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Abstract. Themonotone constraint satisfaction problem (MCSP) is the
problem of, given an existentially quantified positive formula, decide
whether this formula has a model. This problem is a natural general-
ization of the constraint satisfaction problem, which can be seen as the
problem of determining whether a conjunctive formula has a model. In
this paper we study the worst-case time complexity, measured with re-
spect to the number of variables, n, of the MCSP problem parameterized
by a constraint language Γ (MCSP(Γ )). We prove that the complexity
of the NP-complete MCSP(Γ ) problems on a given finite domain D falls
into exactly |D| − 1 cases and ranges from O(2n) to O(|D|n). We give
strong lower bounds and prove that MCSP(Γ ), for any constraint lan-
guage Γ over any finite domain, is solvable in O(|D′|n) time, where D′

is the domain of the core of Γ , but not solvable in O(|D′|δn) time for
any δ < 1, unless the strong exponential-time hypothesis fails. Hence,
we obtain a complete understanding of the worst-case time complexity
of MCSP(Γ ) for constraint languages over arbitrary finite domains.

1 Introduction

The constraint satisfaction problem over a constraint language Γ (CSP(Γ )) is a
widely studied computational problem which can be described as the problem of,
given a conjunctive formula over Γ , verify whether there exists a model of this
formula. In general the CSP(Γ ) problem is NP-complete, and much research has
been made to separate tractable from NP-hard cases [3,13]. A related question
to establishing dichotomies between tractable and intractable cases is to study
the complexity differences between NP-complete CSP problems. Let n denote
the number of variables in a given CSP(Γ ) instance. Is it then, for example,
possible to characterize all constraint languages Γ such that CSP(Γ ) is solvable
in O(cn) time for some c ∈ R? Ultimately, one would like to have a table, which
for every constraint language Γ contains a constant c ∈ R such that CSP(Γ )
is solvable in O(cn) time but not in O(dn) time for any d < c. Clearly, even
assuming P 6= NP, such a table would be very difficult, if not impossible, to
obtain. A more feasible approach is to order all NP-complete CSP problems by
their relative worst-case time complexity, i.e., CSP(Γ ) lies below CSP(∆) in this
ordering if CSP(Γ ) is solvable in O(cn) time whenever CSP(∆) is solvable in
O(cn) time. Jonsson et al. [9] studied the structure of this ordering for Boolean



CSP problems and proved that it had a minimal element. With this “easiest”
Boolean CSP problem they obtained lower bounds for all NP-complete Boolean
CSP problems and proved that there does not exist any NP-complete Boolean
CSP(Γ ) problem solvable in subexponential time, unless the exponential-time
hypothesis fails. A similar study was later conducted for Boolean optimization
problems where analogous results and lower bounds were obtained [10].

In this paper we continue this line of research in the context of the mono-
tone constraint satisfaction problem parameterized by a constraint language Γ
(MCSP(Γ )). This problem can be viewed as a generalization of the CSP prob-
lem where the objective is to determine whether an existentially quantified first-
order formula without negation over Γ has a model. This problem has been
studied by Hermann and Richoux [6], who gave a dichotomy theorem for arbi-
trary finite domains, separating tractable from NP-complete cases. This result
was later extended to also cover the case of infinite domains [1]. Closure prop-
erties of disjunctive logic formulas was investigated by Fargier and Marquis [5]
but with regards to knowledge representation problems. We are now interested
in the aforementioned questions regarding the worst-case time complexity of
MCSP(Γ ), and in particular how well the ordering between the complexity of
NP-complete MCSP(Γ ) problems can be approximated. As a tool to compare
and relate worst-case running times between NP-complete MCSP(Γ ) problems,
we utilize a restricted form of polynomial-time reductions, which only increases
the number of variables within instances by a constant, constant variable reduc-
tions (CV-reductions). It is readily verified that if MCSP(Γ ) is CV-reducible
to MCSP(∆) then MCSP(Γ ) is solvable in O(cn) time whenever MCSP(∆)
is solvable in O(cn) time (where n denotes the number of variables in a given
instance). We begin in Section 3.1 by first giving a straightforward condition to
check whether MCSP(Γ ) is CV-reducible to MCSP(∆). This proof makes use
of the algebraic approach to constraint satisfaction problems [8] and the Galois
connection between strong partial endomorphism monoids and weak Krasner
algebras without existential quantification [2]. In Section 3.2 we use this re-
sult to obtain a full understanding of the applicability of CV-reductions to the
MCSP(Γ ) problem. Let Γ be an arbitrary constraint language over a finite do-
main D and let D′ denote the domain of the core of Γ (the reader unfamiliar
with this model theoretical concept is advised to quickly consult Section 2.2).
We prove that MCSP(Γ ) is exactly as hard as the full MCSP over D′, i.e. the
MCSP problem where all relations over D′ are allowed to occur in constraints.
This furthermore implies that there are at most |D| − 1 possible cases for the
worst-case complexity of MCSP(Γ ).

With the help of the results from Section 3 we in Section 4 turn to the prob-
lem of determining lower bounds for MCSP(Γ ) . To prove these lower bounds
we relate the complexity of MCSP to the strong exponential-time hypothesis
(SETH), i.e. the conjecture that the Boolean satisfiability problem is not solv-
able in O(2δn) time for any δ < 1 [4,7]. We prove the following: if the SETH
holds then MCSP(Γ ) is solvable in O(cn) time but not in O(cδn) time for any
δ < 1, where c is the size of the domain of the core of Γ . As a side result we



prove an analogous result also hold for the the CSP problem: if the Boolean CSP
problem is not solvable in O(2δn) for any δ < 1 then the CSP problem over any
finite domain D is not solvable in O(|D|δn) for any δ < 1. Hence, for any finite
domain D and any c ∈ {1, . . . , |D|}, we obtain a complete classification of the
MCSP problems solvable in O(cn) time but not in O(cδn) time for any δ < 1.
In contrast to the CSP problem we can therefore not only approximate the or-
dering between the complexity of NP-complete MCSP problems, but actually
obtain a complete understanding. While these results do not directly carry over
to the CSP problem, we still believe that some of the involved techniques could
be useful when studying the time complexity of other problems parameterized
by constraint languages.

2 Preliminaries

In this section we introduce constraint languages, the monotone constraint satis-
faction problem, and give a brief introduction to the necessary algebraic concepts
required in the subsequent treatment.

2.1 Constraint Languages and Functions

Let D ⊂ N be a finite domain. Let RelD denote the set of all finitary relations
over D. For a relation R ∈ RelD we let ar(R) denote its arity. For each i ∈ D let
ci denote the constant relation {(i)}. Let idD(i) = i be the identity function over
D, EqD = {(i, i) | i ∈ D} the equality relation, and NeqD = {(i, j) ∈ D2 | i 6= j}
the inequality relation. Given a function f onD we let img(f) denote its image. If
the domain is clear from the context we simply write id, Eq and Neq, respectively.
A constraint language Γ over D is a finite or infinite set of relations Γ ⊆ RelD
such that EqD ∈ Γ . Hence, whenever we speak of a constraint language we
assume that this language contains the equality relation.

We usually represent relations as logical formulas, and use the notation
R(x1, . . . , xn) ≡ φ to denote the n-ary relation R = {(f(x1), . . . , f(xn)) | f
is a model of φ}. A monotone formula over a constraint language Γ is logical
formula with free variables x1, . . . , xn of the form ∃y1, . . . , yn.φ, where φ is a
quantifier-free formula over x1, . . . , xn, y1, . . . , ym consisting of disjunction, con-
junction, over positive literals of the form Ri(xi), where Ri ∈ Γ , and xi is a tuple
of variables over x1, . . . , xn, y1, . . . , ym. A quantifier-free monotone formula is a
monotone formula without existential quantification. These restricted classes of
logical formulas will be important in Section 2.3 when we define the monotone
constraint satisfaction problem, and in Sections 2.4 and 2.5 where we discuss
closure properties of relations.

2.2 Cores of Constraint Languages

A constraint language {R′1, . . . , R′m} over D′ ⊆ D is a substructure of a con-
straint language {R1, . . . , Rm} over D if each R′i ⊆ Ri. A homomorphism h of



a constraint language {R1, . . . , Rm} to a constraint language {R′1, . . . , R′m} over
D′ is a function h : D → D′ such that (h(a1), . . . , h(aar(Ri))) ∈ R′i for every
i and every (a1, . . . , aar(Ri)) ∈ Ri. Here we tacitly assume that constraint lan-
guages can be viewed as relational structures, i.e. that the relations are given as
an ordered sequence and have an associated signature. A constraint language Γ
is a core if there does not exist a homomorphism to a proper substructure of Γ ,
and we say that Γ ′ is a core of Γ if Γ ′ is a core and there exists a homomorphism
from Γ to Γ ′. Since the cores of a constraint language Γ are equivalent up to
isomorphism we typically speak of the core of Γ and let Core(Γ ) denote this
constraint language. The core-size of Γ is the size of the domain of Core(Γ ).

2.3 The Monotone Constraint Satisfaction Problem

Let Γ be a constraint language over D. Recall that a constraint language in our
notation always includes the equality relation over D. The monotone constraint
satisfaction problem over Γ (MCSP(Γ )) is defined as follows.

Instance: A tuple (V, φ) where V is a set of variables and φ a quantifier-free
monotone formula over Γ and V .
Question: Is there a function f : V → D such that f is a model of φ?

Even if Eq /∈ Γ we typically write MCSP(Γ ) instead of MCSP(Γ ∪ {Eq}).
Given an instance I = (V, φ) of MCSP(Γ ) we let ||I|| denote the number of bits
required to represent I and Constraints(I) = {Ri(xi) | Ri(xi) is a constraint
application in φ}, where each Ri ∈ Γ and xi is a tuple of variables over V of
length ar(Ri).

Example 1. Consider the problem MCSP({c1, c2}) over the Boolean domain
{1, 2}, where c1 = {(1)} and c2 = {(2)}. Then MCSP({c1, c2}) can be seen
as a variant of the Boolean satisfiability problem, with the distinction that in-
stances are not necessarily in conjunctive normal form.

Hermann and Richoux [6] classified the complexity of MCSP(Γ ) with respect
to polynomial-time many-one reductions. Since we are interested in a more fine-
grained analysis of the complexity of MCSP(Γ ) we introduce a restricted form
of reduction which only increases the number of variables within instances by
an additive constant.

Definition 2. Let Γ and ∆ be two constraint languages. A constant variable-
reduction (CV-reduction) from MCSP(Γ ) to MCSP(∆) is a computable func-
tion f from the instances of MCSP(Γ ) to the instances of MCSP(∆) such that
for every instance (V, φ) of MCSP(Γ ):

– f((V, φ)) can be computed in O(poly(||(V, φ)||)) time,
– (V, φ) is satisfiable if and only if f((V, φ)) is satisfiable,
– f((V, φ)) = (V ′, φ′) where |V ′| = |V |+O(1).



We write MCSP(Γ ) ≤CV MCSP(∆) as a shorthand for this reduction. In other
words a CV-reduction is a polynomial-time many one reduction which only in-
creases the number of variables by a constant. The utility of these reductions
stems from the fact that if MCSP(Γ ) is solvable in O(cn · poly(||I||)) time for
some constant c ≥ 1, and if MCSP(∆) ≤CV MCSP(Γ ), then MCSP(∆) is also
solvable in O(cn · poly(||I||)) time.

2.4 Closure Operators on Functions and Relations

LetR be a k-ary relation over a finite domainD. A unary function e overD is said
to be an endomorphism of R if (e(a1), . . . , e(ak)) ∈ R for every (a1, . . . , ak) ∈ R.
In this case we also say that e preserves R or that R is invariant under e.
This notion is extended to constraint languages in the obvious way. Given a
constraint language Γ we let EndD(Γ ) denote the set of all endomorphisms over
D of Γ . Similarly, given a set of unary functions E over D we let InvD(E) denote
the set of all relations over D that are invariant under E. Since the domain is
typically clear from the context we usually just write End(Γ ) and Inv(E). Sets
of the form End(Γ ) and Inv(E) are known as endomorphism monoids and weak
Krasner algebras, respectively. Despite these rather enigmatic names they are
in fact quite easy to grasp: End(Γ ) is a set of unary functions containing the
identity function id which is closed under functional composition; Inv(E) is a set
of relations closed under monotone formulas [2]. The latter means that whenever
Γ ⊆ Inv(E) then Inv(E) also contains all relations of the form R(x1, . . . , xn) ≡ φ,
where φ is a monotone formula over Γ . If we let 〈Γ 〉 = Inv(End(Γ )) we obtain the
following Galois connection between weak Krasner algebras and endomorphism
monoids.

Theorem 3 ([2]). Let Γ and ∆ be two constraint languages. Then Γ ⊆ 〈∆〉 if
and only if End(∆) ⊆ End(Γ ).

Using this Galois connection, Hermann and Richoux [6] proved that the com-
plexity of MCSP(Γ ), up to polynomial-time many one reductions, is determined
by the endomorphisms of Γ .

Theorem 4 ([6]). Let Γ and ∆ be two finite constraint languages. If End(Γ ) ⊆
End(∆) then MCSP(∆) is polynomial-time many-ony reducible to MCSP(Γ ).

With this result they obtained a dichotomy theorem for MCSP(Γ ) for con-
straint languages Γ over arbitrary finite domains, proving that MCSP(Γ ) is
NP-complete if and only if End(Γ ) does not contain a constant endomorphism,
i.e. an endomorphism e which for some j ∈ D satisfies e(i) = j for all i ∈ D.

Theorem 5 ([6]). Let Γ be constraint language. Then MCSP(Γ ) is NP-complete
if and only if End(Γ ) does not contain a constant endomorphism.



2.5 Restricted Closure Operators on Functions and Relations

We are now interested in closure operators based on quantifier-free monotone
formulas. To get a similar Galois connection as in Theorem 6 we need a slight
modification to the End(·) operator. An n-ary partial function f over D is a
map f : X → D where X ⊆ Dn. Let dom(f) = X. If f and g are two partial
functions then g is a subfunction of f if dom(g) ⊆ dom(f) and f(x1, . . . , xn) =
g(x1, . . . , xn) for all (x1, . . . , xn) ∈ dom(g). A set F of partial functions is strong,
if, whenever f ∈ F , then F also contains all subfunctions of f . Given a set of
partial functions F we let Strong(F ) denote the smallest strong set of partial
functions containing F . A unary partial function e is said to be a partial endo-
morphism of a k-ary relation R if (e(a1), . . . , e(ak)) ∈ R for all (a1, . . . , ak) ∈ R
such that (a1), . . . , (ak) ∈ dom(e). Again, this notion easily generalizes to con-
straint languages. Let pEndD(Γ ) denote the set of all partial endomorphisms
over D to a constraint language Γ over D. As usual we omit the domain D
when it is clear from the context. A set of the form pEnd(Γ ) is known as a
strong partial endomorphism monoid [2] and is a strong, composition-closed set
of unary partial functions containing the identity function. The utility of these
definitions stems from the following: if E is a set of unary partial functions and
if Γ ⊆ Inv(E), then Inv(E) also contains all relations R(x1, . . . , xn) ≡ φ, where
φ is a quantifier-free monotone formula over Γ [2]. For a constraint language Γ
let 〈Γ 〉6∃ = Inv(pEnd(Γ )). We have the following Galois connection.

Theorem 6 ([2]). Let Γ and ∆ be two constraint languages. Then Γ ⊆ 〈∆〉6∃
if and only if pEnd(∆) ⊆ pEnd(Γ ).

As will be made clear in Section 3, this Galois connection will allow us to
obtain a corresponding result to Theorem 4, where we prove that the partial en-
domorphims of a constraint language Γ determines the complexity of MCSP(Γ )
up to O(c|V |) time complexity.

3 The Complexity of Monotone Constraint Satisfaction

By Theorem 5 we can for every Γ ⊆ RelD easily determine whether MCSP(Γ )
is NP-complete or in P. We are interested in a more fine-grained analysis of
the NP-complete MCSP problems with respect to CV-reductions. We first (in
Section 3.1) prove that the partial endomorphisms of a constraint language de-
termines the complexity of the MCSP problem with respect to CV-reductions.
In Section 3.2 we then use partial endomorphism to obtain a full understanding
of the applicability of CV-reductions for the MCSP problem.

3.1 Partial Endomorphisms and CV-reductions

We first prove an easy, but very important, theorem which gives a conditition
for obtaining a CV-reduction from one MCSP problem to another.



Theorem 7. Let Γ and ∆ be two finite constraint languages. If pEnd(Γ ) ⊆
pEnd(∆) then MCSP(∆) is CV-reducible to MCSP(Γ ).

Proof. Since pEnd(Γ ) ⊆ pEnd(∆) we can exploit the Galois connection to infer
that ∆ ⊆ 〈Γ 〉6∃. This furthermore implies that every R ∈ ∆ can be expressed as
a quantifier-free monotone formula over Γ . Since both languages are finite we
can easily find all such definitions in constant time, with respect to the size of
Γ and ∆. Now let I = (V, φ) be an instance of MCSP(∆). For each constraint
Ri(xi) ∈ Constraints(I) replace it by its equivalent quantifier-free monotone
formula over Γ . Let I ′ = (V, φ′) be the resulting instance. Then I ′ is satisfiable
if and only if I is satisfiable. Since we do not introduce any fresh variables, and
since the reduction runs in O(poly(||I||)) time, it follows that the reduction is a
CV-reduction. ut

Since we are working over arbitrary finite domains we are interested in sim-
plyfing things whenever possible. The following theorem offers such a simplifi-
cation whenever End(Γ ) contains a non-injective endomorphism, i.e., when the
core-size of Γ is strictly smaller than |D|. The proof is simple and is therefore
omitted.

Theorem 8. Let Γ be a finite constraint language. Then (1) MCSP(Γ ) ≤CV

MCSP(Core(Γ )) and (2) MCSP(Core(Γ )) ≤CV MCSP(Γ ).

3.2 Intervals of Strong Partial Endomorphism Monoids

By Theorem 7 we now have a relatively simple property for determining whether
MCSP(Γ ) is CV-reducible to MCSP(∆). This condition is sufficient to guar-
antee the existence of a CV-reduction, but as we will see in this section, there
are many cases that are not covered. Assume e.g. that pEnd(Γ ) ⊂ pEnd(∆).
Could it then still be the case that MCSP(∆) is CV-reducible to MCSP(Γ )?
In this section we obtain a complete understanding of when such CV-reductions
are possible. Our main technical tool for accomplishing this is to study intervals
of strong partial endomorphism monoids.

Definition 9. Let End(Γ ) be an endomorphism monoid over D. The strong
partial monoid interval of End(Γ ) is the set

I(End(Γ )) = {pEnd(∆) | End(∆) = End(Γ )}.

The smallest element in this set is given by Strong(End(Γ )) and the largest
element by

⋃
I(End(Γ )) =

⋃
pEnd(∆)∈I(End(Γ )) pEnd(∆). Hence, this set can

indeed be viewed as a bounded interval. We illustrate this definition by an ex-
ample.

Example 10. Consider the Boolean domain D = {1, 2} and let E = {id}, i.e. the
smallest Boolean endomorphism monoid consisting only of the unary projection
function. Recall that c1 = {(1)}, c2 = {(2)}, let c(1,2) = {(1, 2)}, and let e1
and e2 be the two partial functions e1(2) = 1, e2(1) = 2, which are undefined
otherwise. Define pEnd(Γ1), . . . ,pEnd(Γ4) as:



– pEnd(Γ1) = Strong({id}), Γ1 = {c1, c2},
– pEnd(Γ2) = pEnd(Γ1) ∪ {e1}, Γ2 = {c1, c(1,2)}
– pEnd(Γ3) = pEnd(Γ1) ∪ {e2}, Γ3 = {c2, c(1,2)}, and
– pEnd(Γ4) = pEnd(Γ1) ∪ pEnd(Γ2) ∪ pEnd(Γ3), Γ4 = {c(1,2)}.

Then one can prove that I(E) = {pEnd(Γ1),pEnd(Γ2),pEnd(Γ3),pEnd(Γ4)},
and it is readily verified that the inclusions pEnd(Γ4) ⊃ pEnd(Γ3) ⊃ pEnd(Γ1)
and pEnd(Γ4) ⊃ pEnd(Γ2) ⊃ pEnd(Γ1) hold.

In Example 10 one can also prove that MCSP(Γ1) ≤CV MCSP(Γ4). Due
to the inclusion structure between these strong partial endomorphism monoids
this furthermore implies that MCSP(Γ1), . . ., MCSP(Γ4) are all CV-reducible
to each other, and hence solvable within exactly the same O(c|V |) running time.
We are now interested in whether this holds when considering strong partial
endomorphism monoid intervals over arbitrary finite domains. To accomplish
this we first need a better characterization of the largest element

⋃
I(End(Γ )).

Definition 11. Let E = End(Γ ) be an endomorphism monoid over D = {1, . . . , k}.
The relation E(D) is defined as E(D) = {(e(1), . . . , e(k)) | e ∈ E}.

The notation E(D) is a mnemonic with the intended meaning that we are
constructing a relation that is closed under every endomorphism in E.

Theorem 12. Let E = End(Γ ) be an endomorphism monoid over D. Then
pEnd({E(D)}) =

⋃
I(End(Γ )).

Proof. First, we prove that pEnd({E(D)}) ∈ I(E), i.e. that End({E(D)}) =
E. By definition E(D) is closed under every function in E, so the inclusion
E ⊆ End({E(D)}) holds. Let e ∈ End({E(D)}) and let (e(1), . . . , e(k)) =
(a1, . . . , ak). Observe that (a1, . . . , ak) ∈ E(D) since e preserves E(D). By defini-
tion of E(D) there then exists e′ ∈ E such that (e′(1), . . . , e′(k)) = (e(1), . . . , e(k))
= (a1, . . . , ak). Hence, e ∈ E.

Second, we prove that pEnd(E(E)) ⊇ pEnd(∆) for any pEnd(∆) ∈ I(E).
Let e ∈ pEnd(∆). Assume towards contradiction that e /∈ pEnd({E(D)}). Then
there exists (b1, . . . , bk) ∈ E(D) such that (e(b1), . . . , e(bk)) /∈ E(D). Let e′ ∈
End({E(D)}) = End(∆) be the total function satisfying (e′(1), . . . , e′(k)) =
(a1, . . . , ak). Observe that such a function must exist according to the definition
of E(D). Then define the unary function g as g(i) = e(e′(i)) for every i ∈ D.
Clearly, g is a total function which does not preserve E(D) since e is defined on
img(e′), but this is a contradiction since g ∈ End(∆) = End({E(D)}). ut

By combining Theorem 7 and Theorem 12 we obtain the following lemma.

Lemma 13. Let Γ be a finite constraint language over D and let E = End(Γ ).
Then MCSP({E(D)}) ≤CV MCSP(Γ ).

We now have all the machinery in place to characterize the complexity of
MCSP(Γ ). In particular, we want to prove the converse of Lemma 13, i.e. that
MCSP(Γ ) is CV-reducible to MCSP({E(D)}). To prove this we first investigate
the expressive power of the relation E(D). Recall that NeqD denotes the binary
inequality relation over D.



Theorem 14. Let Γ be a finite constraint language over D and let D′ ⊆ D be
the domain of Core(Γ ). Then MCSP({NeqD′}) ≤CV MCSP(Γ ).

Proof. Let k′ = |D′|, k = |D|, and let e be the homomorphism from Γ to
Core(Γ ). Observe that e ∈ End(Γ ), img(e) = D′, and that there does not exist
any e′ ∈ End(Γ ) such that |img(e′)| < |img(e)|. We prove that MCSP({NeqD′})
is CV-reducible to MCSP({E(D)}), which according to Lemma 13 is sufficient
to prove the claim. Let t = (e(1), . . . , e(k)) ∈ E(D). Assume without loss of
generality that {e(1), . . . , e(k′)} = D′, i.e., that e is injective on the k′ first
arguments. Since img(e) = D′ this means that for every i > k′ there exists a
j ≤ k′ such that t[i] = t[j]. Let h : {k′ + 1, . . . , k} → {1, . . . , k′} be a func-
tion satisfying t[i] = t(h(i)) for every i ∈ {k′ + 1, . . . , k}. Let R(x1, . . . , xk′) ≡
E(D)(x1, . . . , xk′ , xh(k′+1), . . . , xh(k)), i.e. k′-ary relation obtained by identify-
ing all arguments that are equal in the tuple t. We now claim that if i 6= j
then t′[i] 6= t′[j] for every t′ ∈ R. Assume to the contrary that there exists
t′ ∈ R such that t[i] = t[j] for some i 6= j. According to the definition of
R this implies that there exists a tuple t′′ ∈ E(D) such that t′′[i] = t′′[j],
and, furthermore, that t′′[h(j′)] = t′′(j′) for every j′ ∈ {1, . . . , k′}. By letting
e′(1) = t′′[1], . . . , e′(k) = t′′[k], we see that img(e′) ⊂ img(e), a contradiction.
Hence, all elements are distinct in every tuple t′ ∈ R.

For the reduction, let I = (V, φ) be an instance of MCSP({NeqD′}). We in-
troduce k′ fresh variables y1, . . . , yk′ and introduce the constraint R(y1, . . . , yk′).
For each constraint Neq(xi, xj) ∈ Constraints(I) replace it by (Eq(xi, y1) ∧
(Eq(xj , y2)∨. . .∨Eq(xj , yk′)))∨. . .∨(Eq(xi, yk′)∧(Eq(xj , y1)∨. . .∨Eq(xj , yk′−1))).
Let I ′ be the resulting instance over the variables V ∪ {y1, . . . , yk′}. Clearly, if
I is satisfiable then it is easy to find a satisfying assignment to I ′. Similarly,
if I ′ is satisfiable then one can apply e to the satisfying assignment to get an
assignment over D′. It follows that the reduction is a CV-reduction since k′ is a
constant depending only on D and Γ . ut

This shows that MCSP(Γ ) is at least as hard as MCSP({NeqD′}) where
D′ is the domain of Core(Γ ). One might now wonder exactly how powerful the
relation NeqD is. Due to space constraints, we omit the proof, but it is in fact not
difficult to see that whenever we have access to this appearingly simple relation,
then MCSP({NeqD}) is as hard as MCSP(RelD).

Theorem 15. Let D be a finite domain. Then MCSP(RelD) ≤CV MCSP({NeqD}).

Put together, Theorems 14 and 15 imply that MCSP(Γ ) is always CV-
reducible to MCSP({End(Γ )(D)}), which results in the following corollary. The
proof is straightforward and therefore omitted.

Corollary 16. Let Γ and ∆ be two finite constraint languages over D, with
core-size c and d, respectively. If d ≤ c then MCSP(∆) ≤CV MCSP(Γ ).



4 Upper and Lower Bounds for the Complexity of
Monotone Constraint Satisfaction

With Corollary 16 in Section 3 we now have a powerful condition for verifying
whether MCSP(Γ ) is CV-reducible to MCSP(∆). Moreover, since MCSP(Γ )
is solvable in O(d|V | · poly(||I||)), where d is the core-size of Γ , we have an
obvious upper bound on the complexity of MCSP(Γ ) for all finite constraint
languages. Proving lower bounds, i.e. the problem of proving that a problem
is not solvable in O(cδ|V |) time for any δ < 1, is much more challenging and
usually requires stronger complexity theoretical assumptions than P 6= NP. Let
SAT denote the Boolean satisfiability problem where instances are given as a
tuple (V, φ), where V is a set of variables and φ a conjunctive formula where
each clause is a disjunction of positive and negative literals over V . The strong
exponential-time hypothesis (SETH) is the conjecture that SAT is not solvable
in O(2δ|V |) time for any δ < 1 [4,7]. Using the SETH we can not only prove that
MCSP(RelD) is not solvable in O(2δ|V |) time for any δ < 1, unless the SETH
fails, but that MCSP(RelD) is not solvable in O(|D|δ|V |) for any δ < 1.

Theorem 17. Let D be a finite domain. If the SETH holds then MCSP(RelD)
is not solvable in O(|D|δ|V |) time for any δ < 1.

Proof. Assume that MCSP(RelD) is solvable in O(|D|δ|V |) time for some δ < 1.
Let I = (V, φ) be an instance of SAT over the variables V = {x1, . . . , xn} and
the formula φ. Let K ≥ 1 and L = d K

log2(|D|)
e. The exact value of K, which is a

constant depending on δ and D, will be determined later. Assume without loss of
generality that n ≡ 0 (mod K). We will partition V into subsets of size K and
show that every such subset can be represented by L variables over D. Hence,
let V1, . . . , V n

K
be such a partition of V . Let f : {1, . . . , n} → {1, . . . , nK } be a

function satisyfing f(i) = j if and only if xi ∈ Vj . For every Vi introduce L fresh
variables yi1 , . . . , yiL , and observe that we in total require n·L

K new variables. Let
h : {x1, . . . , xn} → {1, . . . ,K} be a function which is injective on every Vi, i.e.,
every variable in a subset Vi of V is assigned a unique index from 1 to K.

Let bD be an injective function from {0, 1}K to DL. Such a function ex-
ists since by definition 2K ≤ |D|L. The purpose of bD is to convert a K-ary
Boolean sequence to an L-ary tuple over D. For each i ∈ {1, . . . , L} define the L-
ary relation R+

i = {bD(x1, . . . , xK) | (x1, . . . , xi−1, 1, xi+1, . . . , xK) ∈ {0, 1}K},
and the L-ary relation R−i = {bD(x1, . . . , xK) | (x1, . . . , xi−1, 0, xi+1, . . . , xK) ∈
{0, 1}K}.

Let (`i1 ∨ . . . ∨ `ik), `ij = xij or `ij = ¬xij , be a clause in φ. Let zi1 , . . . , zik
such that zij = + if `ij = xij and zij = − if `ij = ¬xij . For each literal `ij
let Vf(ij) be the partition corresponding to xij and let yf(ij)1 , . . . , yf(ij)L be the
corresponding variables over D. Then replace the clause (`i1 ∨ . . . ∨ `ik) with

R
zi1
h(xi1 )

(yf(i1)1 , . . . , yf(i1)L) ∨ . . . ∨R
zij
h(xij )

(yf(ij)1 , . . . , yf(ij)L).

This reduction might appear to be complicated but essentially just follows
the intuition that we can replace every variable set Vi with the corresponding
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