, if (D,Pol(Γ )) has many subpowers, then, intuitively, 〈Γ 〉 contains too many relations for it to be
polynomially closed. Combining Lemma 18 and Theorem 19 we obtain the following classi�cation of the super-
polynomially closed co-clones.

Theorem 20. Let Inv(C) be a co-clone of �nite order over a �nite domain D. If C does not contain a k-edge
operation for any k ≥ 2 then Inv(C) is superpolynomially closed.

With the help of Table 1 one can verify that any Boolean co-clone of �nite order above or equal to Inv(V),
Inv(E), or Inv(N) in Figure 1, full�l this property.

Theorem 21. If Inv(C) ⊇ Inv(X) for some Inv(X) ∈ {Inv(V), Inv(E), Inv(N)} then Inv(C) is superpolynomially
closed.

Due to the close relationship between a polynomially closed co-clone and the existence of a polynomial, plain
base, one might suspect that superpolynomially closed co-clones are unlikely to admit such polynomial bases.
This can in fact be proven by a straightforward counting argument, using the bounds from Theorem 19 on the
number of n-ary relations in these co-clones.

Theorem 22. Let Inv(C) be a superpolynomially closed co-clone over a �nite domain D such that there exists

a plain base Γp of Inv(C) satisfying |Γ (n)
p | ≤ 2p(n) for some polynomial p. Then Γp is not a polynomial, plain

base of Inv(C).

Proof. Assume that Inv(C) has a polynomial base with respect to a polynomial c. We show the theorem with
a counting argument, using the results of Section 5. First, recall from Lemma 18 that sInv(C)(n) cannot be
bounded by a polynomial function since Inv(C) is superpolynomially closed. In other words it cannot hold that
|{R ∈ Inv(C) | ar(R) = n}| ≤ 2p(n) for some polynomial p.

Now observe that for each R ∈ Γ (n)
p , there are at most nn di�erent possible constraints one can form with

R; thus the number of di�erent possible constraints overall is bounded by |Γ (n)
p | · nn. The number of possible

formulas with at most c(n) constraints is then bounded by (|Γ (n)
p | · nn)c(n) ≤ (2p(n) · nn)c(n) ≤ 2q(n) for a

polynomial q(n), which implies that sInv(C)(n) ≤ q(n), contradicting the original assumption. ut

Using Table 2 we see that each Boolean plain base Γp contains at most polynomially many n-ary relations.
Hence, we obtain the following theorem for Boolean co-clones.

Theorem 23. If Inv(C) ⊇ Inv(X) for some Inv(X) ∈ {Inv(V), Inv(E), Inv(N)} then the plain base of Inv(C) in
Table 2 is not a polynomial, plain base.

Thus a Boolean co-clone of �nite order has a polynomial, plain base in Table 2 if and only if it is polynomially
closed. In conjunction, the results of Section 3 and Section 5 therefore imply the following corollary.

Corollary 24. Let 〈Γ 〉 be a Boolean co-clone of �nite order. Then the following statements are equivalent.

� 〈Γ 〉 is polynomially closed.
� 〈Γ 〉 has a polynomial, plain base in Table 2.
� The algebra ({0, 1},Pol(Γ )) has few subpowers.
� There exists a polynomial p such that the number of n-ary relations in 〈Γ 〉 is not larger than 2p(n).
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For arbitrary �nite domains our result do not form a sharp dichotomy. Combining Theorem 10 and Theo-
rem 20, we however obtain the following corollary.

Corollary 25. Let 〈Γ 〉 be a co-clone of �nite order over a �nite domain. Then the following statements hold.

� If Pol(Γ ) does not contain a k-edge operation for any k ≥ 2 then 〈Γ 〉 is superpolynomially closed.

� If Pol(Γ ) contains a k-ary near-unanimity operation for some k ≥ 3 then 〈Γ 〉 is polynomially closed.

For co-clones of in�nite order this situation di�ers drastically, as evident in Section 4, since even in the
Boolean domain it can be the case that a co-clone of in�nite order is polynomially closed even if the corresponding
algebra has many subpowers.

6 Strong Partial Clones of Finite and In�nite Order

So far we have been interested in obtaining conditions for separating polynomially closed co-clones from su-
perpolynomially closed co-clones, and obtained a complete dichotomy theorem for the Boolean domain. Since
we for polynomially closed co-clones can de�ne all relations in the co-clone with a comparably few number of
existentially quanti�ed variables, one might conjecture that a strong partial clone pPol(Γ ) has a more complex
structure if 〈Γ 〉 is superpolynomially closed. To make this intution a bit more precise, given a co-clone Inv(C)
and a base Γ of Inv(C), we are interested in determining when pPol(Γ ) is of in�nite order and when it is of
�nite order. Hence, we make the following de�nition (recall from Section 2.2 that I(C) denotes the interval of
all strong partial clones where the total component equals C).

De�nition 26. Let C be a clone over a �nite domain. We say that I(C) is �nitely generated if every pPol(∆) ∈
I(C) is of �nite order and that I(C) is in�nitely generated if pPol(∆) is of in�nite order for every pPol(∆) ∈
I(C).

A few basic observations are in place. First, determining whether a partial clone is of �nite or in�nite order
is a problem that has attracted signi�cant attention in the literature, see e.g. [7, 8, 13]. However, observe that
the authors in this case study partial clones that are not necessarily strong, and that a partial clone P might
be of in�nite order even though the smallest strong partial clone containing P is of �nite order. Second, if C
is a clone of �nite order then pPol(Inv(C)) is of �nite order. This implies that as long as C is of �nite order,
I(C) will contain at least one strong partial clone of �nite order. Hence, in general, intervals of the form I(C)
may contain strong partial clones of both �nite and in�nite order. If we restrict ourself to strong partial clones
pPol(Γ ) where Γ is �nite, this phenomenon is not as likely to occur, however. We thus make the following
de�nition as well.

De�nition 27. Let C be a clone over a �nite domain D. The �nite interval of C, Ifin(C), is the set Ifin(C) =
{pPol(∆) | ∆ ⊆ RelD, ∆ is �nite, C = Pol(∆)}.

In Section 6.1 we prove that the existence of �nitely generated intervals is related to the question whether the
cardinality of the interval is �nite or uncountably in�nite, and give examples of polynomially closed co-clones
over arbitrary �nite domains resulting in �nitely generated intervals. Since not much is currently known about
the lattice of strong partial clones over arbitrary �nite domains, these results are necessarily inconclusive, and
we cannot yet hope to provide a complete classi�cation of �nitely generated intervals. In Section 6.2 we study
the opposite question: given a superpolynomially closed co-clone Inv(C), is Ifin(C) in�nitely generated? We give
a general result and prove that Ifin(C) is in�nitely generated whenever C consists of essentially unary functions,
i.e., if C = [{e1, . . . , ek}] for some unary functions e1, . . . , ek. The results are summarized in Figure 2.
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Inv(OPD)

〈{R0}〉 〈{Ri}〉 〈{Rk}〉

〈{R0, . . . , Ri, . . . , Rk}〉

RelD

Inv({e0}) Inv({ei}) Inv({ek′})

Inv({e0, . . . , ei, . . . , ek′})

Polynomially closed and
�nitely generated intervals.

Superpolynomially closed and
in�nitely generated intervals.

Fig. 2. An illustration of some fragments of the the structure of I(Γ ) for Γ over an arbitrary �nite domain D =
{0, . . . , i, . . . , k}. For a ∈ D let Ra denote the relation {(a)}. Let e0, . . . , ek′ be an enumeration of the unary functions
over D which are not projections. A directed arrow from node A to B means that A ⊂ B. A dashed arrow from node A
to B means that there exists A′ such that A ⊂ A′ ⊂ B. Some inclusions have been omitted.
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6.1 Strong Partial Clones of Finite Order

We �rst remark that if I(C) is �nitely generated then the cardinality of I(C) is at most countably in�nite.
Hence, we get the following proposition.

Theorem 28. Let C be clone such that I(C) is of uncountably in�nite cardinality. Then I(C) is not �nitely
generated.

On the other hand, if I(C) is �nite and C is of �nite order, it is not to di�cult to see that I(C) must be
�nitely generated.

Lemma 29. Let C be a clone of �nite order over D such that I(C) is �nite. Then I(C) is �nitely generated.

Proof. Let F denote an arbitrary �nite base of C. Then [F ]s is the least element in I(C). Assume, for contradic-
tion, that there exists a strong partial clone C ′ ∈ I(C) of in�nite order. Obviously C ′ ⊃ [F ]s. Let f ∈ C ′ \ [F ]s.
Then it is easy to see that C ′ ⊃ [F ∪ {f}]s ⊃ [F ]s since by assumption C ′ is of in�nite order and cannot be
generated by F ∪{f}. This procedure can be repeated arbitrarily many times, which contradicts the assumption
that I(C) was �nite. ut

Hence, the question of whether an interval is �nitely generated or not is tightly connected to whether the
interval is �nite. In the Boolean domain it has been proven that I(Pol(Γ )) is �nite if 〈Γ 〉 is a subset of Inv(M2)
or Inv(D1), and is of uncountably in�nite cardinality otherwise [29]. Hence, we obtain the following proposition.

Proposition 30. Let Γ be a Boolean constraint language. Then I(Pol(Γ )) is �nitely generated if and only if
〈Γ 〉 ⊆ Inv(X) for X ∈ {M2,D1}.

In Schölzel [29] it is conjectured that intervals of the form I(Pol(Γ )) are either �nite or uncountably in�nite
for arbitrary �nite domains. Such a dichotomy theorem would therefore also answer the question which intervals
are �nitely generated and which are not. We remark that such a dichotomy theorem is likely very di�cult
to obtain, since not much is known of the structure of the lattice of strong partial clones over arbitrary �nite
domains. We give an examplary case of a simple kind of constraint language where the intervals of strong partial
clones is always �nite.

Given a �nite domain D = {0, . . . , k} let Ri, i ∈ D, denote the unary, constant relation {(i)}. Say that a
co-clone Inv(C) over D is essentially constant if there exists a set Γ ⊆ {R0, . . . , Rk} such that 〈Γ 〉 = Inv(C). In
other words Inv(C) can be generated from a �nite set of constant relations.

Theorem 31. Let Inv(C) be an essentially constant co-clone over some �nite domain D. Then I(C) is �nitely
generated.

Proof. Since Inv(C) is essentially constant there exists Γ ⊆ {R0, . . . , Rk} such that 〈Γ 〉 = Inv(C). It is known
both that Pol({R0, . . . , Rk}), the clone consisting of all idempotent functions over D, is �nitely generated [25]
and that there exists a �nite number of (strong) partial clones containing Pol({R0, . . . , Rk}) [11]. From this it
easily follows that Pol(Γ ) is of �nite order and that I(C) is �nite. By applying Lemma 29 it follows that I(C)
is �nitely generated. ut

The reader might well ask why we do not attempt to prove a more general result than Theorem 31. The
reason is that, currently, not much is known about the structure of �nitely generated intervals of strong partial
clones over arbitrary �nite domains. For instance, it is not even known whether pPol({u1, . . . , un}), where each
ui ⊆ D, is of �nite order. Moreover, it is known that the intersection of two strong partial clones of �nite order
can be of in�nite order [8], which suggests that this problem is more di�cult than one might believe at a �rst
glance.



18

6.2 Strong Partial Clones of In�nite Order

We now turn to the problem of determining whether an interval Ifin(C) is in�nitely generated. We show that
Ifin(C) is always in�nitely generated if C is an essentially unary clone over an arbitrary �nite domain D. For
�nite Boolean constraint languages Γ this implies that if 〈Γ 〉 ⊇ Inv(N2), i.e. CSP(Γ ) is NP-hard assuming P
6= NP, then pPol(Γ ) is of in�nite order. For the proofs, we �rst need the following construction of a universal
hash family, due to Alon et al. [2]. Given a natural number k we let [k] = {1, . . . , k}.

Theorem 32 (Section 4 of [2]). For any k and n, there is a family H of 2O(k) log n functions hi : [n] 7→ [k]
such that for every S ⊂ [n] of size k there is a function in H that is injective on S.

Note that the bound O(k) has no hidden dependency on n. Hence, if k is a constant, then 2O(k) log n ∈
O(log(n)). The purpose of a universal hash family in this paper is to, given an n-ary relation R, create an n′-ary
relation R′ using the universal hash family such that pPol(R) ⊆ pPol(R′), and such that n′ = O(n). In the
following de�nition we exploit the fact that any n-ary relation R can be viewed as an |R|×n matrix where each
row corresponds to a tuple in R.

De�nition 33. Let R be a relation over D, |R| = m, let r ≥ 1 and let H be the universal hash family from [m]
to [r]. The closure of R under H, H(R), is the relation de�ned as follows.

1. let M be the matrix corresponding to R,
2. let g1, . . . , g|D|r be an enumeration of all functions g : [r] 7→ D,
3. for every hi ∈ H and every gj add the column yi,j to M which in row x ∈ [m] takes the value gj(hi(x)),
4. let H(R) be the relation corresponding to M .

Say that a relation R over D is n-saturated if for every t1, . . . , tn′ ∈ R, n′ ≤ n, for every (x1, . . . , xn′) ∈ Dn′

there exists an i such that (t1[i], . . . , tn′ [i]) = (x1, . . . , xn′).

Lemma 34. Let R be a relation with m tuples and let r ≥ 1. Let H be the universal hash family from [m] to
[r]. Then H(R) is r-saturated.

Proof. Let t1, . . . , tq ∈ H(R), q ≤ r, let M be the matrix corresponding to H(R). For every (x1, . . . , xq) ∈ Dq

we must prove that there exists some j such that (x1, . . . , xq) = (t1[j], . . . , tq[j]). Let P = (p1, . . . , pq) ∈ [m]q be
the row indices of t1, . . . , tq, i.e., ti = M [pi, ·] for each i ∈ [q]. Since H is a universal hash family, there is some
h ∈ H which is injective on P . Let g : Dq 7→ D be the function satisfying (g(h(p1)), . . . g(h(pq))) = (x1, . . . , xq).
Due to the construction of H(R) this implies that the column in M corresponding to h and g will enumerate
(x1, . . . , xq). Hence, there is a j such that (x1, . . . , xq) = (t1[j], . . . , tq[j]). ut

If R is a relation and Γ a constraint language we let Pol(Γ )(R) denote the closure of R under Pol(Γ ).
Formally this relation can be de�ned as Pol(Γ )(R) =

⋂
R′∈〈Γ 〉,R⊆R′ R′.

Lemma 35. Let Pol(Γ ) be an essentially unary clone. If pPol(Γ ) is of �nite order, then Γ can p.p. de�ne all
n-ary relations R ∈ 〈Γ 〉 with at most O(n) existentially quanti�ed variables.

Proof. Let R be an n-ary relation in 〈Γ 〉, and let m ≤ |D|n be the number of tuples in R. Let S be a �nite
base of pPol(Γ ), let r be the largest arity of any function in S, and let H be the r-universal hash family
from [m] to [r] of Theorem 32. Let R′ = H(R). By the construction of H(R) in De�nition 33 it follows that
ar(R′) = n+ |D|r|H| = n+ |D|r2O(r) logm = |D|r2O(r)O(n). To see that the last equality holds simply note that
log(m) ≤ log(|D|n) = O(n). Moreover, since r is a constant, it also holds that ar(R′) = O(n). Let p = ar(R′),
and let R′′ = Pol(Γ )(R′), i.e. R′ closed under all polymorphisms of Γ . Note that Pol(Γ ) ⊆ Pol(R′′). Note that

R(x1, . . . , xn) ≡ ∃xn+1, . . . , xpR
′′(x1, . . . , xn, xn+1, . . . , xp),

or, put in other words, R′′ can p.p. de�ne R with at most O(n) existentially quanti�ed variables. To see that
this holds, simply note that {(x1, . . . , xn) | (x1, . . . , xn, xn+1, . . . , xp) ∈ R′′} = R.
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It remains to prove that pPol(Γ ) ⊆ pPol(R′′), since this, due to the Galois connection in Theorem 2, implies
that 〈R′′〉6∃ ⊆ 〈Γ 〉6∃ and that Γ can p.p. de�ne R using at most O(n) existentially quanti�ed variables. Hence, let
f ∈ S be a q-ary, q ≤ r, function. If f /∈ pPol(R′′) then there exists t1, . . . , tq ∈ R′′ such that f(t1, . . . , tq) /∈ R′′.
We may assume that all t1, . . . , tq are distinct, as otherwise the application of f is equivalent to the application
of some q′-ary partial polymorphism f ′ on distinct rows, where q′ is the number of distinct rows represented in
(t1, . . . , tq) [22].

Our strategy is now, using Lemma 34, to prove that we can de�ne a total function h using the partial function
f such that h does not preserve R′′. However, this also implies that h /∈ Pol(Γ ), which is a contradiction since
f ∈ pPol(Γ ). Before this proof we make one observation: for every t ∈ R′′ there exists t′ ∈ R′ and a unary
function h ∈ Pol(Γ ) such that h(t′) = t. Hence, for the tuples t1, . . . , tq there exists t′1, . . . , t

′
q ∈ R′ and

h1, . . . , hq ∈ Pol(Γ ) such that hi(t
′
i) = ti. We now de�ne the q-ary function h as

h(x1, . . . , xq) = f(h1(πq1(x1, . . . , xq)), . . . , hq(π
q
q(x1, . . . , xq))).

Obviously, h ∈ pPol(Γ ) since it is a composition of f, h1, . . . , hq, and projection functions. This in turn implies
that

h(t′1, . . . , t
′
q) = f(h1(t′1), . . . , hq(t

′
q)) = f(t1, . . . , tq) /∈ R′′,

but since t′1, . . . , t
′
q ∈ R′, R′ is r-saturated and q ≤ r, hmust be a total polymorphism, i.e. h ∈ Pol(Γ ) ⊆ Pol(R′′).

This is a contradiction since h(t′1, . . . , t
′
q) /∈ R′′. Hence, f ∈ pPol(R′′). ut

With the help of this Lemma we can now prove that pPol(Γ ) is of in�nite order whenever Γ is �nite and
Pol(Γ ) is essentially unary.

Theorem 36. Let C be an essentially unary clone over a �nite domain D. Then Ifin(C) is in�nitely generated.

Proof. Let Γ be a �nite constraint language such that Pol(Γ ) = C. Assume that pPol(Γ ) can be �nitely
generated. By Lemma 35 we then have that Γ can p.p. de�ne all n-ary relations in Inv(C) with O(n) existentially
quanti�ed variables. However, this is a contradiction since 〈Γ 〉 is superpolynomially closed by Theorem 20. To
see this simply note that C cannot contain a k-edge operation for any k ≥ 2 since a k-edge operation by
de�nition is not essentially unary. This fact together with Lemma 18 results in a contradiction. Hence, pPol(Γ )
cannot be of �nite order. ut

This theorem has a number of interesting applications. First, recall from Section 2.3 that for Boolean con-
straint languages Γ , CSP(Γ ) is NP-complete if and only if Pol(Γ ) ⊆ [¬x]. Hence, assuming P 6= NP, pPol(Γ ) is
of in�nite order whenever Γ is �nite and CSP(Γ ) is NP-complete. This implies that describing partial polymor-
phisms of �nite constraint languages resulting in NP-hard CSP problems is a very di�cult problem. For some
illustrative usages of this theorem, let R1/k = {(x1, . . . , xk) | x1, . . . , xk ∈ {0, 1}, Σk

i=1xi = 1}, and let Γ k
SAT and

Γ k
NAE be the restrictions of the plain bases of BR and Inv(N2), respectively, restricted to relations of arity at

most k. It is easy to see that CSP({R1/k}), CSP(Γ k
NAE), and CSP(Γ k

SAT) can be seen as alternative formulations
of the well-known NP-complete problems 1-in-k-SAT, not-all-equal-k-SAT, and k-SAT, respectively. Since
all these languages are �nite we obtain the following corollary to Theorem 36.

Corollary 37. Let k ≥ 3. Then pPol(Γ k
SAT), pPol(Γ k

NAE), and pPol(R1/k) are of in�nite order.

It is worth noting that a complete dichotomy theorem for CSP(Γ ) for constraint languages Γ de�ned over
arbitrary �nite domains is not yet known. However, if Pol(Γ ) is essentially unary and every f ∈ Pol(Γ ) is
injective, then CSP(Γ ) is NP-complete [17]. Hence, Theorem 36 also extends to many non-Boolean cases where
CSP(Γ ) is NP-complete.
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7 Concluding Remarks and Open Research Questions

We have studied the question of whether a polynomial amount of variables is su�cient to de�ne any relation in
a given co-clone, have provided a complete dichotomy theorem for the Boolean co-clones where this is possible,
and have also given several given several general results for arbitrary �nite domains. In the process, we have also
extended the concept of a weak base from Schnoor and Schnoor [28] and have given weak bases of all Boolean
co-clones of in�nite order. Using these notions we have then studied the question of whether a given strong
partial clone is of �nite or in�nite order, and proven that the latter holds for a large variety of well-studied
constraint languages. We now discuss some possibilities of future research.

Polynomially closed co-clones and few subpowers

From the results in Section 3 and Section 5 we see that the question whether a co-clone of �nite order is
polynomially closed is related to the question whether the corresponding algebra has few subpowers. For the
Boolean domain, these two notions exactly coincide, and it would be interesting to see whether this holds in the
more general setting of arbitrary �nite domains, possibly using some of the machinery developed in Berman et
al. [3].

Partial polymorphisms and superpolynomially closed co-clones

Theorem 36 states that a pPol(Γ ) is always of in�nite order whenever Γ is �nite and Pol(Γ ) is essentially unary.
It would be interesting to try to extend this theorem to the case when 〈Γ 〉 is an arbitrary superpolynomially
closed co-clone, and a possible starting point is to investigate the case when Pol(Γ ) can be generated from a
�nite set of binary functions. However, this appears to be far from straightforward, and even in the apparently
simple case when Pol(Γ ) = [x1 ∧ x2], the proof strategy in Lemma 35, based on constructing a universal hash
family, breaks down.

Partial Polymorphisms of �nite Boolean constraint languages

In the light of Theorem 36, describing the partial polymorphisms of any �nite Boolean constraint language Γ
such that CSP(Γ ) is NP-complete is a challenging problem since pPol(Γ ) is of in�nite order. Nevertheless, recent
research shows that this problem can be circumvented by considering stronger closure operators than functional
composition [22]. Using this approach it would be interesting to attempt to give a general characterization of
the partial polymorphisms of the constraint languages in the �bottom� of BR, e.g., all constraint languages Γ
such that 〈Γ 〉 = BR and 〈Γ 〉6∃ ⊆ 〈R1/3〉 6∃.
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