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Abstract

The parameterized satisfiability problem over a set of Boolean relations Γ (SAT(Γ))
is the problem of determining whether a conjunctive formula over Γ has at least
one model. Due to Schaefer’s dichotomy theorem the computational complexity of
SAT(Γ), modulo polynomial-time reductions, has been completely determined: SAT(Γ)
is always either tractable or NP-complete. More recently, the problem of studying the
relationship between the complexity of the NP-complete cases of SAT(Γ) with restricted
notions of reductions has attracted attention. For example, Impagliazzo et al. studied
the complexity of k-SAT and proved that the worst-case time complexity increases
infinitely often for larger values of k, unless 3-SAT is solvable in subexponential time. In
a similar line of research Jonsson et al. studied the complexity of SAT(Γ) with algebraic
tools borrowed from clone theory and proved that there exists an NP-complete problem
SAT(R 6= 6= 6=01

1/3 ) such that there cannot exist any NP-complete SAT(Γ) problem with
strictly lower worst-case time complexity: the easiest NP-complete SAT(Γ) problem.
In this paper we are interested in classifying the NP-complete SAT(Γ) problems whose
worst-case time complexity is lower than 1-in-3-SAT but higher than the easiest problem
SAT(R 6= 6= 6=01

1/3 ). Recently it was conjectured that there only exists three satisfiability
problems of this form. We prove that this conjecture does not hold and that there
is an infinite number of such SAT(Γ) problems. In the process we determine several
algebraic properties of 1-in-3-SAT and related problems, which could be of independent
interest for constructing exponential-time algorithms.

1 Introduction

The parameterized satisfiability problem (SAT(Γ)) is the computational decision problem
of, given a conjunctive formula over a constraint language Γ, determining whether this
formula is satisfiable. Some notable examples of problems that can be formulated as
SAT(Γ) problems include 1-in-3-SAT, k-SAT, SAT, and not-all-equal-SAT. For example, if
we let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} then SAT({R1/3}) can be seen as an alternative
formulation of the monotone 1-in-3-SAT problem, i.e., 1-in-3-SAT without negation. Hence,
SAT(Γ) is in general NP-complete. It is also known that SAT(Γ) is either tractable, i.e.,
solvable in polynomial time, or NP-complete, for all choices of Γ [25]. Assume that we
instead are interested in a more fine-grained analysis of the worst-case time complexity
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Figure 1: The conjectured structure of weak partial co-clones below 〈{R1/3}〉6∃. A directed
arrow A→ B means that A ⊂ B.

of all NP-complete SAT(Γ) problems. Clearly, the fact that two problems SAT(Γ) and
SAT(∆) are both NP-complete does not reveal a great amount of information about their
respective worst case time complexity, except that they are both unlikely to be solvable in
polynomial time. For example, the monotone 1-in-3-SAT problem is solvable in O(1.0984n)
time [30], where n denotes the number of variables in a given instance. On the other hand,
3-SAT is only known to be solvable in O(1.308n) time [11], and more generally it is known
that the worst-case time complexity of k-SAT increases infinitely often for increasing values
of k [13] — assuming 3-SAT is not solvable in O(cn) time for arbitrary c > 1. Hence, the
family of NP-complete SAT(Γ) problems seems to contain members with wildly distinct
worst-case time complexity, and it is safe to say that we currently cannot provide a complete
explanation of this phenomena. More generally, say that SAT(Γ) is easier than SAT(∆)
if SAT(Γ) is solvable in O(cn) time whenever SAT(∆) is solvable in O(cn) time, where
n denotes the number of variables in a given instance. In symbols, we denote this by
SAT(∆) ≤ SAT(Γ). Jonsson et al. studied the complexity of SAT(·) viz a viz the ordering
≤ using partial clone theory [15]. The details of this approach is explained in greater detail
in Section 2, but for the moment let us be content with the fact that there exists a lattice
X such that every constraint language Γ can be mapped to an element 〈Γ〉 6∃ ∈ X , such
that SAT(Γ) ≤ SAT(∆) if 〈Γ〉 6∃ ⊆ 〈∆〉6∃. An element 〈Γ〉 6∃ ∈ X is usually referred to as a
weak system, or a weak partial co-clone, and is a well-studied relational algebra known to
consist of all relations definable by conjunctive logical formulas over Γ [23]. Hence, the
lattice of weak partial co-clones can be used to compare SAT(Γ) problems with respect
to worst-case time complexity. With the help of this algebraic approach Jonsson et al.
gave a classification of the minimal element 〈{R 6=6=6=01

1/3 }〉6∃ of this lattice and proved that
SAT({R 6=6=6=01

1/3 }) results in the easiest NP-complete SAT(·) problem [15].
In this paper we continue the classification of NP-complete SAT(Γ) problems that in

a certain precise sense are small elements in the ordering ≤. More specifically, we are
interested in determining the structure of constraint languages resulting in NP-complete
SAT(·) problems which are not computationally harder than monotone 1-in-3-SAT. In
symbols, this can be rephrased as determining all constraint languages Γ such that
SAT({R 6=6=6=01

1/3 }) ≤ SAT(Γ) ≤ SAT({R1/3}), or, in the language of clone theory, determin-
ing all constraint languages Γ satisfying 〈{R 6=6=6=01

1/3 }〉6∃ ⊂ 〈Γ〉 6∃ ⊂ 〈{R1/3}〉6∃. We begin by
recapitulating the necessary technical prerequisites in Section 2, and give a brief introduc-
tion to the algebraic approach for studying the complexity of satisfiability problems. In
Section 3 we introduce novel methods for better understanding the structure of algebras of
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the form 〈Γ〉6∃, and in particular the structure of 〈{R1/3}〉6∃. This classification is then used
in Section 4 where we give a preliminary description of the satisfiability problems below
SAT({R1/3}) in the ordering ≤. We prove that this is a rich and complicated structure and
that the cardinality of the set {〈Γ〉 6∃ | 〈{R 6=6=6=01

1/3 }〉6∃ ⊂ 〈Γ〉 6∃ ⊂ 〈{R1/3}〉6∃} is at least countably
infinite. We remark that this contradicts a recent conjecture that this set consists of only
three elements [20]. See Figure 1 for a visualization of the conjectured structure between
〈{R1/3}〉6∃ and 〈{R 6=6=6=01

1/3 }〉6∃, and Section 2.4 for definitions of the involved relations.
From an algebraical point of view our results are a natural investigation of the largely

unexplored lattice of weak partial co-clones. We remark that weak partial co-clones
are useful not only for studying the exact complexity of problems [16, 19], but also for
complexity classifications of optimisation problems and non-standard logical reasoning
problems [3, 4, 27]. So far one of the limiting factors of this approach is the fact that very
little is known of the relationship between weak partial co-clones and their dual objects,
partial polymorphisms, which is in stark contrast to the status of the currently flourishing
research program of classifying finite domain constraint satisfaction problems by properties
of polymorphisms [2]. Similar observations have been made by for example Börner et al.
[7], by Schölzel [28], and by Bulatov in the context of counting problems [8].

From a more pragmatic point of view, our results show that even for extremely simple
constraint languages such as {R1/3}, trying to fully characterize SAT(Γ) problems with a
lower worst-case time complexity is an extremely difficult task. However, as we discuss
in Section 5, even though we cannot hope to achieve a complete understanding of the
complexity of SAT({R1/3}) with our algebraic approach, we believe that similar studies
are likely to open up new possibilities for studying the complexity of SAT({R1/3}) and
related problems.

2 Preliminaries

In this section we briefly review some basic concepts that will be needed later on, starting
with a formal definition of the parameterized SAT(·) problem and ending with universal
algebra and partial clone theory.

2.1 The Parameterized SAT(·) Problem

Let B = {0, 1} and let BR =
⋃

i=1 Bi denote the set of all Boolean relations. Given R ∈ Bk

we let ar(R) = k. A constraint language is a set of relations Γ ⊆ BR. The parameterized
satisfiability problem over a constraint language Γ (SAT(Γ)) is defined as follows.

Instance: A set V of variables and a set C of constraint applications R(v1, . . . , vk) where
R ∈ Γ, ar(R) = k, and v1, . . . , vk ∈ V .
Question: Is there a function f : V → B such that (f(v1), . . . , f(vk)) ∈ R for each
R(v1, . . . , vk) in C?

When Γ = {R} we typically write SAT(R) instead of SAT({R}). As an example,
if we let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} then the problem SAT(R1/3) can be seen as
an alternative formulation of monotone 1-in-3-SAT, i.e., the 1-in-3-SAT problem without
negation.
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2.2 Polymorphisms, Clones and Co-Clones

A Boolean function f : Bn → B is said to preserve a k-ary Boolean relation R if for every
t1, . . . , tn ∈ R it holds that

(f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])) ∈ R.

Here, ti[j] denotes the j-th element of the tuple ti. If f preserves R we say that f is a
polymorphism of R, and similarly we say that f is a polymorphism of a constraint language
Γ if it preserves each relation in Γ. Given a constraint language Γ we let Pol(Γ) denote
the set of all polymorphisms of Γ. Sets of the form Pol(Γ) are usually referred to as
clones and it is well-known that clones are (1) closed under functional composition and
(2) contain all functions which projects one of its arguments. To be a bit more precise,
the first condition means that if f, g1, . . . , gm ∈ Pol(Γ), where the f has arity m and the
functions g1, . . . , gm all have the same arity n, then the composition f ◦ (g1, . . . , gm), the
function defined as f ◦ (g1, . . . , gm)(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) for
all x1, . . . , xn ∈ B, is included in Pol(Γ). The second condition means that Pol(Γ) for each
n and each 1 ≤ i ≤ n contains every function πni defined as πni (x1, . . . , xi, . . . , xn) = xi.
Functions of the form πni are called projection functions. We let ΠB denote the set of all
Boolean projection functions.

There is also a similar notion to clones on the relational side. Say that a k-ary relation
R has a primitive positive definition (p.p. definition) over a constraint language Γ if
there exists a conjunctive formula over k variables x1, . . . , xk over Γ, possibly making
use of existential quantification and the equality relation Eq = {(0, 0), (1, 1)}, such that
R is the set of models of this formula. In symbols, we denote such a p.p. definition as
R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ . R1(x1)∧ . . .∧Rm(xm), where each Ri ∈ Γ∪{Eq} and each xi

is an ar(Ri)-ary tuple of variables over x1, . . . , xk, y1, . . . , yk′ . If we let 〈Γ〉 be the smallest
set of relations containing Γ which is closed under p.p. definitions we obtain a relational
clone, or a co-clone. The relationship between clones and co-clones is given in the following
theorem.

Theorem 1 ([5, 6, 9]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉 if and
only if Pol(Γ′) ⊆ Pol(Γ).

This inverse relationship between two closure operators is in general known as a Galois
connection, and using Theorem 1 it is not difficult to prove the following result.

Theorem 2 ([14]). Let Γ and Γ′ be two finite constraint languages. If Pol(Γ′) ⊆ Pol(Γ),
then SAT(Γ) is polynomial-time many-one reducible to SAT(Γ′).

Hence, the clone of a constraint language determines the complexity of a satisfiability
problem up to polynomial time reductions. Unfortunately, as noted in Section 1, the mere
fact that two SAT(·) problems are polynomial-time equivalent does not offer any insight
into their worst-case time complexity. To study this we need a more fine-grained algebra,
which in our case consists of partial functions instead of total functions.

2.3 Partial Polymorphisms, Strong Partial Clones and Weak Partial Co-
Clones

In this section we investigate clones based on partial functions instead of total functions, and
show that Theorem 2 can be significantly strengthened with these notions. First, an n-ary
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Boolean partial function f is a map f : X → B where X ⊆ Bn. In other words f is a function
that is allowed to be undefined for one or more sequences of arguments. Given a partial
function f : X → B, X ⊆ Dn, we let dom(f) = X and ar(f) = n. If u = (x1, . . . , xn) ∈
dom(f) we use the shorthand notation f(u) instead of f(x1, . . . , xn). A partial function g
is said to be a subfunction of a partial function f if dom(g) ⊆ dom(f) and g(u) = f(u) for
all u ∈ dom(g). A set of partial functions is strong if it is closed under taking subfunctions.
If f is an n-ary partial function and X ⊆ dom(f) we write f|X for the subfunction of
f satisfying dom(f|X) = X. Composition of partial functions is defined similarly to
the case of total functions. Hence, if f is an m-ary partial function and g1, . . . , gm are
n-ary partial functions then the composition is defined as f ◦ (g1, . . . , gm)(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), and the resulting function is defined for every tuple
(x1, . . . , xn) ∈

⋂m
i=1 dom(gi) such that (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ dom(f)).

We now say that an n-ary partial function f is a partial polymorphism of a k-ary
relation R if (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])) ∈ R for all t1, . . . , tn ∈ R such that
{(t1[1], . . . , tn[1]), . . . , (t1[k], . . . , tn[k])} ⊆ dom(f). If we let pPol(Γ) denote the set of all
partial polymorphisms of a constraint language Γ then the resulting set of partial functions
is known as a strong partial clone. A strong partial clone pPol(Γ) is a set of partial functions
which (1) is closed under composition of partial functions, i.e., if f, g1, . . . , gar(f) ∈ pPol(Γ)
then f ◦ (g1, . . . , gar(f)) ∈ pPol(Γ), (2), contains all projection functions, and (3) is closed
under taking subfunctions. It is worth noting that the second and third conditions are
equivalent to the condition that pPol(Γ) contains all partial projection functions, i.e., the
total projection functions and all their possible subfunctions, and we let Πp

B denote this
set. Given a set of partial functions F we let [F ]s denote the smallest strong partial clone
which contains F . The set F is called a base of [F ]s. Similar to the relationship between
clones and co-clones we can find a Galois connection between strong partial clones and sets
of relation satisfying certain closure properties. In symbols, we say that a k-ary relation
R has a quantifier-free primitive positive definition (q.f.p.p. definition) over a constraint
language Γ if R(x1, . . . , xk) ≡ R1(x1)∧ . . .∧Rm(xm), where each Ri ∈ Γ∪ {Eq} and each
xi is an ar(Ri)-ary tuple of variables over x1, . . . , xk. We then let 〈Γ〉 6∃ denote the smallest
set of relations containing Γ which is closed under q.f.p.p. definitions, and as usual we
write 〈R〉6∃ whenever Γ = {R}. Sets of the form 〈Γ〉 6∃ are known as weak partial co-clones,
or weak systems. We have the following Galois connection.

Theorem 3 ([9, 24]). Let Γ and Γ′ be two constraint languages. Then Γ ⊆ 〈Γ′〉6∃ if and
only if pPol(Γ′) ⊆ pPol(Γ).

Using this Galois connection Jonsson et al. [15] proved that the partial polymorphisms
of a finite constraint language determines the complexity of the satisfiability problem up
to O(cn) time complexity, where n denotes the number of variables in a given instance.

Theorem 4 ([15]). Let Γ and Γ′ be two finite constraint languages. If pPol(Γ) ⊆ pPol(Γ′)
and SAT(Γ) is solvable in O(cn) time, then SAT(Γ′) is solvable in O(cn) time, too.

Hence, a better understanding of the lattice of Boolean strong partial clones could
lead to a better understanding of the worst-case time complexity of satisfiability problems.
Unfortunately, the cardinality of this lattice is equal to the continuum [1], and besides
some minor results [18, 26], the details of this structure is largely unknown. In particular,
it is known that the set {pPol(Γ) | SAT(Γ) is NP-complete} is of uncountably infinite
cardinality. With a reformulation of Schaefer’s dichotomy theorem [25] we can state this
result even more precisely as follows (where ¬x denotes the unary function ¬x = 1− x).
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Theorem 5 ([29]). The sets {pPol(Γ) | Pol(Γ) = ΠB} and {pPol(Γ) | Pol(Γ) = [¬x]} are
of uncountably infinite cardinality.

Note that this theorem immediately implies that there exists strong partial clones
of the form pPol(Γ) which does not admit a finite base. Perhaps more surprising is the
following theorem which states that a strong partial clone of the form pPol(Γ) cannot have
a finite base whenever Γ is a finite constraint language such that Pol(Γ) ⊆ [¬x].

Theorem 6 ([21]). Let Γ be a finite constraint language such that Pol(Γ) ⊆ [¬x]. Then
pPol(Γ) does not admit a finite base.

2.4 The Easiest NP-complete SAT(·) Problem

In Jonsson et al [15] it is proven that the “easiest” NP-complete SAT(·) problem can
be seen as a variant of 1-in-3-SAT where each variable occurring in a constraint has a
complementary variable and each constraint contains two variables forced to constant values.
We can represent this problem as SAT(R 6=6=6=01

1/3 ) where R 6=6=6=01
1/3 (x1, x2, x3, x4, x5, x6, c0, c1) ≡

R1/3(x1, x2, x3)∧R1/3(c0, c0, c1)∧R1/3(x1, x4, c0)∧R1/3(x2, x5, c0)∧R1/3(x3, x6, c0), where
we have choosen the variable names c0 and c1 to indicate that they are forced constant
values. Hence, we have that

R 6=6=6=01
1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}.

We are now interested in trying to determine the weak partial co-clones 〈Γ〉6∃ such
that 〈R1/3〉 6∃ ⊃ 〈Γ〉 6∃ ⊃ 〈R 6= 6=6=01

1/3 〉6∃. In particular, is it possible to find a constraint
language Γ such that 〈Γ〉6∃ covers 〈R 6=6=6=01

1/3 〉 6∃? By this we mean that there does not
exist any ∆ such that 〈R 6=6=6=01

1/3 〉6∃ ⊂ 〈∆〉6∃ ⊂ 〈Γ〉6∃. Since R 6=6=6=01
1/3 has arity 8 and R1/3

has arity 3, a reasonable first attempt to investigate this question is to gradually re-
move arguments from R 6=6=6=01

1/3 . Hence, let R 6=6=01
1/3 , R 6=01

1/3 , and R01
1/3 be the relations ob-

tained from R 6=6=6=01
1/3 by removing one, two, and three complemented arguments. That

is, R 6=6=01
1/3 = {(0, 0, 1, 1, 1, 0, 1), (0, 1, 0, 1, 0, 0, 1), (1, 0, 0, 0, 1, 0, 1)}, R 6=01

1/3 = {(0, 0, 1, 1, 0, 1),
(0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 0, 1)}, and R01

1/3 = {(0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (1, 0, 0, 0, 1)}. We
remark that Pol(R 6= 6=6=01

1/3 ) = Pol(R 6=6=01
1/3 ) = Pol(R 6=01

1/3 ) = Pol(R01
1/3) = Pol(R1/3) = ΠB, i.e.,

that the only total polymorphisms of these relations are the projections. In Lagerkvist [20]
it was proven that 〈R1/3〉6∃ ⊂ 〈R01

1/3〉6∃ ⊂ 〈R
6=01
1/3 〉 6∃ ⊂ 〈R 6=6=01

1/3 〉6∃ ⊂ 〈R 6=6=6=01
1/3 〉 6∃. Hence, the

inclusions in Figure 1 are correct. However, the question of whether these weak partial
co-clones also cover one another was left open. We will see in Section 4 that there in fact
exist an infinite number of weak partial co-clones between 〈R1/3〉6∃ and 〈R 6= 6=6=01

1/3 〉6∃.

3 The Partial Polymorphisms of R1/3, R01

1/3
, R 6=01

1/3 , R 6=6=01

1/3 and
R 6=6=6=01

1/3

We now want to investigate the structure of weak partial co-clones between 〈R1/3〉6∃
and 〈R 6=6=6=01

1/3 〉6∃, and determine to which extent the conjectured structure in Figure 1 is
complete. Since investigating this problem purely from a relational perspective appears
to be complicated, we in this section tackle the problem of characterizing the partial
polymorphisms of R1/3, R

01
1/3, R

6=01
1/3 , R 6=6=01

1/3 , and R 6=6=6=01
1/3 . As a shorthand, we let ~0n denote

an n-ary tuple consisting only of zeroes, and similarly for ~1n. We write x for the complement
of a tuple x. Recall that if t1, . . . , tn are k-ary tuples and f an n-ary partial function we
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by f(t1, . . . , tn) denote the k-ary tuple resulting from applying f componentwise to the
elements of t1, . . . , tn. To be able to more conveniently refer to the n-ary tuples of the
form (t1[i], . . . , tn[i]) we let

Cols(t1, . . . , tn) = ((t1[1], . . . , tn[1]), . . . , (tn[k], . . . , tn[k])),

and
ColsSet(t1, . . . , tn) = {(t1[1], . . . , tn[1]), . . . , (tn[k], . . . , tn[k])}.

For example, we have that

Cols((0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (1, 0, 0, 0, 1)) = ((0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0), (1, 1, 1)).

We now introduce our method for describing domains of partial functions.

Definition 7. We make the following definitions.

• A set {ω1, . . . , ωk} ⊆ Bn is an exact cover of R1/3 if (1) 2 ≤ k ≤ 3 and (2) for every
i ∈ {1, . . . , n} it holds that ω1[i] + . . .+ ωk[i] = 1.

• A set C ∪ {~0n,~1n} ⊆ Bn is an exact cover of R01
1/3 if C is an exact cover of R1/3.

• A set C ∪ {ω,~0n,~1n} ⊆ Bn is an exact cover of R 6=01
1/3 if (1) ω ∈ C and (2) C is an

exact cover of R1/3.

• A set C ∪ {ω1, ω2,~0
n,~1n} ⊆ Bn is an exact cover of R 6=6=01

1/3 if (1) ω1, ω2 ∈ C and (2)
C is an exact cover of R1/3.

• A set C ∪ {ω1, ω2, ω3,~0
n,~1n} ⊆ Bn is an exact cover of R 6= 6=6=01

1/3 if (1) ω1, ω2, ω3 ∈ C
and (2) C is an exact cover of R1/3.

For each R ∈ {R1/3, R
01
1/3, R

6=01
1/3 , R

6=6=01
1/3 , R 6=6=6=01

1/3 } we say that an exact cover C of R is
maximal if there is no C ′ ⊃ C which is an exact cover of R. Given T ⊆ Bn we let
CoverR(T ) = {C ⊆ T | C is a maximal exact cover of R}. We have the following link
between exact covers and tuples from the relations R1/3, R

01
1/3, R

6=01
1/3 , R

6=6=01
1/3 , and R 6=6=6=01

1/3 .

Lemma 8. Let C ⊆ Bn. Then, for each R ∈ {R1/3, R
01
1/3, R

6=01
1/3 , R

6=6=01
1/3 , R 6=6= 6=01

1/3 } it holds
that C is maximal exact cover of R if and only if there exists t1, . . . , tn ∈ R such that
ColsSet(t1, . . . , tn) = C.

Proof. We only prove the case when R = R1/3 since the other relations can be proven with
symmetrical arguments. Let C ⊆ Bn be a maximal exact cover of R1/3. There are two cases
to consider. First, assume that |C| = 3 and let C = {ω1, ω2, ω3}. For each i ∈ {1, . . . , n}
we by definition have that ω1[i] + ω2[i] + ω3[i] = 1, and hence, (ω1[i], ω2[i], ω3[i]) ∈
R1/3. Therefore, it is easy to find t1, . . . , tn ∈ R1/3 such that ColsSet(t1, . . . , tn) = C.
Second, assume that |C| = 2. In this case C = {~0n,~1n}, from which it folows that
ColsSet(t1, . . . , tn) = {~0n,~1n} whenever ti = tj for all i, j ∈ {1, . . . , n}. Now assume that
t1, . . . , tn ∈ R1/3. We must prove that ColsSet(t1, . . . , tn) = {ω1, . . . , ωk} is an exact cover
of R1/3. But this is trivial since (1) 2 ≤ |{ω1, . . . , ωk}| ≤ 3 and (2) ω1[i] . . .+ ωk[i] = 1 for
each i ∈ {1, . . . , n}.

We now have everything in place to state the main results of this section.



3 THE PARTIAL POLYMORPHISMS OF R1/3, R
01
1/3, R

6=01
1/3 , R

6=6=01
1/3 AND R 6=6=6=01

1/3

Theorem 9. Let f be an n-ary function. Then f ∈ pPol(R1/3) if and only if

1. f|C ∈ Πp
B for every C ∈ CoverR1/3

(dom(f)), or

2. f(~0n) = 1, ~1n /∈ dom(f), and for every C ∈ CoverR1/3
(dom(f)) either (1) f(ω) =

f(ω) = 0 if C = {~0n, ω, ω} or (2) f|C ∈ Πp
B if ~0n /∈ C.

Proof. We begin with the completeness part of the proof. Let f ∈ pPol(R1/3) be an
n-ary partial function. We must prove that f satisfies condition (1) or condition (2).
Assume first that there exists {ω1, ω2, ω3} ∈ CoverR1/3

(dom(f)) such that f|{ω1,ω2,ω3}

is not a partial projection function. Now assume that {~0n, ω, ω} /∈ CoverR1/3
(dom(f)).

Then there exists t1, . . . , tn ∈ R1/3 such that (1) ColsSet(t1, . . . , tn) = {ω1, ω2, ω3} and
(2) |{t1, . . . , tn}| = 3. This implies that f|{ω1,ω2,ω3}(t1, . . . , tn) = f(t1, . . . , tn) /∈ R1/3.

Since this contradicts the original assumption, it must be the case that ~0n ∈ C for some
C ∈ CoverR1/3

(dom(f)). Assume first that f(~0n) = 0 and that f(ω) = f(ω) = 0 for some

{~0n, ω, ω} ∈ CoverR1/3
(dom(f)). In this case f /∈ pPol(R1/3), and similarly when f(~0n) = 0

and f(ω) = f(ω) = 1. Last, assume that f(~0n) = 0 and that f(ω) = f(ω). In this case
f|{~0n,ω,ω} is a partial projection, and, furthermore, f|C must be a partial projection for

every C ∈ CoverR1/3
(dom(f)), i.e., we are in case (1). Assume now instead that ~0n ∈ C for

some C ∈ CoverR1/3
(dom(f)) and that f(~0n) = 1. In this case one can easily verify that if

there exists {~0n, ω, ω} ∈ CoverR1/3
(dom(f)) such that either f(ω) = 1 or f(ω) = 1 then

f /∈ pPol(R1/3). Hence, f(~0n) = 1, f(ω) = f(ω) = 0 for all {~0n, ω, ω} ∈ CoverR1/3
(dom(f)),

and f|C is a partial projection for all C ∈ CoverR1/3
(dom(f)) such that ~0n /∈ C. This

means that we are in case (2).
For the soundness part of the proof, assume that f is an n-ary partial function

fullfiling condition (1). Let t1, . . . , tn ∈ R1/3 and let {ω1, ω2, ω3} = ColsSet(t1, . . . , tn).
We must prove that either (f(ω1), f(ω2), f(ω3)) ∈ R1/3 or that f(ωi) is undefined for
some i ∈ {1, 2, 3}. Clearly, if {ω1, ω2, ω3} ∈ CoverR1/3

(dom(f)) then, by assumption,
(f(ω1), f(ω2), f(ω3)) ∈ R1/3 since f|{ω1,ω2,ω3} is a partial projection. Otherwise, if {ω1, ω2, ω3} /∈
CoverR1/3

(dom(f)), then f(ωi) must be undefined for some i ∈ {1, 2, 3}. Now assume
that f is an n-ary partial function fullfiling condition (2). Let t1, . . . , tn ∈ R1/3. Ob-
serve that if ~0n /∈ ColsSet(t1, . . . , tn) then it directly follows that f(t1, . . . , tn) ∈ R1/3 or
that f(t1, . . . , tn) is undefined, by recapitulating the proof of the preceding paragraph.
Hence, assume that ColsSet(t1, . . . , tn) = {~0n, ω, ω}. By assumption we have that either
f(t1, . . . , tn) ∈ R1/3 (since f(~0n) = 1 and f(ω) = f(ω) = 0), or that ω /∈ dom(f) or that
ω /∈ dom(f).

Similarly we can characterize the partial polymorphisms of R01
1/3, R

6=01
1/3 , R 6= 6=01

1/3 , and
R 6=6=6=01

1/3 .

Theorem 10. Let R ∈ {R01
1/3, R

6=01
1/3 , R

6=6=01
1/3 , R 6=6=6=01

1/3 }. Let f be an n-ary partial function.
Then f ∈ pPol(R) if and only if

1. ~0n /∈ dom(f), or

2. ~1n /∈ dom(f), or

3. {~0n,~1n} ⊆ dom(f) and f|C ∈ Πp
B for every C ∈ CoverR(dom(f)).
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Proof. We only prove the case when R = R 6=01
1/3 since the other cases are entirely analogous.

For soundness, assume that f is an n-ary partial function satisfying condition (1), (2), or
(3). Let t1, . . . , tn ∈ R 6=01

1/3 . We have two cases to consider: either (1) ColsSet(t1, . . . , tn) 6⊆
dom(f) in which case f(t1, . . . , tn) is undefined; or (2) ColsSet(t1, . . . , tn) ⊆ dom(f) in
which case ColsSet(t1, . . . , tn) ∈ Cover

R 6=01
1/3

(dom(f)) and f(t1, . . . , tn) ∈ R 6=01
1/3 .

For completeness, let f ∈ pPol(R 6=01
1/3 ) be an n-ary partial function such that {~0n,~1n} ⊆

dom(f). First, it is easy to verify that f(~0n) = 0 and that f(~1n) = 1, since otherwise
f /∈ pPol(R 6=01

1/3 ). Let C ∈ Cover
R 6=01

1/3

(dom(f)). We prove that f|C must be a partial

projection function. There are a few different cases depending on the size of C. First note
that the size of a maximum exact R 6=01

1/3 -cover of dom(f) is always either 6, 4, or 2.

First, assume that |C| = 6 and let C = {ω1, ω2, ω3, ω1,~0
n,~1n}, where {ω1, ω2, ω3} is

an exact cover of R1/3. According to Lemma 8, there exists t1, . . . , tn ∈ R 6=01
1/3 such that

ColsSet(t1, . . . , tn) = C and such that {t1, . . . tn} = R 6=01
1/3 . If f|C is not a projection on C

then f|C(t1, . . . , tn) = f(t1, . . . , tn) /∈ R 6=01
1/3 .

Second, assume that |C| = 4 and let C = {ω, ω,~0n,~1n}. Then, according to Lemma 8
there exists t1, . . . , tn ∈ R 6=01

1/3 such that ColsSet(t1, . . . , tn) = C. Now note that if f|C is
not a projection, then either f(ω) = f(ω) = 0 or that f(ω) = f(ω) = 1, and in both these
cases f /∈ pPol(R 6=01

1/3 ). Hence, f(ω) = f(ω), from which it follows that f|C is a partial
projection.

Third, assume that |C| = 2, and observe that this implies that C = {~0n,~1n}, due to
the assumption that C is maximal. Since, by assumption, f(~0n) = 0 and f(~1n) = 1, it
follows that f|C is a projection.

Hence, even though pPol(R1/3), pPol(R01
1/3), pPol(R 6=01

1/3 ), pPol(R 6= 6=01
1/3 ), and pPol(R 6=6= 6=01

1/3 )
cannot be described through finite bases (by Theorem 6), we could still obtain a complete
understanding of the involved partial functions. We remark that the partial polymorphisms
of 1-in-k-SAT has been described in earlier work [22], but in contrast to Theorem 9
and Theorem 10, the proposed classificaton only describes a finite subset of partial
polymorphisms.

4 The Structure Between 〈R1/3〉6∃ and 〈R 6=6=6=01

1/3 〉6∃
In this section we use the results from Section 3 in order to investigate the structure of
the weak partial co-clones between 〈R1/3〉 6∃ and 〈R 6=6=6=01

1/3 〉 6∃. Before delving deeper into the
forthcoming proofs the reader is advised to first consult Figure 2 for a visualization of the
main results. We concentrate on weak partial co-clones below 〈R01

1/3〉6∃ since it is readily seen
that the problems SAT(R1/3) and SAT(R01

1/3) have the same worst-case time complexity.
It is in fact not difficult to prove that there cannot exist any R such that |R| ≤ 3 and such
that 〈R01

1/3〉 6∃ ⊂ 〈R〉6∃ ⊂ 〈R
6=01
1/3 〉 6∃, and the same also holds for weak partial co-clones between

all other cases. Hence, to find elements between we must consider relations of cardinality
strictly larger than 3. With this as a guidance we define the following class of relations,
where 6= denotes the binary inequality relation {(0, 1), (1, 0)} and R1/k denotes the k-ary
relation {(x1, . . . , xk) ∈ Bk | Σk

i=1xi = 1)}.
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〈R1/3〉 6∃

〈α5〉6∃ 〈αi〉6∃ 〈αi+1〉 6∃

〈β5〉 6∃ 〈βi〉 6∃ 〈βi+1〉 6∃

〈γ5〉 6∃ 〈γi〉6∃ 〈γi+1〉6∃

〈R 6=6=6=01
1/3 〉6∃

〈R 6=6=01
1/3 〉6∃

〈R 6=01
1/3 〉6∃

〈R01
1/3〉 6∃

Figure 2: The structure of weak partial co-clones below 〈R1/3〉6∃. An arrow of the form
A→ B means that A ⊂ B. An arrow of the form A 6→ B means that A 6⊂ B.

Definition 11. Let k ≥ 5. The relation αk is defined as

αk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, c0, c1) ≡ R1/k(x1, . . . , xk)∧
k−3∧
i=1

R1/i+2(x1, . . . , xi+1, yi) ∧
k−3∧
i=1

yi 6= zi ∧
k−2∧
i=3

R1/3(x1, xi, wi−2) ∧R1/3(c0, c0, c1).

The relation βk for k ≥ 5 is defined similarly but with k − 2 additional arguments
which are the complement of x1, x3, . . . , xk−1. Hence, let

βk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, v1, . . . , vk−2, c0, c1) ≡

αk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, c0, c1) ∧ x1 6= z1 ∧
k−1∧
i=3

xi 6= vi−1.

Finally, the relation γk for k ≥ 5 can be defined as

γk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, v1, . . . , vk, c0, c1) ≡

αk(x1, . . . , xk, y1, . . . , yk−3, z1, . . . , zk−3, w1, . . . , wk−4, c0, c1) ∧
k∧

i=1

xi 6= vi.

Later in this section we will see that 〈R 6=6=6=01
1/3 〉 6∃ ⊂ 〈γk〉6∃ ⊂ 〈R 6=6=01

1/3 〉 6∃ ⊂ 〈βk〉6∃ ⊂ 〈R 6=01
1/3 〉 6∃ ⊂

〈αk〉6∃ ⊂ 〈R01
1/3〉6∃ for each k ≥ 5. The intuition behind the relation αk is as follows.

• The k first arguments x1, . . . , xk encode a 1-in-k-constraint.

• Since R1/k /∈ 〈R01
1/3〉6∃ [20], we have to add arguments to make it q.f.p.p. definable by

R01
1/3.

• These arguments are y1, . . . , yk−3, their complements z1, . . . , zk−3, and the two con-
stant arguments c0 and c1.
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• To make sure that the resulting relation is not q.f.p.p. definable by R 6=01
1/3 we also

need the additional arguments w1, . . . , wk−4, which do not have any complementary
arguments.

The relations βk and γk can be understood in a similar way. We then have the following
straightforward Lemma which states that the weak partial co-clones of the relations αk, βk

and γk, are proper subsets of 〈R01
1/3〉6∃, 〈R

6=01
1/3 〉6∃, and 〈R 6= 6=01

1/3 〉6∃, respectively.

Lemma 12. 〈R01
1/3〉6∃ ⊃ 〈αk〉6∃, 〈R 6=01

1/3 〉 6∃ ⊃ 〈βk〉6∃, and 〈R 6=6=01
1/3 〉 6∃ ⊃ 〈γk〉 6∃ for each k ≥ 5.

Proof. Let k ≥ 5. We only consider the case 〈R01
1/3〉 6∃ ⊃ 〈αk〉6∃ since the other cases are

similar. We begin by proving that αk ∈ 〈R01
1/3〉6∃ which implies that 〈R01

1/3〉6∃ ⊇ 〈αk〉6∃. The
base case when k = 5 is simple:

α5(x1, x2, x3, x4, x5, y1, y2, z1, z2, w1, c0, c1) ≡
R01

1/3(x1, x2, y1, c0, c1) ∧R01
1/3(x3, y2, z1, c0, c1)∧

R01
1/3(c0, y1, z1, c0, c1) ∧R01

1/3(x4, x5, z2, c0, c1)∧
R01

1/3(c0, y2, z2, c0, c1) ∧R01
1/3(x1, x3, w1, c0, c1).

For the inductive step assume that αk−1 ∈ 〈R01
1/3〉6∃. We can then implement αk as follows.

αk(x1, . . . , xk, y1, y2, . . . , yk−4, yk−3, z1, z2, . . . , zk−4, zk−3, w1, . . . , wk−5, wk−4, c0, c1) ≡
αk−1(x1, . . . , xk−2, yk−3, y1, . . . , yk−4, z1, . . . , zk−4, w1, . . . , wk−5, c0, c1)∧
R01

1/3(zk−3, xk−1, xk, c0, c1) ∧R01
1/3(c0, yk−3, zk−3, c0, c1) ∧R01

1/3(x1, xk−2, wk−4, c0, c1).

To prove the proper inclusion 〈R01
1/3〉 6∃ ⊃ 〈αk〉6∃ we show that there exists f ∈ pPol(αk)

such that f /∈ pPol(R01
1/3). Consider the ternary partial function f defined such that

f(0, 0, 0) = 0, f(1, 1, 1) = 1, and f(0, 0, 1) = f(0, 1, 0) = f(1, 0, 0) = 0. By Theorem 10 it
follows that f /∈ pPol(R01

1/3), but it is not difficult to verify that for any sequence of three
tuples t1, t2, t3 ∈ αk, the set ColsSet(t1, t2, t3) will either be of the form {(0, 0, 0), (1, 1, 1)},
or it will contain the complement of (0, 0, 1), (0, 1, 0), or (1, 0, 0). Hence, f(t1, t2, t3) is
either a projection or undefined, from which it follows that f ∈ pPol(αk).

We now need to prove that it cannot be the case that 〈αk〉6∃ = 〈αk′〉6∃ whenever
k 6= k′, and similarly for the relations βk and γk. Before proving this we need a slight
generalisation of the concept of exact covers from Definition 7. A set {ω1, . . . , ωk′} ⊆ Bn

is a exact k′-cover of R1/k if (1) 2 ≤ k′ ≤ k and (2) for every i ∈ {1, . . . , n} it holds that
ω1[i] + . . .+ ωk′ [i] = 1. From Lagerkvist et al. [22] it follows that t1, . . . , tk′ ∈ R1/k if and
only if ColsSet(t1, . . . , tk′) is an exact k′-cover of R1/k. This implies that t1, . . . , tk′ ∈ αk if
and only if {(t1[1], . . . , tk′ [1]), . . . , (t1[k], . . . , tk′ [k])} is an exact k′-cover of R1/k.

Lemma 13. For each k, k′ ≥ 5 such that k > k′ there exists f ∈ pPol(αk), f ′ ∈ pPol(βk),
and f ′′ ∈ pPol(γk) such that f /∈ pPol(αk′), f ′ /∈ pPol(βk′), and f ′′ /∈ pPol(γk′).

Proof. We only consider the relations αk and αk′ since the other cases are similar. We
provide a partial function fk

′
such that fk

′ ∈ pPol(αk) but fk
′
/∈ pPol(αk′). Let j = ar(αk′),

let {t1, . . . , tk′} = αk′ , and define fk
′

such that dom(fk
′
) = ColsSet(t1, . . . , tk′) and such

that fk
′
(t1, . . . , tk′) = (t1[1], . . . , t1[j − 3], c, 0, 1), where c = t1[1]⊕ t1[k′− 3]. Note that, by

definition, fk
′
(t1, . . . , tk′) /∈ αk′ since any tuple t ∈ αk′ satisfies t[1] + t[k′− 3] + t[j− 2] = 1.

Hence, fk
′
/∈ pPol(αk′). Given a tuple t ∈ {0, 1}k we let Σt = Σk

i=1t[i]. Let x =
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(t1[j − 3], . . . , tk′ [j − 3]), and note that due to the constraint R01
1/3(x1, xk−2, wk−4, c0, c1) in

Definition 11, Σx = 2, i.e., the sequence x contains exactly two zeroes. We now prove that
fk
′ ∈ pPol(αk). Let u1, . . . , uk′ ∈ αk and assume, with the aim of reaching a contradiction,

that fk
′
(u1, . . . , uk′) /∈ αk. Since fk

′
(y) = πk

′
1 (y) for all y ∈ dom(fk

′
) \ {x}, it follows that

x is included in the sequence Cols(u1, . . . , uk′). There are now only three possible distinct
cases to consider depending on where the sequence x occurs in Cols(u1, . . . , uk′). We will
show that for each of these cases fk

′
(u1, . . . , uk′) must be undefined, contradicting the

assumption that fk
′
(u1, . . . , uk′) /∈ αk. Let

(a1, . . . , ak, b1, . . . , bk−3, c1, . . . , ck−3, d1, . . . , dk−4,~0
k′ ,~1k

′
) = Cols(u1, . . . , uk′).

First assume that x = ai for some 1 ≤ i ≤ k. Since {a1, . . . , ak} must form an exact k′-cover
and since Σx = Σai = k′ − 2 it follows that there exists aj and aj′ such that {ai, aj , aj′}
is an exact k′-cover and that all other al sequences are equal to ~0k

′
. If |{ai, aj , aj′}| = 2

then aj = aj′ = ai, which is a contradiction since aj = x /∈ dom(fk
′
). Assume that

|{ai, aj , aj′}| = 3. This implies that Σaj = Σaj′ = 1 and that there exists a tuple
u ∈ ColsSet(u1, . . . , uk′) such that either u = ai, u = aj , or u = aj′ . In each of these cases
it follows that u /∈ dom(f), and we reach a contradiction.

Second, assume that x = bi for some i ∈ {1, . . . , k − 3}. Then ci = x. This is a
contradiction since x /∈ dom(fk

′
). The case when x = ci for some i ∈ {1, . . . , k − 3} is

entirely analogous.
Third, assume that x = di for some i ∈ {1, . . . , k − 4}. Then, due to the constraint

R1/3(x1, xi−2, wi) in Definition 11, it follows that Σa1 = Σai−2 = 1. Assume without loss of
generality that a1[k′] = 1. Now note that each constraint of the form R1/3(x1, xj , wj−2) for
j ∈ {3, . . . , k − 2} also implies that Σaj ≥ 1. First, assume Σaj = 1 for j ∈ {1, . . . , k − 2}.
Since k′ < k and since {a1, . . . , ak} must form an exact k′-cover, it follows that either
Σak−1 + Σak = 1 or that Σak−1 + Σak = 0, and in both these cases fk

′
(u1, . . . , uk′) must

be undefined. Assume that there exists some aj′ , j
′ ∈ {2, . . . , i− 1, i+ 1, . . . , k} such that

Σaj′ > 1. Since Σaj ≥ 1 for each j ∈ {1, . . . , k − 2} and since Σk
j=1Σaj = k′ < k, it follows

that Σaj′ = 2, k′ = k − 1, and that Σaj = 1 for every j ∈ {1, . . . , k − 2}. This implies that
Σak−1 + Σak = 1, and, due to the constraint R1/4(xk−2, xk−1, xk, zk−4), that ck−4 = ak−2.
If Σak−2 = 1 then ak−2 /∈ dom(g). Hence, assume that j′ = k−2 and that Σak−2 = 2. Due
to the constraint R1/3(x1, xk−2, wk−4) it follows that Σdk−4 = k − 3, and since a1[k

′] = 1,
we have that ak−2 /∈ dom(fk

′
) or that dk−4 /∈ dom(fk

′
).

Last, to get the inclusion structure in Figure 2, we need to prove that 〈αk〉6∃ ⊃ 〈R 6=01
1/3 〉 6∃,

〈βk〉6∃ ⊃ 〈R 6= 6=01
1/3 〉6∃, and 〈γk〉 6∃ ⊃ 〈R 6=6=6=01

1/3 〉6∃.

Lemma 14. 〈αk〉6∃ ⊃ 〈R 6=01
1/3 〉 6∃, 〈βk〉6∃ ⊃ 〈R 6=6=01

1/3 〉 6∃, and 〈γk〉 6∃ ⊃ 〈R 6=6=6=01
1/3 〉6∃, for each k ≥ 5.

Proof. We only consider αk since the other cases are similar. To prove that 〈αk〉6∃ ⊇ 〈R 6=01
1/3 〉 6∃,

we use the q.f.p.p. definition

R 6=01
1/3 (x1, x2, x3, x4, c0, c1) ≡

αk(c0, . . . , c0︸ ︷︷ ︸
k−3

, x1, x2, x3, c1, . . . , c1︸ ︷︷ ︸
k−4

, x4, c0, . . . c0︸ ︷︷ ︸
k−4

, x1, c1, . . . , c1︸ ︷︷ ︸
k−5

, x4, c0, c1).

For the proper inclusion, simply note that the function fk in the proof of Lemma 13 does
not preserve αk. An application of Theorem 10 shows that fk ∈ pPol(R 6=01

1/3 ).
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By combining Lemma 12, Lemma 13 and Lemma 14 we have thus proved the main
result of the paper.

Theorem 15. The cardinalities of the sets {〈Γ〉6∃ | 〈R 6=01
1/3 〉 6∃ ⊂ 〈Γ〉 6∃ ⊂ 〈R01

1/3〉6∃}, {〈Γ〉 6∃ |
〈R 6=6=01

1/3 〉 6∃ ⊂ 〈Γ〉6∃ ⊂ 〈R 6=01
1/3 〉 6∃}, and {〈Γ〉6∃ | 〈R 6=6=6=01

1/3 〉6∃ ⊂ 〈Γ〉6∃ ⊂ 〈R 6=6=01
1/3 〉 6∃} are at least

countably infinite.

5 Concluding Remarks and Future Research

We have studied the structure of NP-complete satisfiability problems whose complexity is
not higher than SAT(R1/3). By using partial clone theory we have proven that one can
find an infinite number of such satisfiability problems, and in the process we have also
obtained a complete description of the partial polymorphisms of R1/3. These results raise
two questions that we deem particularly interesting for future research.

Algorithms based on partial polymorphisms. There exist many examples in the
literature of polynomial-time algorithms based on properties of polymorphisms of constraint
languages. For example, one can use polynomial-time algorithms based on Gaussian
elimination to solve constraint satisfaction problems whenever the constraint language
contains a so-called k-edge polymorphism [12]. By Theorem 4 we know that the partial
polymorphisms of a constraint language correlates to the worst-case complexity of the
corresponding satisfiability problem. Is it possible to exploit the information given by the
partial polymorphisms to construct better exponential-time algorithms for satisfiability
problems? In particular, can the classification in Theorem 9 be used to improve algorithms
for 1-in-3-SAT? For a concrete example, consider the following strategy: it is known
that the inverse satisfiability problem for R1/3, Inv-SAT(R1/3), is co-NP-complete [17]. In
our terminology this problem can be stated as determining whether a given relation R
is included in 〈R1/3〉6∃, and can therefore be restated as whether pPol(R1/3) ⊆ pPol(R).
Hence, to solve SAT(R1/3) we can utilize a Turing reduction to Inv-SAT(R1/3), which
in turn can be solved by enumerating the partial polymorphisms of R1/3 and checking if
they preserve R. Would it be possible to transform this rather implicit algorithm into an
efficient algorithm for 1-in-3-SAT?

Uncountably many weak partial co-clones? We have proven that there exists at
least a countably infinite number of weak partial co-clones below 〈R1/3〉6∃. Is it possible to
strengthen this even further and prove that there exists an uncountably infinite number
of such weak partial co-clones? A starting point for proving this is to first show that
the converse of Lemma 13 also holds, i.e., that 〈αk〉6∃ and 〈αk′〉 6∃ are always incomparable
whenever k 6= k′.

Does 〈R1/3〉 6∃ cover 〈R01
1/3〉6∃? In this paper we restricted ourselves to study weak partial

co-clones below 〈R01
1/3〉6∃ since the two problems SAT(R1/3) and SAT(R01

1/3) have the same
worst-case time complexity. From an algebraical point of view, however, it would be
interesting to prove or disprove that 〈R1/3〉6∃ covers 〈R01

1/3〉 6∃, since only a handful of such
results are known in the literature [10]. This question might not be as easy as one might
believe at a first glance, since it is e.g. known that there exist an uncountably infinite number
of weak partial co-clones between 〈OR〉 6∃ and 〈OR01〉6∃, where OR = {(0, 1), (1, 0), (1, 1)}
and OR01 = {(0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 1)} [29]. Hence, even though the relations R1/3

and R01
1/3 might appear to be almost identical, it might indeed be very hard to prove that

〈R1/3〉6∃ covers 〈R01
1/3〉6∃.
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