
A Survey on the Fine-grained Complexity of

Constraint Satisfaction Problems Based on Partial

Polymorphisms

Dedicated to the memory of Professor Ivo Rosenberg

Miguel Couceiro∗1, Lucien Haddad†2, and Victor Lagerkvist‡3

1Université de Lorraine, CNRS, Inria Nancy G.E., LORIA, F-54000 Nancy, France
2Department of Mathematics & Computer Science, Royal Military College of

Canada, Kingston, Ontario, Canada
3Department of Computer and Information Science, Linköping University,

Linköping, Sweden

Abstract

Constraint satisfaction problems (CSPs) are combinatorial problems
with strong ties to universal algebra and clone theory. The recently
proved CSP dichotomy theorem states that each finite-domain CSP is
either solvable in polynomial time, or that it is NP-complete. However,
among the intractable CSPs there is a seemingly large variance in how
fast they can be solved by exponential-time algorithms, which cannot be
explained by the classical algebraic approach based on polymorphisms.
In this contribution we will survey an alternative approach based on
partial polymorphisms, which is useful for studying the fine-grained
complexity of NP-complete CSPs. Moreover, we will state and discuss
some challenging open problems in this research field.

1 Algebraic Background

We begin by providing a self-contained introduction to the underlying
algebraic approach. The reader familiar with universal algebra and
clone theory can safely skim the two following subsections.

∗miguel.couceiro@{loria,Inria}.fr
†haddad-l@rmc.ca
‡victor.lagerkvist@liu.se

1

1.1 Partial Operations

Let k ≥ 2 be an integer and let k denote a k-element set. Without
loss of generality we assume that k := {0, . . . , k − 1}. For a positive
integer n, an n-ary partial operation on k is a map f : dom(f) → k

where dom(f) is a subset of kn, called the domain of f . Let Par(n)(k)
denote the set of all n-ary partial operations on k and let

Par(k) :=
⋃
n≥1

Par(n)(k).

An n-ary partial operation g is said to be a total operation if dom(g) =

kn, and we let Op(n)(k) be the set of all n-ary total operations on

k and Op(k) :=
⋃
n≥1

Op(n)(k). For every positive integer n and

each 1 ≤ i ≤ n, let eni denote the n-ary i-th projection defined
by eni (a1, . . . , an) = ai for all (a1, . . . , an) ∈ kn. Furthermore, let
Jk := {eni | 1 ≤ i ≤ n, n ∈ N \ {0}} be the set of all (total) projections.
Partial operations on k are composed in a natural way. For additional
details we refer the reader to Lau [49].

Definition 1. A clone is a composition closed subset of Op(k) con-
taining Jk, and a partial clone on k is a composition closed subset of
Par(k) containing Jk. A partial clone is said to be strong if it is closed
under taking suboperations1.

It is well known that a partial clone C is strong if and only if
Str(Jk) ⊆ C (see, e.g., Lemma 2.11 in Haddad and Börner [11]). The set
of (partial) clones on k forms a lattice LOp(k) (LPar(k)) under inclusion,
in which the infimum is the set-theoretical intersection. It is then
known that the cardinality of LOp(k) (LPar(k)) equals the continuum
for k ≥ 3 (k ≥ 2), but that LStr(Op(2)), Post’s lattice, is countably
infinite [52]. Similarly, the set of strong partial clones on k also forms
a lattice LStr(Par(k)), which is a sublattice of LPar(k) whose cardinality
also equals the continuum for each k ≥ 2. By definition, Jk and Str(Jk)
are the least elements of LPar(k) and LStr(Par(k)), respectively. For
further background see, e.g., [11, 21, 23]. For F ⊆ Par(k), let [F]s
denote the intersection of all strong partial clones on k containing F .
Similarly, for F ⊆ Op(k), let [F] be the intersection of all clones on k
containing F , and in both cases we write [f] or [f]s when F = {f} is
singleton. Say that a strong partial clone C over k is finitely generated
if there exists a finite set F ⊆ Par(k) such that [F]s = C, and is said
to be infinitely generated otherwise.

1For f, g ∈ Par(k), g is a suboperation of f , g ≤ f , if g = f |dom(g). We denote the
closure of F ⊆ Par(k) under taking suboperations by Str(F).

2

1.2 Relations

An h-ary relation R over k is a subset of kh, and we write ar(R) = h
to denote its arity, and Relk for the set of all relations over k. It is
well known that strong partial clones are exactly those partial clones
that are determined by relations in the following way. Let h, n ≥ 1
be integers, and let R be an h-ary relation on k. An n-ary partial
operation f on k is said to preserve R if for every h×n matrix M = [Mij]
whose columns M∗j ∈ R, and whose rows Mi∗ ∈ dom(f), the h-tuple
(f(M1∗), . . . , f(Mh∗)) ∈ R. Note that if there is no h × n matrix
M = [Mij] whose columns M∗j ∈ R and whose rows Mi∗ ∈ dom(f),
then f preserves R. It is not difficult to see that

pPol(R) := {f ∈ Par(k) | f preserves R}

is a strong partial clone, called the partial clone determined by the
relation R. Similarly, if Γ is a set of relations over k we write pPol(Γ)
for the set

⋂
R∈Γ pPol(R). In the total case we similarly write Pol(R)

for the set of total polymorphisms of R and Pol(Γ) if Γ is a set of
relations.

The fact that (strong partial) clones can be defined exclusively
via relations suggests a deeper relationship between operations and
relations. In fact, for each clone Pol(Γ) (respectively, strong partial
clone pPol(Γ)) there exists a corresponding set of relations that can
be defined through Γ by a suitable closure operator. First, say that
an n-ary relation R has a primitive positive definition (pp-definition)
over Γ ⊆ Relk if R is the set of models of a first-order formula (with
equality) ϕ(x1, . . . , xn) consisting only of existential quantification and
conjunction over positive atoms from Γ. In symbols we denote such a
definition by

R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn),

where ϕ(x1, . . . , xn) is of the form

∃xn+1, . . . , xn+n′ : R1(x1) ∧ . . . ∧Rm(xm)

and where each xi is a tuple of variables over x1, . . . , xn+n′ , and each
Ri ∈ Γ ∪ {(x, x) | x ∈ k}. In addition, we say that R has a quantifier-
free primitive positive definition (qfpp-definition) over Γ if R has a
pp-definition over Γ where n′ = 0, i.e., a pp-definition without any
existentially quantified variables. These two definitions naturally induce
two closure operators over relations, in the following sense.

Definition 2. A set Γ ⊆ Relk is said to be a relational clone, or a
co-clone, if

1) R ∈ Γ for each R pp-definable over Γ, and

2) ∅ ∈ Γ.

3

Similarly, a set Γ ⊆ Relk is called a weak co-clone, or a weak system,
if

1) R ∈ Γ for each R qfpp-definable over Γ, and

2) ∅ ∈ Γ.

1.3 Galois Connections

Clones and strong partial clones are related to co-clones and weak sys-
tems, respectively, in following way. The first important observation is
that the set Inv(F) of all relations preserved by each (partial) operation
in F ⊆ Par(k) is (1) a co-clone if each operation in F is total, and (2)
a weak system otherwise. Moreover, it is well known that Inv(Pol(Γ)),
(respectively Inv(pPol(Γ))) is the smallest co-clone (respectively weak
system) over k containing Γ. Thus, the operators Inv(·) and Pol(·)
constitute a Galois connection between clones and co-clones, whereas
Inv(·) and pPol(·) constitute a Galois connection between strong partial
clones and weak systems.

Theorem 3. [9, 10, 34, 54] Let Γ,∆ ⊆ Relk be two sets of relations.
Then (1) Γ ⊆ Inv(Pol(∆)) if and only if Pol(∆) ⊆ Pol(Γ), and (2)
Γ ⊆ Inv(pPol(Γ)) if and only if pPol(∆) ⊆ pPol(Γ).

One practical consequence of Theorem 3 is that properties of clones
can be translated into properties of co-clones, and vice versa. Moreover,
due to the antitone nature of Galois connections, one of these viewpoints
may be substantially simpler than the other one.

2 Constraint Satisfaction Problems

In a constraint satisfaction problem (CSP) the objective is to assign
values to variables subjected to a set of constraints deciding admissible
assignments. Typically, a CSP is formulated as the decision problem
of determining whether there exists an assignment respecting all con-
straints. For the sake of self-containment, we follow the predominant
definition of CSPs in computer science literature [55].

Definition 4. A constraint satisfaction problem (CSP) over a set k
is defined as a decision problem of the following form.
Instance: A tuple (V,C) where V is a finite set, and C a finite set of
the form (Ri, ti), i ∈ I, where Ri ∈ Relk and ti ∈ V ar(Ri).

Question: Is there a function f : V → k such that (f(x1
i), . . . , f(x

ar(Ri)
i)) ∈

Ri for each (Ri, (x
1
i , . . . , x

ar(Ri)
i)) ∈ C?

The set k is called the domain of the CSP (not to be confused with
the domain of a partial operation). If k = 2, then k is said to be
Boolean. The members of V are referred to as variables and are usually

4

denoted by x, v, or, if necessary, by using suitable subscripts. A tuple
(Ri, ti) ∈ C is called a constraint, and we typically write R(ti) instead
of (Ri, ti). The function f , if it exists, is called a solution, a model, or
a satisfying assignment.

CSPs can be further specified by fixing a set of relations Γ, called
a constraint language. This class of problems is then denoted by
CSP(Γ) and it is restricted to instances (V,C) where Ri ∈ Γ for each
constraint (Ri, ti) ∈ C. If Γ contains only Boolean relations (and
thus k = 2), then CSP(Γ) can be viewed as a class of satisfiability
problems, and it is usually denoted by SAT(Γ). Note that we have
not yet specified how instances of CSP(Γ) are represented. If Γ is
finite then the particular representation is not important, but if Γ is
infinite the precise representation may become relevant. Here, we take
a simple approach and assume that each relation is represented by a list
of tuples. This is certainly not the only possible choice, and there exist
languages where this representation scheme can be exponentially larger
than a simpler encoding. For example, the relation corresponding to a
clause (x1 ∨ . . . ∨ xn) of length n ≥ 1 can naively be represented as a
list of 2n− 1 tuples, but can succinctly be represented by a single tuple
encoding the forbidden truth assignment.

Observe that if we associate a constraint language Γ over a domain
D to a relational signature τ , then Γ can be thought of as a relational
structure Γτ . In this way, an instance ({v1, . . . , vn}, C) of CSP(Γ) can
be viewed as an existentially quantified τ -formula

∃v1, . . . , vn :
∧

(Ri,ti)∈C

Ri(ti),

and the question is then whether this τ -formula has a model.
It is also possible to reformulate CSP(Γ) as a homomorphism

problem since an instance I of CSP(Γ) can be seen as a τ -structure
I, and where the question is then to decide whether there exists a
homomorphism between I and Γτ .

Example 1. Let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Then SAT({R1/3})
can be seen as an alternative formulation of the monotone 1-in-3-SAT
problem which is well-known to be NP-complete. By choosing a suitable
Boolean Γ, a large range of satisfiability problems can be represented
as a CSP(Γ) problem. For example, for each k ≥ 1 let Γk

SAT be the set
of relations of the form {0, 1}k \ {t} for a single k-ary Boolean tuple
t. Then SAT(Γk

SAT) can be verified to be an alternative formulation of
k-SAT which is NP-complete for k ≥ 3. It may also be interesting to
note that if we let ΓSAT =

⋃
k≥1 Γk

SAT then the only difference between
SAT(ΓSAT) and the satisfiability problem in conjunctive normal form,
CNF-SAT, is the preferred representation scheme, since a clause in

5

the latter problem is traditionally represented by a single falsifying truth
assignment, rather than by the list of all satisfying truth assignments.

Example 2. Let us also consider a few non-Boolean examples. One
of the prototypical examples of a CSP is the k-colouring problem:
given an undirected graph (V,E), can (V,E) be coloured using at most
k colours? To formulate this problem as a CSP we take the relation
R 6=k

= {(x, y) ∈ k2 | x 6= y} and for each (x, y) ∈ E introduce a
constraint R6=k

(x, y). It is also easy to find examples of tractable CSPs,
i.e., CSPs solvable in polynomial time. One such example is systems
of linear equations x1 + . . . + xn = 0 (mod k) which can be solved in
polynomial time using Gaussian elimination. As we will see in Section 3
this discrepancy in complexity between tractable and NP-complete CSPs
can be explained using algebraic methods.

Although this survey mainly focuses on finite-domain CSPs, a sub-
stantial amount of research is dedicated towards infinite-domain CSPs.
This is especially true in artificial intelligence where many classical
problems are intrinsically linked to constraints over infinite domains.
Some examples include spatial and temporal reasoning problems such
as Allen’s interval algebra, the region connection calculus,
and the Rectangle algebra (cf. the surveys [7, 32]).

3 Polymorphisms and the Complexity of
CSPs

Feder & Vardi conjectured that CSP(Γ) is either tractable or NP-
complete [33]. This conjecture is usually referred to as the CSP
dichotomy conjecture. It was then realized that several classical al-
gorithms that run in polynomial time, e.g., Gaussian elimination and
k-consistency, in a uniform manner could be explained by the presence
of certain polymorphisms of Γ [38]. More generally, Jeavons proved
the following reducibility result, usually interpreted as “the polymor-
phisms of Γ determine the complexity of CSP(Γ) up to polynomial
time reductions”.

Theorem 5 ([37]). Let Γ and ∆ be two finite constraint languages over
k. If Pol(Γ) ⊆ Pol(∆), then CSP(∆) is polynomial-time many-one
reducible to CSP(Γ).

Proof. From Theorem 3 the condition Pol(Γ) ⊆ Pol(∆) is equivalent to
the condition that ∆ ⊆ Inv(Pol(Γ)). Hence, each relation in ∆ is pp-
definable over Γ. The reduction from CSP(∆) to CSP(Γ) then follows
as a classical “gadget reduction” where each constraint in an instance
(V,C) of CSP(∆) is replaced by the set of constraints corresponding
to a pp-definition over Γ, and any two variables occuring in an equality

6

constraint are identified. This can be accomplished in polynomial time
with respect to |C| and |V | since

1) each pp-definition of R ∈ ∆ can be precomputed and stored in a
table whose size depends only on the two finite sets Γ and ∆,

2) the identification of variables is a special case of st-connectivity
which is solvable using only logarithmic space [53], and

3) ∆ is finite and thus |C| is polynomially bounded in |V |.
The proof can then be completed by observing that the resulting in-
stance of CSP(Γ) may contain up to |C|·m fresh variables, for a constant
m depending on Γ and ∆, since existentially quantified variables in
pp-definitions correspond to the introduction of fresh variables.

Now, to obtain a dichotomy for CSP(Γ) over k one would, in
principle, need to consider all operations over k and to determine which
combinations of operations that result in tractable CSPs. However, such
a process turns out to be unecessary, since the classical complexity of
CSP(Γ) only depends on the identities or the strong Maltsev conditions,
satisfied by the polymorphisms of Γ [18, 2]. In technical terms, this
means that the complexity of CSP(Γ) depends only on the variety to
which Pol(Γ) belongs to. For example, if Pol(Γ) contains a Maltsev
operation satisfying the identities m(x, x, y) ≈ y,m(x, y, y) ≈ x, then
CSP(Γ) is tractable since it can be solved by the simple algorithm
for Maltsev constraints [17]. The main advantage of this observation
is that it suffices to describe all identities resulting in tractable CSPs
rather than all concrete operations. This approach recently culminated
in the following dichotomy theorem.

Theorem 6 ([16, 63]). Let Γ be a constraint language over k. Then
CSP(Γ) is either tractable or NP-complete.

Although simple to state, Theorem 6 is the result of decades of
intense research, and was known to hold for several important, special
cases [56, 13, 14] before the main result could be proven. For additional
details concerning the classification project of CSP and the algebraic
approach based on strong Maltsev conditions, see e.g. the survey by
Barto [1].

4 Partial Polymorphisms and the Fine-Grained
Complexity of CSPs

We begin this section by outlining how partial polymorphisms can
be useful for (classical) complexity classifications where the standard
algebraic approach based on polymorphisms falls short. We then discuss
the rather vague term “fine-grained complexity” in relationship to CSPs

7

in Section 4.2, and in Section 4.3 describe how the algebraic approach
based on partial polymorphisms can be used to study this question in
greater detail.

4.1 Weak Bases and Classical Complexity

Before we describe how partial polymorphisms can be used to study
the fine-grained complexity of CSPs, we take a slight detour in order to
outline a related application, which preceded fine-grained complexity
in time. To understand this motivation it is important to realise that
many CSP-related problems have been classified during the last decades
as well, and in almost all cases using a very similar algebraic toolbox.
Some promiment examples are counting CSPs [15, 27], min-ones [41],
and propositional abduction [30]. For further details and additional
examples, see e.g. the survey by Creignou & Vollmer [29].

In short, such complexity dichotomies are usually proved by first
establishing a counter part to Theorem 5, and for a set of operations
F either (1) prove that Inv(F) results in a tractable problem, or (2)
show that there exists Γ ⊆ Inv(F) resulting in an intractable problem
(typically NP-hard or co-NP-hard). Hence, instead of considering
arbitrary constraint languages we for each clone only have to consider
a fixed constraint language. Informally, this strategy works for all
problems parameterised by constraint languages where the introduction
of fresh variables (stemming from existentially quantified variables in
pp-definitions) does not affect the existence of a solution. However, what
if this is not the case? This question motivated Schnoor & Schnoor [58]
to investigate a connection between partial polymorphisms and the
complexity of CSP-related problems which had been difficult to classify
by existing tools.

Example 3. CSP(Γ) is sometimes said to be a priori compatible with
polymorphisms due to Theorem 5. In contrast, there exist problems
proven to be a posteriori compatible with polymorphisms, in the sense
that Pol(Γ) determines whether the problem is tractable or intractable,
but where an analogue of Theorem 5 cannot be proven. One such example
is the problem of finding a surjective model of a SAT(Γ) instance
(SUR-SAT(Γ)), which is NP-complete if Pol(Γ) is essentially unary2

and tractable otherwise [28]. Curiously, almost all CSP-like problems
studied in the literature turn out to be either a priori or a posteriori
compatible with polymorphisms, and only a handful of concrete counter
examples exist, e.g., enumerating models of CSP(Γ) with polynomial
delay [57], the inverse satisfiability problem over infinite constraint
languages [44], and the maximum satisfiability problem [26].

2A clone C is essentially unary if C = [F] for a set of unary operations F .

8

Problems that are not a priori compatible with polymorphisms
may instead be compatible with partial polymorphisms. It is, for
example, straightforward to prove that if pPol(Γ) ⊆ pPol(∆) then
SUR-SAT(∆) is polynomial-time many-one reducible to SUR-SAT(Γ).
Unfortunately, the usefulness of this observation remains limited because
the lattice of Boolean strong partial clones LStr(Op(2)) is still not fully
known. However, Schnoor & Schnoor [58] realized that for many
classification purposes, there is typically no need to consider the whole
lattice LStr(Op(2)), but only a small fragment corresponding to weak
bases.

Definition 7. [58] Let C = Pol(Γ) be a clone over k where Γ is finite.
A set of relations Γw ⊆ Relk is said to be a weak base of Inv(C) if (1)
Pol(Γw) = C and (2) pPol(∆) ⊆ pPol(Γw) for each set ∆ ⊆ Relk such
that Pol(∆) = C.

Example 4. Let us again consider SUR-SAT(Γ) and assume that
we are given a weak base Γw of a co-clone Inv(C). If we can prove
that SUR-SAT(Γw) is NP-complete, then NP-completeness also carries
over to every Γ such that Pol(Γ) = C. Hence, equipped with a weak base
of each Boolean co-clone, we in practice only need to consider Post’s
lattice [52] rather than LStr(Op(2)).

Schnoor & Schnoor [58] also described a procedure for constructing
weak bases for co-clones satisfying the preconditions in Definition 7,
which was leveraged by Lagerkvist to provide a list of weak bases for all
Boolean co-clones [42], whose inclusion structure was later completely
determined [45]. We will not describe the method for constructing
weak bases in detail, but remark that it is based on the observation
that the algebra whose universe consists of all n-ary operations in C
can be viewed as a relation R, with the property that any partial
operation not preserving R can be extended to a total operation. This
construction has been referred to as the n-generated free algebra [1],
or the n-th graphic [51]. Using a similar strategy to that used in
Example 4, weak bases have been used to obtain complexity dichotomies
for several classes of Boolean CSP-like problems incompatible with
polymorphisms [3, 4, 44, 58, 59].

Example 5. Behrisch et al. [5] considered several problems, e.g., near-
est solution (NSol), nearest other solution (NOSol), and minimum
solution distance (MSD), all parameterised by Boolean constraint lan-
guages. The optimisation variants of these problems may be defined as
follows.

1) NSol(Γ): given a SAT(Γ) instance I and a function f : V → 2,
compute a satisfying assignment to I with minimal Hamming
distance from f .

9

2) NOSol(Γ): given a SAT(Γ) instance I and a satisfying assign-
ment to I, compute a satisfying assignment to I with minimal
Hamming distance from f .

3) MSD(Γ): given a SAT(Γ) instance I, compute two satisfying
assignments to I with minimal Hamming distance.

Among these problems only NSol is a priori compatible with polymor-
phisms in the sense discussed in Example 3, but with a non-trivial
reduction, while NoSol and MSD can be studied with partial polymor-
phisms via the weak bases approach. For instance, if Pol(Γ) = [{f¬}],
where f¬(x) = 1−x, then it is sufficient to show that NoSol({R}) does
not admit a polynomial-time approximation scheme (unless P = NP)
for the weak base R of Inv({f¬}) provided by Lagerkvist [42], instead
of having to prove this for every possible choice of Γ ⊆ Rel2 where
Pol(Γ) = [{f¬}].

4.2 Fine-Grained Complexity

Recall from Section 3 that polymorphisms are useful for studying the
classical complexity of CSPs up to polynomial-time reductions. How-
ever, there are reasons to believe that, in practice, even NP-complete
problems can exhibit a striking difference in complexity, and that it
may be disadvantageous to group them together under the guise of
polynomial-time reductions. For example, SAT({R1/3}) from Exam-
ple 1, is known to be solvable in O(1.0984n) time, where n denotes the
number of variables [62], whereas it is not known whether CNF-SAT
is solvable in O(cn) time for c < 2. This phenomena is not restricted
to CSPs: for example, van Rooij et al. [8] proved that the Partition
Into Triangles problem restricted to graphs of maximum degree 4
can be solved in O(1.0222n) time despite being NP-complete.

Our main concern in this survey paper is thus to study the complex-
ity of NP-complete CSPs with regards to O(cn) time complexity. To
make this question more precise we begin with the following definition.

Definition 8. Let k ≥ 2. For Γ ⊆ Relk, set

T(Γ) = inf{c | CSP(Γ) is solvable in time 2cn},

where n is the number of variables in an instance of CSP(Γ).

Note that CSP(Γ) may be solvable in O(2(c+ε)n) time for every
ε > 0 despite not being solvable in O(2cn) time, thus showing that the
use of infimum in Definition 8 is necessary. If T(Γ) = 0, then CSP(Γ)
is said to be solvable in subexponential time. It is important to observe
that no concrete value of T(Γ) is known when CSP(Γ) is NP-complete,
but that a large number of upper bounds of the form T(Γ) ≤ c are
known for concrete constraint languages Γ. For example, as already

10

mentioned, T({R1/3}) ≤ log2(1.0984) since SAT({R1/3}) is solvable in
O(1.0984n) time, and if we take the relation R 6=k

from Example 2 then
T({R 6=2} = 0 (since 2-colouring is in P), and for each k ≥ 3 it is
known that T({R 6=k

}) ≤ 1 [6].
To study the function T and its connection to partial polymorphisms,

we will make use the following conjecture, which is of central importance
in current research on fine-grained complexity and lower bounds.

Definition 9. The exponential-time hypothesis (ETH) [35] conjectures
that T(Γ3

SAT) > 0.

In other words, the ETH states that there exists a c > 0 such that
3-SAT is not solvable in O(2cn) time, i.e., not in subexponential time.
Although not immediate from Definition 9, the ETH is also known
to imply that the sequence T(Γ3

SAT),T(Γ4
SAT), . . . , increases infinitely

often, i.e., that for every k there exists k′ > k such that T(Γk
SAT) <

T(Γk′
SAT) [35]. It is tempting to also conjecture that the limit of the

sequence T(Γ3
SAT),T(Γ4

SAT), . . . equals 1. This conjecture is known as
the strong exponential-time hypothesis (SETH) [19, 35]. Under this
conjecture, the unrestricted SAT problem cannot be solved in O(2cn)
time for any c < 1.

The ETH and the SETH are important conjectures also when
studying fine-grained complexity from an algebraic point of view, since
they represent the best possible bounds that one should realistically
aim for. This is similar to how one should not hope to achieve a
polynomial-time algorithm for an NP-hard problems if P 6= NP. Indeed,
it is then known that we cannot achieve subexponential-time algorithms
for NP-complete finite-domain CSPs without violating the ETH.

Theorem 10. ([40]) Let Γ ⊆ Relk such that CSP(Γ) is NP-complete.
Then T(Γ) > 0 unless the ETH fails.

Subexponentiality can also be ruled out for certain classes of struc-
turally restricted CSPs [31], but we refrain from formally stating these
results since the current focus is on constraint language restrictions. Let
us also remark that CSP(Γ) for Γ ⊆ Relk is always solvable in O(kn)
time by simply enumerating all possible assignments over k. Hence,
T(Γ) ≤ log2(k) for every Γ ⊆ Relk. It is also known that if Γ ⊂ Relk
is finite then CSP(Γ) is solvable in O(cn) time for some c < k [61],
implying that T(Γ) < log2(k).

4.3 An Algebraic Approach Based on Partial Poly-
morphisms

We are now ready to present the link between partial polymorphisms
and the function T, which allows us to study the fine-grained complexity
of CSPs using partial polymorphisms.

11

Theorem 11 ([39]). Let Γ and ∆ be two finite sets of relations over
k. If pPol(Γ) ⊆ pPol(∆), then T(∆) ≤ T(Γ).

Proof. By Theorem 3, this result can be proved rather explicitly: given
an instance (V,C) of CSP(∆) each constraint in C can be rewritten
as a set of constraints over Γ ∪ {{(x, x) | x ∈ k}} without introducing
any fresh variables, and the same techniques that were used in the
proof of Theorem 5 can then be employed to complete the reduction
in polynomial time. Hence, Theorem 11 can be restated in a slightly
stronger version without making use of the function T, but for our
purposes the above statement is sufficient. Also note that Theorem 11
is valid even if CSP(Γ) and CSP(∆) are both solvable in polynomial
time since in this case we have that T(Γ) = T(∆) = 0.

Now, let C be a clone such that Pol(Γ) = C, and suppose that
CSP(Γ) is NP-complete. Theorem 11 then offers an algebraic method
to analyse T(Γ) by studying the properties of IStr(C) := {pPol(Γ) |
Pol(Γ) = C}. For example, if IStr(C) is finite, then the fine-grained
complexity of CSP(Γ) would fall into a finite number of cases. Hence,
as a rough approximation, we would like to know the cardinality of
IStr(Pol(Γ)) when CSP(Γ) is NP-complete. A dichotomy has been
proved for Boolean clones, with the surprising implication that these
sets are always either finite or equal to the continuum.

Theorem 12 ([25, 60]). Let C be a Boolean clone. Then IStr(C) is
finite if

C ⊇ Pol({{(0, 1), (1, 0)}, {(0, 1)}})

or
C ⊇ Pol({{(0, 0), (0, 1), (1, 1)}, {(0, 1)}}),

and is of continuum cardinality otherwise.

By inspecting Post’s lattice of Boolean clones [52] one can then
verify that the finite cases of Theorem 12 only hold for 10 clones. Also,
it is known that SAT(Γ) is NP-complete if and only if Pol(Γ) = [f¬] or
Pol(Γ) = J{0,1}, where f¬(x) = 1− x [56], implying that IStr(Pol(Γ))
is of continuum cardinality, whenever SAT(Γ) is NP-complete.

However, the fact that IStr(Pol(Γ)) is of continuum cardinality in
these cases says very little of their actual complexity, and it suggests that
one needs a different technique that does not rely on a classification akin
to Post’s lattice. For certain classes of clones C we may immediately
observe yet another striking difference between IStr(C) and Post’s
lattice.

Theorem 13 ([46]). Let Γ ⊆ Relk be a finite set of relations such that
Pol(Γ) is essentially unary. Then pPol(Γ) is infinitely generated.

12

In particular, Theorem 13 holds when SAT(Γ) is NP-complete,
which suggests that a full description of pPol(Γ) (that correlates to
fine-grained complexity via Theorem 11) is a complicated task for finite
constraint languages. To illustrate, let us for the moment concentrate
on Boolean constraint languages Γ such that Pol(Γ) = J{0,1}, which
subsume the examples 1-in-3-SAT and k-SAT from Example 1. Even
though the full description of IStr(J{0,1}) does not seem realistic by
Theorem 12 and Theorem 13, there are plenty of questions relevant to
the study of the fine-grained complexity of SAT(Γ). To illustrate, we
list two below.

• Does IStr(J{0,1}) admit a greatest element, and if this is the case,
is it then possible to describe the maximal elements?

• Is it possible to describe the minimal strong partial clones of
IStr(J{0,1}) — provided they exist (note that a unique least ele-
ment trivially exists, namely Str(J{0,1}))

3.

These questions are pertaining to the study of fine-grained complexity
since, by Theorem 11, “small” members of IStr(J{0,1}) correspond to
SAT problems with high time complexity, and “large” members of
IStr(J{0,1}) correspond to SAT problems of low time complexity.

It is worth observing that one of these questions can be answered im-
mediately, by making use of the concept of a weak base R of a co-clone
Inv(C) recalled from Section 4.1. Indeed, pPol(R) ⊇ pPol(Γ) for each
pPol(Γ) ∈ IStr(J{0,1}) implies that pPol(R) is the greatest element. Fur-
thermore, Inv(J{0,1}) is known to admit a particularly simple weak base
R 6=6= 6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}
[42]. This observation was then leveraged by Jonsson et al. [39] to
show that SAT({R 6= 6= 6=01

1/3 }) constitutes the “easiest NP-complete SAT
problem”, in the following sense.

Theorem 14 ([39]). SAT({R 6= 6= 6=01

1/3 }) is NP-complete and T({R 6=6= 6=01

1/3 }) ≤
T(Γ) for any Boolean constraint language Γ such that SAT(Γ) is NP-
complete.

Proof. We give a short sketch of the most important ideas. If SAT(Γ)
is NP-complete then by Schaefer’s dichotomy theorem [56] either
Pol(Γ) = [f¬] or Pol(Γ) = J{0,1}. It is also known [42] that the relation
R = R 6= 6=6=01

1/3 ∪ {(f¬(t) | t ∈ R 6= 6=6=01

1/3)} is a weak base of Inv({f¬}), and
from Theorem 11 it then follows that T({R}) ≤ T(Γ) or T({R 6=6= 6=01

1/3 }) ≤
T(Γ), since pPol(Γ) ⊆ pPol(R) or pPol(Γ) ⊆ pPol(R 6= 6= 6=01

1/3). Hence, it
is sufficient to prove that T({R 6= 6= 6=01

1/3 }) ≤ T({R}), which can be ac-
complished by a polynomial-time many-one reduction only introducing

3We follow the standard terminology where minimal/maximal clones are those directly
above/below the greatest/least element in the clone lattice.

13

a constant number of fresh variables (see Lemma 19 in Jonsson el
al. [39]).

Jonsson et al. [39] also conjectured that the strong partial clones
between pPol(R1/3) and pPol(R 6= 6= 6=01

1/3) had a simple structure consisting
of only three elements pPol(R01

1/3), pPol(R 6=01

1/3), pPol(R 6= 6=01

1/3), such that

pPol(R1/3) ⊂ pPol(R01

1/3) ⊂ pPol(R 6=01

1/3) ⊂ pPol(R 6= 6=01

1/3) ⊂ pPol(R 6= 6=6=01

1/3).

However, this conjecture turned out to be incorrect: Lagerkvist & Roy
showed the existence of (countably) infinitely many strong partial clones
between pPol(R01

1/3) and pPol(R 6=01

1/3), pPol(R 6=01

1/3) and pPol(R 6= 6=01

1/3), and
pPol(R 6= 6=01

1/3) and pPol(R 6= 6=6=01

1/3) [43]. This was later refined by Couceiro
et al. [22] that constructed families of strong partial clones of continuum
size between each of these pairs of partial clones.

It is also noteworthy to remark that Theorem 14 was extended to a
broad class of finite-domain CSPs, the so-called ultraconservative CSPs,
which can be defined as CSP(Γ) problems where Γ contains all unary
relations over the domain. Here, the term ultraconservative is used
instead of the more familiar “conservative” since it is actually required
that the unary relations are included in the constraint language, and
not only that they are primitive positive definable.

Theorem 15 ([40]). For each k there exists a relation Rk ∈ Relk such
that (1) CSP({Rk}) is NP-complete, and (2) T({Rk}) ≤ T(Γ) for any
ultraconservative Γ ⊆ Relk such that CSP(Γ) is NP-complete.

Proof. Assume that CSP(Γ) is NP-complete for an ultraconservative
Γ ⊆ Relk. In this case almost nothing is known concerning the precise
structure of Pol(Γ), making it difficult to construct a weak base of
InvPol(Γ)). However, it is known that Theorem 6 in this case im-
plies that Pol(Γ) does not contain an operation satisfying a strong
Maltsev condition, which in turn is known to imply that Γ primitively
positively interprets (pp-interprets) Γ3

SAT. We refrain from defining
pp-interpretations formally but remark that they may be viewed as a
relational counterpart to varieties, and may be used to compare the
expressive strength of constraint languages which are incomparable
with respect to pp-definitions. From this assumption one can then
prove that Γ can pp-define a relation R with only three tuples, and
this pp-definition can be transformed into a qfpp-definition of a similar
relation RΓ, also of cardinality three. Among all these relations it is
then possible to isolate a unique relation Rk with the property that
T({Rk}) ≤ T({RΓ}) for each ultraconservative Γ where CSP(Γ) is NP-
complete. Hence, this proof strategy does not explicitly use weak bases,
due to the largely unexplored clone lattice over k, but it completely
relies on qfpp-definitions.

14

4.4 The Non-Existence of Minimal Strong Partial
Clones

We now turn to the question of minimal strong partial clones in
IStr(J{0,1}), i.e., partial clones pPol(Γ) ∈ IStr(J{0,1}) such that pPol(Γ) ⊃
Str(J{0,1}) but for which there is no pPol(∆) ∈ IStr(J{0,1}) such that
pPol(Γ) ⊃ pPol(∆) ⊃ Str(J{0,1}). The existence of a minimal element
pPol(Γ) would have interesting consequences in the light of the SETH,
in particular, if T(Γ) < 1, since SAT(Γ) would then belong to the class
of “hardest” NP-complete SAT problems that are still easier than the
unrestricted SAT problem.

However, this question has a surprisingly straightforward resolution:
as proven by Couceiro et al. [24], there are no minimal strong partial
clones. More specifically, for each k (k > 1) it was proved that if
f 6∈ Str(Jk), then the strong partial clone [f]s contains a family of
strong partial subclones of continuum cardinality. Two slightly different
constructions were given to prove this result, depending on whether
f is constant (i.e., there exists x ∈ k such that f(αi) = x for all αi ∈
dom(f)) or not. Here, we provide a sketch of the latter construction.

Let f be an n-ary partial operation not in Str(Jk) and not constant.
In the sequel we assume that the partial operation f is n-ary and with
domain dom(f) = {α1, . . . , αm} ⊆ kn, where αi := (ai1, . . . , a

i
n). Let

A be the m × n matrix whose rows are α1, . . . , αm, and consider the
following construction.

Let Col(A) be the set of columns of A, and vf = f(A) ∈ km. For
x := (x1, . . . , xh) ∈ kh and ` ≥ 1, let x×` ∈ kh` be

x×` = (x1, . . . , x1︸ ︷︷ ︸
` times

, x2, . . . , x2︸ ︷︷ ︸
` times

, . . . , xh, . . . , xh︸ ︷︷ ︸
` times

),

and let [x] = {x1, . . . , xh}. For a set X ⊆ k with

X = {x1 < · · · < x|X|}

and a ∈ X, let nextX(a) ∈ X be defined by

nextX(a) :=

{
xi+1 if a = xi and i < |X|,
x1 if a = x|X|.

Furthermore, for x = (x1, . . . , xh) ∈ [vf]h and 1 ≤ i ≤ h, let ci(x) be
the tuple

ci(x) := (x1, . . . , xi−1,next[vf](xi), xi+1, . . . , xh).

Since the partial operation f is non-constant, the set [vf] contains at
least two different elements, and so ci(x) 6= x for all x ∈ [vf]h and all

15

i = 1, . . . , h. Let t ≥ 0 be the number of columns u
∼

in the matrix A

that satisfy [u
∼

] = [vf]. Without loss of generality, assume that all those

t columns (if any) are the first columns to the left of A.
For each ` ≥ 1, define the relation ρ` of arity `df by

ρ` := {ci(v×`f) | 1 ≤ i ≤ `df} ∪ {u∼
×` | u

∼
∈ Col(A)}.

Notice that |ρ`| = `df + n.
Let M` be the matrix with `df rows, whose (`df + n) columns are

the tuples of ρ` in the following order:

c1(v×`f), . . . , c`df (v×`f), u
∼1
×`, . . . , u

∼n
×`,

where u
∼1, . . . , u∼n are the columns of A written in the same order as

they appear in A.
Now let f×` be the (`df + n)-ary partial operation whose domain

is the set of all rows of M` and defined by

f×`(M`) = v×`f .

Notice that x1, . . . , x`df+t ∈ [vf] whenever x = (x1, . . . , x`df+n) ∈
dom(f×`).

Example 6. Let k = {0, 1, 2}, ` = 3 and

f

0 0 0
1 0 1
0 0 2

 =

0
0
1

 .

Then vf = (0, 0, 1), v×3
f = (0, 0, 0, 0, 0, 0, 1, 1, 1),

A =

0 0 0
1 0 1
0 0 2

 ,

Col(A) = {(0, 1, 0)T , (0, 0, 0)T , (0, 1, 2)T }, and f×3(M3) =

f×3

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 1 0 1
1 1 1 1 1 1 0 1 1 0 0 2
1 1 1 1 1 1 1 0 1 0 0 2
1 1 1 1 1 1 1 1 0 0 0 2

=

0
0
0
0
0
0
1
1
1

.

16

It is not difficult to verify that this construction yields the following
result.

Lemma 16 ([24]). For every ` ≥ 1, f×` ∈ [f]s. Moreover, for `′ ≥ 1,
f×` ∈ pPol(ρ`′) iff ` 6= `′.

As an immediate consequence, we thus have the desired corollary.

Corollary 17. Let C be a strong partial clone on k and suppose that C
contains a partial operation f 6∈ Str(Jk) that is not a constant operation.
Then the set of strong partial clones contained in C is of continuum
cardinality.

5 Open Questions and Related Work

The study of fine-grained complexity is still in its infancy and we have
only concentrated a handful of results pertaining to partial polymor-
phisms. We now present a few concrete questions arising from the
results presented thus far, and discuss related research directions.

On the non-existence of minimal strong partial clones

We provided a sketch of one of the constructions in [24], which shows
that for any non-constant f /∈ Str(J{0,1}) there exists g /∈ Str(J{0,1})
such that [g]s ⊂ [f]s. Assuming that T(Inv({f})) < 1, can we use a
similar construction to find a g such that T(Inv({f})) < T(Inv({g}))?

Maximal elements of IStr(Jk)
We have seen that IStr(J{0,1}) has a largest element pPol(R 6=6= 6=01

1/3), that
constitutes the “easiest NP-complete SAT problem” SAT({R 6=6= 6=01

1/3 }).
Given the non-existence of minimal strong partial clones one may
be sceptical about the existence of maximal elements of IStr(J{0,1}).
However, such elements do in fact exist. For instance, one can prove that
pPol({R 6=6= 6=01

1/3 , {(0)}}) and pPol({R 6= 6= 6=01

1/3 , {(1)}}) are both maximal
elements. The caveat here is that T ({R 6=6= 6=01

1/3 }) = T({R 6= 6=6=01

1/3 , {(0)}) =
T({R 6= 6=6=01

1/3 , {(1)}), implying that these elements are not interesting
from a complexity theoretical point of view. This raises the question
of whether there exists a maximal element pPol(Γ) of IStr(J{0,1}) such
that T({R 6= 6= 6=01

1/3 }) < T(Γ).

Strong Maltsev conditions and partial polymorphisms

Lagerkvist & Wahlström [47] propose a usage of partial polymorphisms
which is similar to how strong Maltsev conditions are used to charac-
terize the classical complexity of CSPs. For example, given a k and the

17

identities defining a Maltsev operationm(x, x, y) ≈ y,m(x, y, y) ≈ x, we
can define a partial operation f such that dom(f) = {(x, x, y), (x, y, y) |
x, y ∈ k} and such that f(x, x, y) = y and f(x, y, y) = x. Such a partial
operation f is then called a partial Maltsev operation.

Now given an operation thus constructed, the goal is then to devise
an algorithm for CSP(Inv(f)) with a running time better than O(kn).
Surprisingly, this is indeed possible for the partial Maltsev operation,
where one obtains the upper bound O(k

n
2). An interesting continuation

to this line of research is to consider the identities defining near unanim-
ity operations and edge operations, and investigate if similar improved
bounds can be obtained for the corresponding partial operations.

A related application of partial polymorphisms in the realm of
exponential-time algorithms was recently demonstrated by Brakensiek
& Guruswami [12]. They prove that if Γ is preserved by an infinite
family of partial threshold polymorphisms then SAT(Γ) can be solved
by a fast exponential-time algorithm based on linear programming. For
example, this holds for R1/3 and for Γk

SAT for k ≥ 3. While these two
problems are known to admit even faster specialised algorithms [50, 62],
the linear programming framework of Brakensiek & Guruswami also
provides a clear explanation of why these problems admit an exponen-
tially improved algorithm, which demonstrates a distinct advantage of
studying fine-grained complexity of such problems in a more abstract,
algebraic setting.

Sparsification via partial polymorphisms

There exists many computational properties with a similar flavour as
fine-grained complexity. One example from parameterized complexity is
sparsification: given an instance of a computational problem, associated
with a parameter k ≥ 0, is it possible to compute (in polynomial time)
an equivalent instance whose size is bounded by a fixed function in k?
For example, in the case of CSP(Γ) we could be interested in reducing
the number of constraints with respect to the number of variables in
the instance, and ask whether it is possible to reduce the number of
constraints in an instance (V,C) to O(|V |) or O(|V |2).

Sparsification of SAT problems were studied by Jansen & Pieterse [36]
who observed that in many interesting cases this question could be
translated into properties of (low-degree) polynomials. This same idea
was generalised by Lagerkvist & Wahlström [48] who studied this ques-
tion by embedding CSPs into CSPs preserved by a Maltsev operation
and, more generally, by embedding an NP-complete CSP problem into a
tractable CSP over a larger domain. The property of admitting “embed-
dings” of this form could then be witnessed by partial operations closely
linked to strong Maltsev conditions. However, the question of whether
this algebraic framework could give a complete dichotomy for CSPs

18

admitting linear sparsifications was left open. Similar conditions with
closely matching results were later also obtained by Chen et al. [20].

Acknowledgements

We thank the anonymous reviewer for several helpful comments. The
third author is partially supported by the Swedish Research Council
(VR) under grant 2019-03690.

References

[1] L. Barto, A. A. Krokhin, and Ross Willard. Polymorphisms, and
how to use them. In Andrei A. Krokhin and Stanislav Zivný,
editors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[2] L. Barto, J. Oprvsal, and M. Pinsker. The wonderland of reflections.
Israel Journal of Mathematics, 223(1):363–398, Feb 2018.

[3] M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. Give me
another one! In Proceedings of the 26th International Symposium
on Algorithms and Computation (ISAAC-2015), pages 664–676,
2015.

[4] M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. As close
as it gets. In Proceedings of the 10th International Workshop on
Algorithms and Computation (WALCOM-2016), pages 222–235,
2016.

[5] M. Behrisch, M. Hermann, S. Mengel, and G. Salzer. Minimal
distance of propositional models. Theory of Computing Systems,
63(6):1131–1184, Aug 2019.

[6] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via
inclusion-exclusion. SIAM Journal on Computing, 39(2):546–563,
July 2009.

[7] M. Bodirsky and P. Jonsson. A model-theoretic view on qualitative
constraint reasoning. Journal of Artificial Intelligence Research,
58:339–385, 2017.

[8] H. Bodlaender, J. van Rooij, and M. van Kooten Niekerk. Partition
into triangles on bounded degree graphs. Theory of Computing
Systems, 52(4):687–718, May 2013.

[9] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A.
Romov. Galois theory for Post algebras. I. Cybernetics, 5:243–252,
1969.

19

[10] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov.
Galois theory for Post algebras. II. Cybernetics, 5:531–539, 1969.

[11] F. Börner and L. Haddad. Maximal partial clones with no finite
basis. Algebra Universalis, 40(4):453–476, 1998.

[12] J. Brakensiek and V. Guruswami. Bridging between 0/1 and linear
programming via random walks. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (STOC-2019),
pages 568–577, New York, NY, USA, 2019. ACM.

[13] A. Bulatov. A dichotomy theorem for constraint satisfaction
problems on a 3-element set. J. ACM, 53(1):66–120, January 2006.

[14] A. Bulatov. Complexity of conservative constraint satisfaction
problems. ACM Transactions on Computational Logic, 12(4):24:1–
24:66, July 2011.

[15] A. Bulatov. The complexity of the counting constraint satisfaction
problem. Journal of the ACM, 60(5):34:1–34:41, 2013.

[16] A. Bulatov. A dichotomy theorem for nonuniform CSPs. In
Proceedings of the 58th Annual Symposium on Foundations of
Computer Science (FOCS-2017). IEEE Computer Society, 2017.

[17] A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev
constraints. SIAM Journal On Computing, 36(1):16–27, 2006.

[18] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity
of constraints using finite algebras. SIAM Journal on Computing,
34(3):720–742, March 2005.

[19] C. Calabro, R. Impagliazzo, and R. Paturi. The complexity of
satisfiability of small depth circuits. In J. Chen and F. V. Fomin,
editors, Parameterized and Exact Computation, volume 5917 of
Lecture Notes in Computer Science, pages 75–85. Springer Berlin
Heidelberg, 2009.

[20] H. Chen, B. M. P. Jansen, and A. Pieterse. Best-case and worst-
case sparsifiability of boolean CSPs. In Proceedings of the 13th
International Symposium on Parameterized and Exact Computa-
tion (IPEC-2018), volume 115 of LIPIcs, pages 15:1–15:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[21] M. Couceiro and L. Haddad. Intersections of finitely generated
maximal partial clones. Multiple-Valued Logic and Soft Computing,
19(1-3):85–94, 2012.

[22] M. Couceiro, L. Haddad, V. Lagerkvist, and B. Roy. On the
interval of Boolean strong partial clones containing only projec-
tions as total operations. In Proceedings of the 47th International
Symposium on Multiple-Valued Logic (ISMVL-2017), pages 88–93.
IEEE Computer Society, 2017.

20

[23] M. Couceiro, L. Haddad, and I. G. Rosenberg. Partial clones con-
taining all boolean monotone self-dual partial functions. Multiple-
Valued Logic and Soft Computing, 27(2-3):183–192, 2016.

[24] M. Couceiro, L. Haddad, and K. Schölzel. On the lower part of the
lattice of partial clones. Multiple-Valued Logic and Soft Computing,
33(3):177–196, 2019.

[25] M. Couceiro, L. Haddad, K. Schölzel, and T. Waldhauser. A
solution to a problem of D. Lau: Complete classification of intervals
in the lattice of partial boolean clones. Multiple-Valued Logic and
Soft Computing, 28(1):47–58, 2017.

[26] N. Creignou. A dichotomy theorem for maximum generalized
satisfiability problems. Journal of Computer and System Sciences,
51(3):511 – 522, 1995.

[27] N. Creignou and M. Hermann. Complexity of generalized satisfiabil-
ity counting problems. Information and Computation, 125(1):1–12,
1996.

[28] N. Creignou, S. Khanna, and M. Sudan. Complexity classifications
of Boolean constraint satisfaction problems. SIAM Monographs on
Discrete Mathematics and Applications, 2001.

[29] N. Creignou and H. Vollmer. Boolean constraint satisfaction prob-
lems: When does Post’s lattice help? In N. Creignou, P. G. Kolaitis,
and H. Vollmer, editors, Complexity of Constraints, volume 5250
of Lecture Notes in Computer Science, pages 3–37. Springer Berlin
Heidelberg, 2008.

[30] N. Creignou and B. Zanuttini. A complete classification of the com-
plexity of propositional abduction. SIAM Journal on Computing,
36(1):207–229, 2006.

[31] R. de Haan, I. A. Kanj, and S. Szeider. On the subexponential-
time complexity of CSP. Journal of Artificial Intelligence Research
(JAIR), 52:203–234, 2015.

[32] F. Dylla, J. H. Lee, T. Mossakowski, T. Schneider, A. Van Delden,
J. Van De Ven, and D. Wolter. A survey of qualitative spatial and
temporal calculi: Algebraic and computational properties. ACM
Computing Surveys, 50(1):7:1–7:39, April 2017.

[33] T. Feder and M.Y. Vardi. The computational structure of mono-
tone monadic SNP and constraint satisfaction: A study through
datalog and group theory. SIAM Journal on Computing, 28(1):57–
104, 1998.

[34] D. Geiger. Closed systems of functions and predicates. Pacific
Journal of Mathematics, 27(1):95–100, 1968.

[35] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal
of Computer and System Sciences, 62(2):367 – 375, 2001.

21

[36] B. M. P. Jansen and A. Pieterse. Optimal sparsification for some
binary CSPs using low-degree polynomials. In Proceedings of the
41st International Symposium on Mathematical Foundations of
Computer Science (MFCS-2016), volume 58, pages 71:1–71:14,
2016.

[37] P. Jeavons. On the algebraic structure of combinatorial problems.
Theoretical Computer Science, 200:185–204, 1998.

[38] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of
constraints. Journal of the ACM, 44(4):527–548, July 1997.

[39] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong
partial clones and the time complexity of SAT problems. Journal
of Computer and System Sciences, 84:52 – 78, 2017.

[40] P. Jonsson, V. Lagerkvist, and B. Roy. Time complexity of con-
straint satisfaction via universal algebra. In Proceedings of the
42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS-2017), pages 17:1–17:15, 2017.

[41] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The
approximability of constraint satisfaction problems. SIAM Journal
on Computing, 30(6):1863–1920, 2000.

[42] V. Lager kvist. Weak bases of Boolean co-clones. Information
Processing Letters, 114(9):462–468, 2014.

[43] V. Lagerkvist and B. Roy. A Preliminary Investigation of Satisfia-
bility Problems Not Harder than 1-in-3-SAT. In Proceedings of
the 41st International Symposium on Mathematical Foundations
of Computer Science (MFCS-2016), volume 58, pages 64:1–64:14,
2016.

[44] V. Lagerkvist and B. Roy. A dichotomy theorem for the inverse
satisfiability problem. In Proceedings of the 37th IARCS Annual
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS-2017), volume 93, pages 39:39–39:14,
2018.

[45] V. Lagerkvist and B. Roy. The inclusion structure of Boolean
weak bases. In Proceedings of the 49th IEEEInternational Sympo-
sium on Multiple-Valued Logic (ISMVL-2019), pages 31–36. IEEE
Computer Society, 2019.

[46] V. Lagerkvist and M. Wahlström. The power of primitive positive
definitions with polynomially many variables. Journal of Logic
and Computation, 27(5):1465–1488, 2017.

[47] V. Lagerkvist and M. Wahlström. Which NP-hard SAT and
CSP problems admit exponentially improved algorithms? CoRR,
abs/1801.09488, 2018.

22

[48] V. Lagerkvist and M. Wahlström. Sparsification of SAT and
CSP problems via tractable extensions. ACM Transactions on
Compututation Theory, 12(2):13:1–13:29, 2020.

[49] D. Lau. Function Algebras on Finite Sets: Basic Course on
Many-Valued Logic and Clone Theory (Springer Monographs in
Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006.

[50] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved
exponential-time algorithm for k-sat. Journal of the ACM,
52(3):337–364, May 2005.

[51] R. Pöschel and L. Kaluznin. Funktionen- und Relationenalgebren.
DVW, Berlin, 1979.

[52] E. Post. The two-valued iterative systems of mathematical logic.
Annals of Mathematical Studies, 5:1–122, 1941.

[53] O. Reingold. Undirected connectivity in log-space. Journal of the
ACM, 55(4):17:1–17:24, September 2008.

[54] B. A. Romov. The algebras of partial functions and their invariants.
Cybernetics and Systems Analysis, 17(2):157–167, 1981.

[55] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Con-
straint Programming, volume 2 of Foundations of Artificial Intelli-
gence. Elsevier, 2006.

[56] T. Schaefer. The complexity of satisfiability problems. In Proceed-
ings of the 10th Annual ACM Symposium on Theory Of Computing
(STOC-78), pages 216–226. ACM Press, 1978.

[57] H. Schnoor and I. Schnoor. Enumerating all solutions for constraint
satisfaction problems. In Proceedings of the 24th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS-2007),
volume 4393, pages 694–705. Springer, 2007.

[58] H. Schnoor and I. Schnoor. Partial polymorphisms and con-
straint satisfaction problems. In N. Creignou, P. G. Kolaitis,
and H. Vollmer, editors, Complexity of Constraints, volume 5250
of Lecture Notes in Computer Science, pages 229–254. Springer
Berlin Heidelberg, 2008.

[59] I. Schnoor. The weak base method for constraint satisfaction. PhD
thesis, Gottfried Wilhelm Leibniz Universität, Hannover, Germany,
2008.

[60] K. Schölzel. Dichotomy on intervals of strong partial Boolean
clones. Algebra Universalis, 73(3-4):347–368, 2015.

[61] U. Schöning. A probabilistic algorithm for k-sat and constraint
satisfaction problems. In Proceedings of the 40th Annual Sympo-
sium on Foundations of Computer Science (FOCS-1999), pages
410–, Washington, DC, USA, 1999. IEEE Computer Society.

23

[62] M. Wahlström. Algorithms, measures and upper bounds for satis-
fiability and related problems. PhD thesis, Linköping University,
Theoretical Computer Science Laboratory, The Institute of Tech-
nology, 2007.

[63] D. Zhuk. The proof of CSP dichotomy conjecture. In Proceedings of
the 58th Annual Symposium on Foundations of Computer Science
(FOCS-2017). IEEE Computer Society, 2017.

24

	Algebraic Background
	Partial Operations
	Relations
	Galois Connections

	Constraint Satisfaction Problems
	Polymorphisms and the Complexity of CSPs
	Partial Polymorphisms and the Fine-Grained Complexity of CSPs
	Weak Bases and Classical Complexity
	Fine-Grained Complexity
	An Algebraic Approach Based on Partial Polymorphisms
	The Non-Existence of Minimal Strong Partial Clones

	Open Questions and Related Work

