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Strong partial clones are composition closed sets of partial opera-
tions containing all partial projections, characterizable as partial
polymorphisms of sets of relations Γ (pPol(Γ)). If C is a clone
it is known that the set of all strong partial clones whose total
component equals C, has a greatest element pPol(Γw), where
Γw is called a weak base. Weak bases have seen applications in
computer science due to their usefulness for proving complexity
classifications for constraint satisfaction related problems. In this
article we (1) completely describe the inclusion structure between
pPol(Γw), pPol(∆w) for all Boolean weak bases Γw and ∆w

and (2) in many such cases prove that the strong partial clones in
question uniquely cover each other.

1 INTRODUCTION

A clone is a set of operations closed under composition which contains all
projections. In the last decades clone theory has received quite some attention
due to its relevance for classifying the complexity of computational problems
such as constraint satisfaction problems (CSPs) [1]. This approach is based
on the fact that a clone can be described as the set of polymorphisms of
a set of relations, which, intuitively, may be viewed as generalisation of
homomorphisms. Sets of polymorphisms then correspond to a closure operator
on relations, closure under primitive positive definitions, which can be used
to obtain reductions between CSPs. Not all computational problems are
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compatible with polymorphisms, in the sense that a clone corresponding to a
constraint language unequivocally determines whether the problem is tractable,
in P, or intractable (typically NP-hard or co-NP-hard). Some examples include
the inverse satisfiability problem, enumerating models of CSP with polynomial
delay, and the surjective CSP problem [8]. The complexities of several of
these problems have been settled, but using non-algebraic proofs based on a
large number of case analyses, only valid for the Boolean domain. Schnoor
& Schnoor [18] argued that the complexity of such problems is better studied
using partial polymorphisms, since these correspond to a more restricted
closure operator on relations, closure under quantifier-free primitive positive
definitions. These notions will be formally defined in Section 2 and at the
moment we simply view the set of partial polymorphisms of a set of relations
Γ, pPol(Γ), as polymorphisms that may be undefined for certain sequences of
arguments. Unfortunately, the resulting closed classes of partial operations,
strong partial clones, are largely unexplored even in the Boolean domain. To
mitigate this Schnoor & Schnoor introduced the concept of a weak base [18]
corresponding to a clone C, which is a relational description of the largest
strong partial clone whose total component equals C. Furthermore, under
some mild additional assumptions on the given clone C, they proved that a
weak base can always be constructed in a systematic manner. Hence, if Γw

is a weak base corresponding to a clone C then pPol(Γw) is the largest set of
partial operations not containing a total operation outside of C. The practical
motivation behind weak bases is that they offer a considerable simplification
for proving hardness results, in the following sense. Assume that X(Γ) is
a computational problem parameterized by a set of relations Γ, and that we
want to determine how Γ influences the complexity of X(Γ). Then, instead
of proving hardness results for X(Γ) for every pPol(Γ) corresponding to a
clone C, it is sufficient to show that X(Γw) is intractable for a weak base Γw

corresponding to C [18]. The reason is that Γw is the least expressive language
corresponding to C with respect to quantifier-free primitive positive definitions,
and X(Γw) then intuitively represents the “easiest” problem corresponding to
C. For arbitrary finite domains little is known concerning weak bases, but in
the Boolean domain they are completely described [12], and have successfully
been used to prove complexity dichotomies for several different computational
problems [2, 3, 13, 18, 19].

In this article we study additional properties of Boolean weak bases, with
a particular focus on their inclusion structure. More precisely, if we let
LW = {pPol(Γw) | Γw is a Boolean weak base} then we are interested in
determining the poset (LW ,⊆). Such a classification can be of practical
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interest since it effectively reduces the number of distinct cases one needs
to consider to prove a complexity dichotomy for a computational problem.
Determining this inclusion structure is conceptually not difficult, but is in
practice rather challenging due to the large number of cases that need to be
considered. We propose a method where, given a weak base Γw corresponding
to a clone C, one effectively needs to consider only the clones covering C, i.e.,
situated directly above in the clone lattice, rather than all clones containing C.
Using this method, we in Section 3 completely describe the poset LW .

In Section 4 we investigate additional properties of LW , and are especially
interested in determining which pairs of strong partial clones in LW (if any)
that cover each other. While we do not obtain a complete dichotomy, we obtain
several strong results, and are even able to provide examples of strong partial
clones in LW where one element uniquely covers the other. These covering
proofs are based on describing the strong partial clones situated “close” to
pPol(ΓW ), in the following sense. Let C be a clone and let ΓW be a weak
base corresponding to C. Say that pPol(Γ) is a C-maximal strong partial clone
if Pol(Γ) = C and pPol(Γ) is covered by pPol(ΓW ). Given two elements
pPol(ΓW ) and pPol(∆W ) in LW where pPol(ΓW ) ⊂ pPol(∆W ) we can
then in many cases prove that pPol(∆W ) covers pPol(ΓW ) by comparing
pPol(ΓW ) to the Pol(∆W )-maximal strong partial clones. For example, we
prove that the strong partial clone pPol({WI2}), the set of all partial operations
which cannot define a (non-projective) total operation, is covered by the strong
partial clone pPol({WD1}) where WD1 = {(0, 1, 0, 1), (1, 0, 0, 1)}, but is
not covered by any other strong partial clone. Here, it might also be interesting
to observe that pPol({WD1}) is a so-called submaximal strong partial clone,
i.e., it is covered by a maximal clone. Last, we wrap up the article by discussing
continuations of this and other open questions in Section 5.

2 PRELIMINARIES

2.1 Partial Operations and Strong Partial Clones
A k-ary partial operation over a set D is a map f : dom(f) → D where
dom(f) ⊆ Dk (k ≥ 1). We write PARD, respectively OPD, for the set
of all partial, respectively total, operations over the set D, and let BF =

OP{0,1}. If f, g ∈ PARD, both of arity k, then g is a suboperation of
f if dom(g) ⊆ dom(f) and g(x) = f(x) for each x ∈ dom(g). Par-
tial operations compose together in a natural way, and if f, g1, . . . , gm ∈
PARD are partial operations such that f has arity m ≥ 1 and each gi
arity n ≥ 1 then we write f ◦ g1, . . . , gm for the n-ary partial operation
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FIGURE 1: A visualization of Post’s lattice of Boolean clones.
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f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) which is defined for (x1, . . . , xn) ∈
Dn if and only if

(x1, . . . , xn) ∈
⋂

1≤i≤m

dom(gi)

and
(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) ∈ dom(f).

Note that since a total operation can be viewed as a special case of a partial
operation the above definition is valid also in the total setting. For k ≥ 1 and
1 ≤ i ≤ k the ith projection πk

i is defined as πk
i (x1, . . . , xi, . . . , xk) = xi,

and a suboperation of a projection is a a partial projection.

Definition 1. A set C ⊆ OPD is a clone if C contains all projections over
D and C is closed under composition, and a set P ⊆ PARD is a strong
partial clone if P contains all partial projections over D and P is closed under
composition.

If F is a set of (partial) operations then we write [F ] (respectively [F ]s)
for the intersection of all (strong partial) clones containing F , and say that F
is a base. If F = {f} is singleton we write [f ] and [f ]s instead of [{f}] and
[{f}]s. If C1 ⊂ C2 are two (strong partial) clones, then C2 is said to cover C1

if there does not exist a (strong partial) clone C′ such that C1 ⊂ C′ ⊂ C2, and
we let Cover(C) be the set of all (strong partial) clones covering C.

Our main interest in this article lies in studying Boolean (strong partial)
clones. The cardinality of the lattice of Boolean strong partial clones is
known to equal the continuum [9], while the lattice of Boolean clones, Post’s
lattice, is countable [16]. See Figure 1 for a visualization of Post’s lattice and
Table 1 for a comprehensive list of bases. Many of these bases are defined
via Boolean expressions. For example, we write x for f(0) = 1, f(1) = 0,
x1∧̄x2 for f(0, 0) = 1, f(0, 1) = f(1, 0) = f(1, 1) = 0, and x1 ↔ x2 for
f(0, 0) = 1, f(0, 1) = f(1, 0) = 0, f(1, 1) = 1. In addition, we frequently
write x1 · · ·xn instead of x1 ∧ . . .∧xn, and write 0 and 1 for the two constant
Boolean operations. In addition, for each n ≥ 2, we let hn(x1, . . . , xn+1) =∨n+1

i=1 x1 · · ·xi−1xi+1 · · ·xn+1, and for each n-ary Boolean operation f , we
let dual(f)(x1, . . . , xn) = f(x1, . . . , xn).

2.2 Partial Polymorphisms and Relations
Clones and strong partial clones can also be described through relations. First,
let RelD be the set of all (finitary) relations over D ⊆ N. Then, given a k-ary
relation R ∈ RelD and an n-ary partial operation f ∈ PARD we say that f
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TABLE 1: Bases of Boolean clones. The entries for Sn0, Sn02, Sn01, Sn00, Sn1, Sn12,
Sn11, Sn10 assume that n ≥ 2.

C Base of C
BF {x∧̄y}
R0 {x ∧ y, x⊕ y}
R1 {x ∨ y, x↔ y}
R2 {x ∨ y, x ∧ (y ↔ z}
M {x ∨ y, x ∧ y, 0, 1}
M0 {x ∨ y, x ∧ y, 0}
M1 {x ∨ y, x ∧ y, 1}
M2 {x ∨ y, x ∧ y}
Sn0 {x→ y,dual(hn)}
S0 {x→ y}
Sn02 {x ∨ (y ∧ ¬z), dual(hn)}
S02 {x ∨ (y ∧ ¬z)}
Sn01 {dual(hn), 1}
S01 {x ∨ (y ∧ z), 1}
Sn00 {x ∨ (y ∧ z),dual(hn)}
S00 {x ∨ (y ∧ z)}
Sn1 {x ∧ ¬y, hn}
S1 {x ∧ ¬y}
Sn12 {x ∧ (y ∨ ¬z), hn}
S12 {x ∧ (y ∨ ¬z)}
Sn11 {hn, 0}
S11 {x ∧ (y ∨ z), 0}
Sn10 {x ∧ (y ∨ z), hn}
S10 {x ∧ (y ∨ z)}
D {xy ∨ xz ∨ yz}
D1 {xy ∨ xz ∨ yz}
D2 {h2}
L {x⊕ y, 1}
L0 {x⊕ y}
L1 {x↔ y}
L2 {x⊕ y ⊕ z}
L3 {x⊕ y ⊕ z ⊕ 1}
V {x ∨ y, 0, 1}
V0 {x ∨ y, 0}
V1 {x ∨ y, 1}
V2 {x ∨ y}
E {x ∧ y, 0, 1}
E0 {x ∧ y, 0}
E1 {x ∧ y, 1}
E2 {x ∧ y}
N {x, 0, 1}
N2 {x}
I {0, 1}
I0 {0}
I1 {1}
I2 {π1

1}
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TABLE 2: Weak bases of Boolean co-clones. The entries for Sn0, Sn02, Sn01, Sn00,
Sn1, Sn12, Sn11, Sn10 assume that n ≥ 2.

C Weak base of IC
BF {Eq{0,1}(x1, x2)}
R0 {F(c0)}
R1 {T(c1)}
R2 {F(c0) ∧ T(c1)}
M {(x1 → x2)}
M0 {(x1 → x2) ∧ F(c0)}
M1 {(x1 → x2) ∧ T(c1)}
M2 {(x1 → x2) ∧ F(c0) ∧ T(c1)}
Sn0 {ORn(x1, . . . , xn) ∧ T(c1)}
S0 {ORn(x1, . . . , xn) ∧ T(c1) | n ≥ 2}
Sn02 {ORn(x1, . . . , xn) ∧ F(c0) ∧ T(c1)}
S02 {ORn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2}
Sn01 {ORn(x2, . . . , xn+1) ∧ (x1 → x2 · · ·xn+1) ∧ T(c1)}
S01 {ORn(x2, . . . , xn+1) ∧ (x1 → x2 · · ·xn+1) ∧ T(c1) | n ≥ 2}
Sn00 {ORn(x2, . . . , xn+1) ∧ (x1 → x2 · · ·xn+1) ∧ F(c0) ∧ T(c1)}
S00 {ORn(x1, . . . , xn) ∧ (x→ x1 · · ·xn) ∧ F(c0) ∧ T(c1) | n ≥ 2}
Sn1 {NANDn(x1, . . . , xn) ∧ F(c0)}
S1 {NANDn(x1, . . . , xn) ∧ F(c0) | n ≥ 2}
Sn12 {NANDn(x1, . . . , xn) ∧ F(c0) ∧ T(c1)}
S12 {NANDn(x1, . . . , xn) ∧ F(c0) ∧ T(c1) | n ≥ 2}
Sn11 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0)}
S11 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0) | n ≥ 2}
Sn10 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0) ∧ T(c1)}
S10 {NANDn(x2, . . . , xn+1) ∧ (x2 → x1) ∧ . . . ∧ (xn+1 → x1) ∧ F(c0) ∧ T(c1) | n ≥ 2}
D {Neq(x1, x2)}
D1 {Neq(x1, x2) ∧ F(c0) ∧ T(c1)}
D2 {OR2(x2, x4) ∧Neq(x2, x3) ∧Neq(x4, x1) ∧ F(c0) ∧ T(c1)}
L {EV4(x1, x2, x3, x4)}
L0 {EV3(x1, x2, x3) ∧ F(c0)}
L1 {OD3(x1, x2, x3) ∧ T(c1)}
L2 {EV3 6=(x1, . . . , x6) ∧ F(c0) ∧ T(c1)}
L3 {EV46=(x1, . . . , x8)}
V {(x4 ↔ x2x3) ∧ (x2 ∨ x3 → x1)}
V0 {(x1 ↔ x2x3) ∧ F(c0)}
V1 {(x4 ↔ x2x3) ∧ (x2 ∨ x3 → x1) ∧ T(c1)}
V2 {(x1 ↔ x2x3) ∧ F(c0) ∧ T(c1)}
E {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4)}
E0 {(x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ F(c0)}
E1 {(x1 ↔ x2x3) ∧ T(c1)}
E2 {(x1 ↔ x2x3) ∧ F(c0) ∧ T(c1)}
N {EV4(x1, x2, x3, x4) ∧ x1x4 ↔ x2x3}
N2 {EV46=(x1, . . . , x8) ∧ x1x4 ↔ x2x3}
I {(x1 ↔ x2x3) ∧ (x4 ↔ x2x3)}
I0 {(x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ F(c0)}
I1 {(x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ T(c1)}
I2 {R 6=6= 6=

1/3 (x1, . . . , x6) ∧ F(c0) ∧ T(c1)}
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TABLE 3: Relations.

Relation Definition
F {(0)}
T {(1)}
Neq {(0, 1), (1, 0)}
EVn {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . .+ xn is even}
EVn 6= EVn(x1, . . . , xn) ∧Neq(x1, xn+1) ∧ . . . ∧Neq(xn, x2n)

ODn {(x1, . . . , xn) ∈ {0, 1}n | x1 + . . .+ xn is odd}
ORn {0, 1}n \ {(0, . . . , 0)}
NANDn {0, 1}n \ {(1, . . . , 1)}
R 6= 6=6=

1/3 {(0, 0, 1, 1, 1, 0), (0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1)}

preservesR, or thatR is invariant under f , if for each sequence t1, . . . , tn ∈ R
it holds that either

f(t1, . . . , tn) := (f(t1[1], . . . , tn[1]), . . . , f(t1[k], . . . , tn[k])) ∈ R

or that there exists i such that (t1[i], . . . , tn[i]) /∈ dom(f) (where ti[j] is the
jth element of ti).

If we then let Pol(Γ) (respectively pPol(Γ)) be the set of all (partial)
operations preserving each relation in Γ, it is easy to verify that pPol(Γ) forms
a strong partial clone and that Pol(Γ) forms a clone. Dually, if F ⊆ PARD,
we let Inv(F ) ⊆ RelD (sometimes written IF) be the set of all relations
invariant under each (partial) operation in F . The operator Inv(·) relate to
pPol(·) and Pol(·) in the following sense.

Theorem 2 ([4, 5, 10, 17]). Let Γ and ∆ be two sets of relations over a finite
set. Then (1) Γ ⊆ Inv(Pol(∆)) if and only if Pol(∆) ⊆ Pol(Γ), and (2)
Γ ⊆ Inv(pPol(∆)) if and only if pPol(∆) ⊆ pPol(Γ).

It is sometimes easier to work with Inv(F ) directly instead of invoking
its corresponding (strong partial) clone. Fortunately, these are well-behaved
sets of relations, in the following sense: if F consists of total operations,
then Inv(F ) is closed under formation of first-order formulas consisting of
existential quantification, conjunction, and equality constraints, primitive
positive definitions (pp-definitions). To make this a bit more precise, first
observe that the set of models of a first-order formula ϕ(x1, . . . , xn) can be
viewed as a relation R, and we then write R(x1, . . . , xn) ≡ ϕ(x1, . . . , xn)

for R = {(f(x1), . . . , f(xn)) | f is a model of ϕ(x1, . . . , xn)}. Then, if
Γ ⊆ RelD, a primitive positive definition of an n-ary R ∈ RelD over Γ

is simply the condition that R(x1, . . . , xn) ≡ ∃y1, . . . , yn′ :R1(x1) ∧ . . . ∧
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Rm(xm) where each Ri ∈ Γ ∪ {EqD} and each xi is a tuple of variables
over x1, . . . , xn, y1, . . . , yn′ . Here, EqD = {(x, x) | x ∈ D} is the equality
relation over D. Similarly, if F ⊆ PARD it is known that Inv(F ) is closed
under quantifier-free primitive positive definitions (qfpp-definitions) which are
simply primitive positive definitions without existential quantification.

If we let 〈Γ〉 (respectively 〈Γ〉 6∃) be the smallest set of relations containing
Γ and which is closed under pp-definitions (respectively, qfpp-definitions),
then it is known that 〈Γ〉 = Inv(Pol(Γ)) and that 〈Γ〉6∃ = Inv(pPol(Γ)). The
sets 〈Γ〉 and 〈Γ〉6∃ are furthermore known as relational clones, or co-clones,
and weak systems, or weak co-clones. In both cases we refer to the set Γ as a
base of 〈Γ〉 or 〈Γ〉6∃. Our main usage of this correspondence in this article will
be to show an inclusion of the form pPol(Γ) ⊆ pPol(∆) by proving that each
relation in ∆ is qfpp-definable over Γ.

2.3 Intervals of Strong Partial Clones and Weak Bases
As remarked, the lattice of strong partial clones is of continuum cardinal-
ity even in the Boolean domain. The maximal elements have been deter-
mined [15][Section 20.4] and recently it was also proven that no minimal
elements can exist [6], but in more general terms a complete understanding is
still out of reach. A slightly more manageable strategy is to first fix a clone C

and then describe the set of all strong partial clones corresponding to the clone
C, motivating the following definition.

Definition 3. Let C be a clone over a set D. We define the set LD |C =

{pPol(Γ) | Γ ⊆ RelD,Pol(Γ) = C}.

Hence, LD |C is the set of all strong partial clones over D whose total
component equals the given clone C. If the domain D is clear from the context,
i.e., if the context is Boolean, then we for simplicity write L|C instead of
L{0,1}|C.

Say that a clone C is finitely related if there exists a finite Γ ⊆ RelD such
that Pol(Γ) = C. Schnoor & Schnoor [18] proved that if C is finitely related
then LD |C has a greatest element, namely the union of all members of LD |C.

Theorem 4. [18] Let C be a clone over a finite set D. If C is finitely related,
then (

⋃∞
P∈LD|C

P) ∩OPD = C.

The fact that a greatest element exists motivates the following definition.

Definition 5. Let C be a clone over D. We say that Γ ⊆ RelD is a weak base
of Inv(C) if pPol(Γ) = (

⋃∞
P∈LD|C

P).
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In relational terms Definition 5 then implies that 〈Γ〉 6∃ ⊆ 〈∆〉6∃ for each
base ∆ of Inv(C). Hence, a weak base is a base of Inv(C) minimally ex-
pressive with respect to qfpp-definitions. Boolean weak bases were fully
described by Lagerkvist [12] and we refer the reader to Table 2 for a com-
prehensive list. Each entry consists of a Boolean clone C and a weak base
of IC, typically represented via a logical formula. Variables are typically
named x1, . . . , xn or x, y, z, with the exception of variables which are as-
signed constant values 0 and 1. These are instead denoted by c0 and c1,
respectively, and we typically assume that c0 occurs as the first argument and
c1 as the last. For example, the entry for the clone V in Table 2 consists of
the logical formula (x4 ↔ x2x3) ∧ (x2 ∨ x3 → x1) which defines the 4-ary
relation {(0, 0, 0, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)} which is a
weak base of IV. Definitions of the additional relations used in Table 2 can be
found in Table 3.

3 STRUCTURE OF BOOLEAN WEAK BASES

Given a Boolean weak base Γw, our goal is to describe every weak base ∆w

such that pPol(Γw) ⊂ pPol(∆w). To simplify the notation, given a Boolean
clone C, we write WC for the weak base of Inv(C) from Table 2 and PC for
pPol(WC). Furthermore, let LW = {PC | C is a Boolean clone}. Before we
turn to the technical details, we invite the reader to consult Figure 2, which is
a visualization of the inclusions and non-inclusions in LW , later proven to be
correct in Theorem 9.

Hence, our aim now is to describe the set LW with respect to the partial
order ⊆. At a first glance this problem might appear to be straightforward
due to Table 2 in combination with Post’s lattice of Boolean clones [16]. In
principle, what one needs to do is to, for every Boolean clone C and every
Boolean clone C′ such that C ⊂ C′, verify whether the inclusion PC ⊂ PC′

holds or not. This can be done by either showing that WC′ ⊂ 〈WC〉 6∃, implying
that PC ⊂ PC′, or by finding a partial operation f preserving WC but not
WC′. All inclusions of the former kind are in pratice rather straightforward
to prove, and without further ado we present the majority of these definitions
in Table 4 (the infinite chains in Post’s lattice are handled later in Lemma 8).
However, non-inclusions of the latter form are more troublesome, since we
in the worst-case would need to compare PC to PC′ for all pairs of Boolean
clones where C ⊂ C′. Before we present our approach let us consider a
concrete example.
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Example 1. Let us consider the clone I2, which according to Table 2 only
consists of projections. Then the strong partial clone PI2 is largest strong
partial clone in the intervalL|I2 , and may therefore be viewed as the the largest
Boolean strong partial clone which does not contain any total operations
except for the projections. Since I2 ⊆ C for every Boolean clone, we therefore
need to show that PI2 ⊆ PC, or find a partial operation f preserving the weak
base WI2 but which does not preserve WC. Without any additional information
available, it is then reasonable to start with the clones covering I2, i.e., the
minimal clones in Figure 1. Since it appears difficult to construct a qfpp-
definition of WC using WI2 for each such minimal clone C (according to the
definitions in Table 2) we shift focus and instead try to prove that PI2 6⊆ PC.
For example, PI2 6⊆ PN2 since f(0, 1) = f(1, 0) = 0 preserves WI2 but
not WN2, and it is indeed possible to show non-inclusion via similar partial
operations for each minimal clone in Figure 2.

However, this is far from sufficient, since these non-inclusions say nothing
about whether PI2 ⊆ PC for a non-minimal clone C. Thus, in the worst-case
scenario we for every Boolean clone would need to provide a qfpp-definition
or show non-inclusion by a partial operation. This is impractical already for
I2, and an insurmountable task if repeated for every Boolean clone.

Thus, we need a method which avoids the tedious (and practically infeasi-
ble) case analysis between all possible pairs of Boolean clones. Let us illustrate
how this can be achieved.

Example 2. Let us return to PI2 and PN2 from Example 1, where we showed
that PI2 6⊆ PN2 via the partial operation f(0, 1) = f(1, 0) = 0 which is
included in PI2 but not in PN2. However, let us backtrack a bit, and for the
moment assume that we are unaware of whether the inclusion PI2 ⊆ PN2

holds or not, and let us also remark that N2 = [x] (from Table 1). On the
one hand, if PI2 ⊂ PN2 holds, then, trivially, [PI2 ∪ {x}]s ⊆ PN2. On the
other hand, if PI2 6⊆ PN2 then [PI2 ∪ {x}]s 6⊆ PN2, and it must be possible
to construct a total operation f ∈ [PI2 ∪ {x}]s not preserving WN2. To see
why we may assume that f is total, observe that if each total operation in
[PI2 ∪ {x}]s is included in PN2, then [PI2 ∪ {x}]s ∈ L|N2

, implying that
[PI2 ∪ {x}]s ⊆ PN2.

Hence, let us consider the expressive strength of [PI2 ∪ {x}]s, and pick
e.g. the binary and operation x ∧ y. How can we define this operation via
composition using only partial operations from PI2 and the total operation x?
This is clearly impossible if only unary partial operations from PI2 are used,
and we invite the reader to also verify that this is not possible if only binary
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partial operations from PI2 are used. Hence, the intuition is that we should use
at least one ternary partial operation g from PI2, composed with x in such a
way that the resulting operation is x ∧ y. For example, assume that we use the
definition g(x, x, y). If we assume that the resulting operation defines x ∧ y,
i.e., x∧y = g(x, x, y), one can work backwards and conclude that g has to be
defined as g(1, 0, 0) = g(1, 0, 1) = g(0, 1, 0) = 0, g(0, 1, 1) = 1. This partial
operation does indeed preserve WI2, and we conclude that x∧y ∈ [PI2∪{x}]s.
The fact that x ∧ y ∈ [PI2 ∪ {x}]s does not preserve WN2 may be seen as an
alternative proof of PI2 6⊆ PN2, but is in fact a much stronger property since
[PI2 ∪ {x}]s = BF (since [{x ∧ y, x}] = BF). Thus, PI2 6⊆ PC for every
Boolean clone C such that [x] ⊆ C ⊂ BF.

We may formalise the argument in Example 2 in the following theorem.

Theorem 6. Let C1 ⊂ C3 ⊆ C2 be Boolean clones such that C3 ∈ Cover(C1).
If [PC1 ∪ C3]s ∩ BF 6⊆ C2, then PC1 6⊆ PC2.

Proof. If PC1 ⊂ PC2, then PC2 ⊇ [PC1∪C3]s since C3 ⊆ C2. But then WC2

cannot be a weak base of Inv(C2) since Pol(WC2) 6= C2 by the assumption
that C2 does not contain [PC1 ∪ C3]s ∩ BF. Hence, PC1 6⊆ PC2.

As hinted, the advantage of Theorem 6 is therefore that we in practice
only need to consider Cover(C) instead of an arbitrary clone, in order to
rule out possible inclusions in LW . Hence, for each Boolean clone C and
C′ ∈ Cover(C) we need to determine the strong partial clone [PC ∪ C′]s. In
other words we need to determine which total operations that are definable
using partial polymorphisms of WC together with the new total operations
from C′. To this aid we begin by defining the following.

Definition 7. Let f, f1, . . . , fm ∈ OP{0,1} be operations of arity n. Define
the (m+ n)-ary partial operation gf

f1,...,fm
with domain

domain(gf

f1,...,fm
) = {(f1(x), . . . , fm(x),x) | x ∈ {0, 1}n},

such that
gf

f1,...,fm
(f1(x), . . . , fm(x),x) = f(x)

for each x ∈ {0, 1}n.

The point of Definition 7 is therefore to construct a partial operation
gf
f1,...,fm

using the given operations f1, . . . , fm, such that f is included in
[{f1, . . . , fm, gf

f1,...,fm
}]s. In the case when some fi does not depend on all its

arguments, i.e., there exists gi ∈ [fi] of arity less than n such that fi ∈ [gi], we

12



TABLE 4: Qfpp-definition of WC2 over WC1.

C2 C1 WC2 ∈ 〈{WC1}〉 6∃
D1 I2 WD1(c0, x1, x2, c1)≡WI2(c0, c0, x1, x2, c1, x2, c1, c1)

R0 I0 WR0(c0) ≡WI0(c0, c0, c0, c0)

R1 I1 WR1(c1) ≡WI1(c1, c1, c1, c1)

M I WM(x1, x2) ≡WI(x1, x1, x2, x2)

D N2 WD(x1, x2) ≡WN2(x1, x2, x1, x2, x1, x2, x1, x2)

S200 V2 WS200(c0, x1, x2, x3, c1) ≡WV2(c0, x2, x3, c1, c1)∧
WV2(c0, x2, x1, x2, c1) ∧WV2(c0, x3, x1, x3, c1)

M0 V0 WM0(c0, x1, x2) ≡WV0(c0, x1, x2, x2)

S201 V1 WS201(x1, x2, x3, c1) ≡WV1(x1, x2, x3, c1, c1)

M V WM(x1, x2) ≡WV(x2, x2, x1, x1)

S210 E2 WS210(c0, x1, x2, x3, c1) ≡WE2(c0, c0, x2, x3, c1)∧
WE2(c0, x2, x1, x2, c1) ∧WE2(c0, x3, x1, x3, c1)

S211 E0 WS211(c0, x1, x2, x3) ≡WE0(c0, c0, x3, x2, x1)

M1 E1 WM1(x1, x2, c1) ≡WE1(x1, x2, x2, c1)

D1 L2 WD1(c0, x1, x2, c1) ≡WL2(c0, c0, x1, x1, x2, x2, c1, c1)

D L3 WD(x1, x2) ≡WL3(x1, x2, x2, x1, x1, x2, x1, x1, x2)

R1 L1 WR1(c1) ≡WL1(c1, c1, c1, c1)

R0 L0 WR0(c1) ≡WL1(c0, c0, c0, c0)

D1 D2 WD1(c0, x1, x2, c1) ≡WD2(c0, c1, x1, c0, x2, c1)

R2 D1 WR2(c0, c1) ≡WD1(c0, c0, c1, c1)

R2 M2 WR2(c0, c1) ≡WM2(c0, c0, c0, c1)

R1 M1 WR1(c1) ≡WM1(c1, c1, c1)

R0 M0 WR0(c0) ≡WM0(c0, c0, c0)

M2 S200 WM2(c0, x1, x2, c1) ≡WS200(c0, x1, x2, c1, c1)

M1 S201 WM1(x1, x2, c1) ≡WS201(x1, x2, c1, c1)

R2 S202 WR2(c0, c2) ≡WS202(c0, c1, c1, c0)

R1 S20 WR1(c1) ≡WS20(c1, c1, c1)

M2 S210 WM2(c0, x1, x2, c1) ≡WS210(c0, x1, c0, x2, c1)

M0 S211 WM0(c0, x1, x2) ≡WS211(c0, x1, c0, x2)

R2 S212 WR2(c0, c2) ≡WS212(c0, c0, c0, c1)

R0 S21 WR2(c0) ≡WS21(c0, c0, c0)
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will typically write gf
f1,...,gi,...,fm

instead of gf
f1,...,fi,...,fm

since the intended
ordering of arguments will always be clear from the context. Let us illustrate
how this construction can be used together with Theorem 6 by an example.

Example 3. Consider the three clones BF, I2,N2, and recall that BF = [x∧̄y],
I2 = [π1

1 ], and N2 = [x]. In Example 2 we proved that PI2 ∪ {x} could
define x ∧ y, but using Definition 7 it is also straightforward to show that
x∧̄y can be defined, in a rather mechanical way. Thus, in order to apply
Theorem 6, we show that x∧̄y ∈ [PI2 ∪ {x}]s. Let f(x, y) = x∧̄y and
f1(x) = x. Using Definition 7 we construct the ternary partial operation gf

f1
,

resulting in a partial operation with domain {(f1(x), x, y) | x, y ∈ {0, 1}}
defined such that gf

f1
(f1(x), x, y) = x∧̄y for all x, y ∈ {0, 1}. In other words

gf
f1

(1, 0, 0) = 1 and gf
f1

(1, 0, 1) = gf
f1

(0, 1, 0) = gf
f1

(0, 1, 1) = 0, and it is
readily verified that gf

f1
preserves WI2. Theorem 6 then implies that PI2 6⊆ PC

for every clone C such that N2 ⊆ C and C 6= BF.

The main technical difficulty is to choose the operations f1, . . . , fm in a
suitable way such that the resulting partial operation gf

f1,...,fm
actually pre-

serves WC. We have organised these definitions in Table 5, which should
be interpreted as follows. First, each entry begins with three distinct clones
C1,C2,C3 where C3 ∈ Cover(C1) and PC1 ⊂ PC2. This is followed by
one, or possibly two, operations f, f ′ such that [C3 ∪ {f, f ′}] = C2. The last
element of the entry then consists of operations f1, . . . , fm, f ′1, . . . , f

′
m ∈ C3

such that gf
f1,...,fm

and gf′

f′
1,...,f′

m
preserve WC1

? . Hence, Theorem 6 implies
that PC1 6⊆ PC′ for any C′ such that C3 ⊆ C′ ⊂ C2.

Example 4. Consider the entry in Table 5 for R2, I2, E2. Then f(x, y) = x∨y,
f ′(x, y, z) = x ∧ (y ↔ z), and E2 = [∧]. The provided definitions of f1, f ′1,
and f ′2 are f1(x, y) = x ∧ y, f ′1(x, y, z) = x ∧ y, and f ′2(x, y, z) = x ∧ z, re-
sulting in partial operations gf

f1
and gf′

f′
1,f′

2
defined such that gf

f1
(x∧y, x, y) =

f(x, y) = x∨y and gf′

f′
1,f′

2
(f ′1(x, y, z), f ′2(x, y, z), x, y, z) = gf′

f′
1,f′

2
(x∧y, x∧

z, x, y, z) = f ′(x, y, z) = x ∧ (y ↔ z). Hence, [PI2 ∪ E2]s contains R2, and
Theorem 6 then implies that PI2 6⊆ PC for every E2 ⊆ C ⊂ R2.

We now turn to the infinite chains in Post’s lattice, i.e., clones C containing
S00 but contained in S20, or their dual clones S10 and S21.

Lemma 8. Let n ≥ 2. Then PSn+1
0 ⊂ PSn0 , PSn+1

02 ⊂ PSn02, PSn+1
01 ⊂ PSn01,

PSn+1
00 ⊂ PSn00, and PSn00 ⊂ PSn02. Moreover, PC 6⊆ PC′ for any other two

clones C,C′ ∈ {Sn0 ,Sn02,Sn01,Sn00 | n ≥ 2}.
? The preservation condition has been formally verified by a computer program for all entries

in the table.
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FIGURE 2: A visualization of the poset (LW ,⊆). There exists a path
consisting of upward edges connecting PC to PC′ if and only if PC ⊂ PC′.
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TABLE 5: Partial operations witnessing non-inclusions in Figure 2.

C2,C1,C3 f, f ′ (f1, . . . , fm), (f ′1, . . . , f
′
m)

D1, I2,D2 xy ∨ xz̄ ∨ yz̄ (h2(x, y, z))

D1, I2, L2 xy ∨ xz̄ ∨ yz̄ (x⊕ y ⊕ z)
R2, I2,E2 x ∨ y, x ∧ (y ↔ z) (x ∧ y), (x ∧ y, x ∧ z)
R2, I2,V2 x ∧ y, x ∧ (y ↔ z) (x ∨ y), (x ∨ y, x ∨ z)
BF, I2, I0 x∧̄y (0)

BF, I2, I1 x∧̄y (1)

BF, I2,N2 x ∧ y (x)

R1, I1,V1 x↔ y (x ∨ y)

R1, I1, L1 x ∨ y (x↔ y)

R1, I1,E1 x ∨ y, x↔ y (x ∧ y), (x ∧ y)

R1, I1, I x ∨ y, x↔ y (0), (0)

R0, I0,E0 x⊕ y (x ∧ y)

R0, I0, L0 x ∧ y (x⊕ y)

R0, I0,V0 x ∧ y, x⊕ y (x ∨ y), (x ∨ y)

R0, I0, I x ∧ y, x⊕ y (1), (1)

M, I,V x ∧ y (x ∨ y)

M, I,E x ∨ y (x ∧ y)

M, I,N x ∨ y, x ∧ y (1), (1)

D,N2,N xy ∨ xz̄ ∨ ȳz̄ (1)

D,N2, L3 xy ∨ xz̄ ∨ ȳz̄ (x⊕ y ⊕ z ⊕ 1)

BF,N, L x∧̄y (x⊕ y)

BF,V2,V1 x∧̄y (1)

BF,V2,V0 x∧̄y (0)

S200,V2, S00 h2(x, y, z) (x ∨ yz, y ∨ xz, z ∨ xy)

S201,V1, S01 h2(x, y, z) (x ∨ yz, y ∨ xz, z ∨ xy)

S201,V1,V h2(x, y, z) (0)

M0,V0,V x ∧ y (1)

S210,E2,E1 x ∧ (y ∨ z), h2(x, y, z) (1), (1)

S210,E2,S10 h2(x, y, z) (xy ∨ xz, yx ∨ yz, zx ∨ zy)

S210,E2,E0 x ∧ (y ∨ z), h2(x, y, z) (0), (0)

M1,E1,E (x ∧ y) (0)

S211,E0,S11 h2(x, y, z) (xy ∨ xz, yx ∨ yz, zx ∨ zy)

S211,E0,E h2(x, y, z) (1)

BF, L2, L0 x∧̄y (x⊕ y)

BF, L2, L3 x∧̄y (y ⊕ y ⊕ x⊕ 1)

BF, L2, L1 x∧̄y (x↔ y)

D, L3, L xy ∨ xz̄ ∨ ȳz̄ (1)

R1, L1, L x ∨ y (1)

R0, L0, L x ∧ y (1)

D1,D2, S200 xy ∨ xz̄ ∨ yz̄ (x ∨ yz)
BF,D1,D x∧̄y (xy ∨ x̄ȳ)

BF,R2,R1 x∧̄y (x↔ y)

BF,R2,R0 x∧̄y (x⊕ y)
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Proof. The inclusions can be proved via the qfpp-definitions:

WSn0 (x1, . . . , xn, c1) ≡WSn+1
0 (x1, x1, x2, . . . , xn, c1),

WSn02(c0, x1, . . . , xn, c1) ≡WSn+1
02 (c0, x1, x1, x2, . . . , xn, c1),

WSn01(x1, . . . , xn, c1) ≡WSn+1
01 (x1, x1, x2, . . . , xn, c1),

WSn00(c0, x1, . . . , xn, c1) ≡WSn+1
00 (c0, x1, x1, x2, . . . , xn, c1),

and
WSn02(c0, x1, . . . , xn, c1) ≡WSn00(c0, c0, x1, . . . , xn, c1).

For a case PC 6⊆ PC′ where inclusion does not hold we provide a partial
operation f preserving WC′ but not WC. Let f be the unary partial operation
f(1) = 0. We claim that f ∈ PSk02 \ PSn0 , where n ≥ 2. From Table 2 we
see that t[1] = 0 for every t ∈WSk02, implying that f(t) is always undefined
and that f preserves WSk02. On the other hand, 1n ∈ WSn0 but 0n 6∈ WSn0 ,
where 1n = (1, . . . , 1) and 0n = (0, . . . , 0) (both n-ary tuples) implying that
f(1n) /∈ WSn0 . Using similar arguments it can be seen that f ∈ PSk00 \ PSn0
and f ∈ PSk00 \ PSn01.

For the remaining case we define a binary partial operation f ′ such that
dom(f ′) = {(0, 1), (1, 0), (1, 1)} and f ′(0, 1) = f ′(1, 0) = 0, f ′(1, 1) =

1. From Table 2 we see that WSk01 = {(0, x1, . . . , xn)|(x1, . . . , xn) ∈
{0, 1}k−1\0k−1}∪{1k+1}. This means that f ′(s, t) is defined for s, t ∈WSk01
only if there does not exist i ∈ {1, . . . , k} such that s[i] = t[i] = 0. Hence,
if f(s, t) is defined, then at least one of s and t is equal to 1n. If s = t = 1k,
then f ′(s, t) = 1k, and if s 6= t, then from the definition of f ′ it must be the
case that f ′(s, t) = s assuming t = 1k (the case when s = 1k is symmetric).
This proves that f ′ ∈ PSk01. On the other hand, there exists u, v ∈WSn0 such
that u[i]⊕ v[i] = 1 for i ∈ {1, . . . , n}, and such that u[n+ 1] = v[n+ 1] = 1.
This implies that f ′(u, v) is defined and returns a tuple w where w[i] = 0 for
i ∈ {1, . . . , n}, and where w[n + 1] = 1. But then w 6∈ WSn0 . Hence, we
conclude that f ′ preserves WSk01 but not WSn0 .

Lemma 8 is also valid for PS0,PS02,PS01,PS00, and can be proved for
the dual clones in Figure 1 using entirely analogous arguments. Finally, by
combining the results in this section we may now prove the main result of the
article (see Figure 2 for a visualization).

Theorem 9. Let C,C′ be two Boolean clones. Then PC ⊂ PC′ if and only
if there exists a path consisting of upward edges connecting PC to PC′ in
Figure 2.
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Proof. All positive inclusions in Figure 2 follow from Table 4 and Lemma 8.
Assume that PC 6⊆ PC′ according to Figure 2 but that C ⊂ C′. If S00 ⊆
C ⊆ S20, or S10 ⊆ C ⊆ S21, then the non-inclusion follows from Lemma 8.
Otherwise there exists an entry C2,C,C3 in Table 5 such that C3 ∈ Cover(C),
C3 ⊆ C ′, f, f ′ ∈ C2, gf

f1,...,fm
, gf′

f′
1,...,f′

m
∈ PC and f1, f ′1, . . . , fm, f

′
m ∈ C3

such that [{gf
f1,...,fm

, gf′

f′
1,...,f′

m
, f1, . . . , fm, f

′
1, . . . , f

′
m}]s ⊆ [PC ∪ C3]s ∩

BF 6⊆ C′. Theorem 6 then gives the desired result that PC 6⊆ PC′.

4 COVERING AND C-MAXIMAL STRONG PARTIAL CLONES

Theorem 9 gives a complete classification of the inclusion structures of
Boolean weak bases. However, several questions remain unanswered. For
example, assume that there is an edge between PC1 and PC2 in Figure 2. This
implies that PC1 ⊂ PC2, but does it also imply that PC2 covers PC1? We
will see that this question can be related to the task of describing the strong
partial clones in the “near vicinity” of PC, in the sense that we are interested
in describing the strong partial clones covered by PC. Of particular interest
are the maximal elements in the set L|C, i.e., the strong partial clones in L|C
covered by the greatest element PC. This naturally leads to the following
definition.

Definition 10. Let C be a Boolean clone. A strong partial clone pPol(Γ) ∈
L|C is said to be C-maximal if pPol(Γ) is covered by PC.

The definition can easily be generalised to larger domains, but to simplify
the presentation we concentrate on the Boolean case. We can then relate
the aforementioned covering question to C-maximal strong partial clones as
follows.

Lemma 11. Let C1 and C2 be two Boolean clones. If there exists a direct
edge from PC1 to PC2 in Figure 2 and PC2 does not cover PC1 then either

1) PC1 is included in a C2-maximal strong partial clone, or

2) there exists ∆1,∆2, . . . such that Pol(∆i) = C2 for each i ≥ 1, PC1 ⊂
pPol(∆1) ⊂ pPol(∆2) ⊂ . . ., and

⋃
i≥1 pPol(∆i) = PC2.

Proof. If PC2 does not cover PC1 then there exists pPol(Γ) such that PC1 ⊂
pPol(Γ) ⊂ PC2. Let Pol(Γ) = C. Clearly, C = C1 cannot happen since PC1

is the largest element in L|C1
, and if C1 ⊂ C ⊂ C2 then PC1 ⊂ pPol(Γ) ⊆

PC ⊂ PC2, contradicting the assumption that there exists a direct edge
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between PC1 and PC2 (if PC1 ⊂ PC ⊂ PC2 then Figure 2 would not have an
edge between PC1 and PC2). But then C = C2, and if pPol(Γ) is not included
in any maximal strong partial clone in L|C2

it is then clear that pPol(Γ) must
be included in a chain of strong partial clones of the stated form.

To prove covering between PC1 and PC2 we thus only have to rule out case
1) and case 2) in Lemma 11. In general, this is harder than one might expect
since C-maximal elements are not well understood, but in practice this can be
accomplished in surprisingly many cases due to the peculiar structure of the
inclusions in Figure 2. In fact, we will be able to prove something significantly
stronger for many strong partial clones PC. Say that PC1 is uniquely covered
by PC2 if (1) PC2 covers PC1 and (2) there does not exist pPol(Γ) 6= PC2

such that pPol(Γ) covers PC1. The property of a strong partial clone uniquely
covering a strong partial clone is incredibly strong, and in general we would
expect such a property to hold only in rare cases. Before we investigate for
which pairs of strong partial clones where unique covering holds we need the
following lemma.

Lemma 12. Let C1 be a Boolean clone. If there exists a unique PC2 such that
there is an edge from PC1 to PC2 in Figure 2, and L|C2

is finite, then PC1

is uniquely covered by PC2 if PC1 6⊆ pPol(Γ) for each C2-maximal strong
partial clone pPol(Γ).

Proof. Assume that pPol(Γ) covers PC1, and let Pol(Γ) = C. If C 6= C2 then
PC1 ⊂ pPol(Γ) ⊆ PC, which contradicts the assumption that there exists a
unique edge from PC1 to PC2. Hence, Pol(Γ) = C.

By assumption, L|C2
is finite, which rules out the existence of ∆1,∆2, . . .

such that C2 = Pol(∆i) for each i ≥ 1 and such that pPol(∆1) ⊂ pPol(∆2) ⊂
. . . and

⋃
i≥1 pPol(∆i) = PC2. But if pPol(Γ) ⊂ PC2 then pPol(Γ) must be

included in a C2-maximal strong partial clone. Hence, if PC1 is not included
in any C2-maximal strong partial clone then pPol(Γ) = PC2, and PC1 is
uniquely covered by PC2.

A priori, Lemma 12 might not look very helpful since the assumption that
L|C is finite is very restrictive, but in practice this is true for a significant
number of pairs PC1, PC2 in Figure 2, as the following theorem demonstrates.

Theorem 13. The following statements are true.

1) PD1 uniquely covers PI2, PD2 and PL2.

2) PD uniquely covers PL3 and PN2.
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3) PM2 uniquely covers PS200 and PS210.

4) PM1 uniquely covers PS201 and PE1.

5) PM0 uniquely covers PS211 and PV0.

6) PM uniquely covers PI, PV, and PE.

7) PR2 uniquely covers PS202, PM2, PD1, and PS212.

8) PR1 uniquely covers PS20, PI1, PL1, and PM1.

9) PR0 uniquely covers PS21, PI0, PL0, and PM0.

Proof. We begin by describing the C-maximal strong partial clones for each
listed clone C of the first form, and remark that each interval L|C is then known
to be finite. For D1, Haddad & Simons fully classified L|D1

[11], and we have
the D1-maximal strong partial clones pPol({WD1,F}), pPol({WD1,T}),
pPol({Neq × F}), pPol({Neq × T}), pPol({Neq,F × T}). Similarly, the
M2-maximal strong partial clones are pPol({WM2,F}), pPol({WM2,T}),
pPol({WM,F×T}}) [11]. The remaining intervals have a very simple struc-
ture, and it is known (see, e.g., Schölzel [20]) that the only M1-maximal (re-
spectively M0-maximal) strong partial clone is pPol({WM1,T}) (respectively
pPol({WM0,F})), that the R2-maximal strong partial clones are pPol({WR2,F})
and pPol({WR2,T}), and that |L|R0

|= |L|R1
|= |L|M|= |L|D|= 1.

With these descriptions in mind the task is now straigthforward with the
help of Lemma 12. Consider PD1 and PI2, and let the partial operations
f0, f1, f2, f3, f4 be defined asf0(0) = 1, f1(1) = 0, f2(0, 0) = f2(0, 1) =

f2(1, 0) = 0, f3(0, 1) = f3(1, 0) = f3(1, 1) = 1, f4(0, 1) = f4(1, 0) = 0,
and undefined otherwise. It is then readily verified that fi for 0 ≤ i ≤ 4

preserves WI2 but that f0 /∈ pPol({WD1,F}), f1 /∈ pPol({WD1,T}), f2 /∈
pPol({Neq×F}), f3 /∈ pPol({Neq×T}), and that f4 /∈ pPol({Neq,F×T}).
Hence, PI2 is incomparable to each D1-maximal strong partial clone, and it
follows that PI2 is uniquely covered by PD1.

We consider one additional case in detail, namely PM2 and PS200. Ac-
cording to the aforementioned description of the PM2-maximal strong par-
tial clones, we need to show that PS200 is not included in pPol({WM2,F}),
pPol({WM2,T}), and pPol({WM,F × T}}). For the first two cases we
may reuse the two partial operations f0 and f1 from the previous case. For
the third case we define the ternary partial operation f5 as f5(0, 0, 1) = 1,
f5(0, 1, 1) = 0. Then f5 does not preserve {WM,F × T} since it does not
preserve WM = {(0, 0), (0, 1), (1, 1)}, but is straightforward to verify that f5
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preserves WS200 since f5(t1, t2, t3) is always undefined for any sequence of
tuples t1, t2, t3 ∈WS200.

All other cases can be proven using similar arguments, and we omit the
details.

It might be interesting to observe that some cases of Theorem 13 were
known to hold before [14], but in the context of determining the submaximal
strong partial clones, i.e., strong partial clones covered by a maximal strong
partial clone. One such example is PD1 which is covered by the maximal
strong partial clone PR2 = pPol(F× T).

5 CONCLUDING REMARKS

In this article we have fully described the inclusion structure of Boolean weak
bases. In the process we also proved several strong covering results between
PC1 and PC2 in Figure 2. An interesting continuation is to verify, or disprove,
that an inclusion between PC and PC′ in Figure 2 also implies that PC is
covered by PC′. Here, one difficulty is that the remaining intervals L|C are
all equal to the continuum [7] and are in general not well understood, making
it challenging to describe the C-maximal strong partial clones. Hence, is it
possible to describe the C-maximal strong partial clones even if L|C is not
finite?

Another suitable topic is to study weak bases over arbitrary finite domains.
In this setting we cannot hope for a complete classification akin to Figure 2, but
even partial results could be of interest. For example, given a minimal clone C
over a finite domain D, is it possible to describe a weak base of Inv(C)?
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