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Abstract

Obtaining lower bounds for NP-hard problems has for a long time been an active area
of research. Algebraic techniques introduced by Jonsson et al. (JCSS 2017) show that
the fine-grained time complexity of the parameterized SAT(·) problem correlates to the
lattice of strong partial clones. With this ordering they isolated a relation R such that
SAT(R) can be solved at least as fast as any other NP-hard SAT(·) problem. In this paper
we extend this method and show that such languages also exist for the surjective SAT
problem, the max ones problem, the propositional abduction problem, and the Boolean
valued constraint satisfaction problem over finite-valued constraint languages. These
languages may be interesting when investigating the borderline between polynomial
time, subexponential time and exponential-time algorithms since they in a precise sense
can be regarded as NP-hard problems with minimum time complexity. Indeed, with
the help of these languages we relate all of the above problems to the exponential time
hypothesis (ETH) in several different ways.
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1. Introduction

In this article we study the fine-grained complexity of NP-hard optimization problems
and logical reasoning problems, with a particular focus on describing the relative
complexity of the problems in each class. For each problem class under consideration
we are interested in determining an intractable problem which is ‘maximally easy’,
in the sense that there cannot exist any other intractable problem in the class with a
strictly lower (exponential) running time. After successfully accomplishing this for
the four problems under consideration we then explore the likelihood of obtaining
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subexponential time algorithms, in light of the exponential-time hypothesis, where we
obtain several strong equivalent characterizations.

Background

A superficial analysis of the NP-complete problems may lead one to think that they
are a highly uniform class of problems: in fact, under polynomial-time reductions,
the NP-complete problems may be viewed as a single problem. However, there are
many indications (both from practical and theoretical viewpoints) that the NP-complete
problems are a diverse set of problems with highly varying properties, and this be-
comes visible as soon as one analyses these problems with more refined methods than
polynomial-time reductions. This has inspired a strong line of research on the ‘inner
structure’ of the set of NP-complete problem, sometimes referred to as fine-grained
complexity, to contrast it against classical coarse-grained complexity. Examples include
the intensive search for faster algorithms for NP-complete problems [1] and the highly
influential work on the exponential-time hypothesis (ETH) and its variants [2]. Such
research might not directly resolve whether P is equal to NP or not, but rather attempts
to explain the seemingly large difference in complexity between NP-hard problems, and
what makes one problem seemingly harder than another. Tangentially related research
include investigations into more restricted nondeterministic complexity classes than
NP, e.g., the complexity class VERTEXNLIN, which is also defined with respect to a
fine-grained complexity parameter [3].

Unfortunately, there is a lack of general methods for studying and comparing
the complexity of NP-complete problems with more restricted notions of reducibility.
Jonsson et al. [4] presented a framework based on clone theory, applicable to problems
that can be viewed as ‘assigning values to variables’, such as Boolean satisfiability
(SAT) problems, constraint satisfaction problems (CSPs), the vertex cover problem,
and integer programming problems. In short, every instance of a ‘variable assignment
problem’ corresponds to a set of potential models, and with the algebraic approach
it is possible to describe the symmetry of this solution space by properties of partial
polymorphisms, in such a way that computationally hard problems have a small amount
of symmetry, while comparably easier problems have a richer amount of symmetry.
The corresponding algebraic method for studying classical complexity based on total
polymorphisms, the so-called algebraic approach, turned out to be immensely successful
and recently resulted in a complete characterization of the classical complexity of CSPs:
the CSP dichotomy theorem [5, 6]. For a direct comparison between the classical
and fine-grained approach, see e.g. the survey by Couceiro et al. [7]. Hence, while
the algebraic framework for studying fine-grained complexity is not as mature as the
algebraic approach for studying classical complexity, there is potentially much to gain
from expanding this toolbox, and investigating its limits by exploring new classes of
problems.

Aims and methods

Inspired by this algebraic framework of Jonsson et al. [4] we study fine-grained
complexity aspects for a wide range of ‘variable assignment problems’ of particular
importance in Boolean optimization and propositional logical reasoning. To analyze
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and relate the complexity of these problems in greater detail we utilize polynomial-time
reductions which increase the number of variables by a constant factor (linear variable
reductions or LV-reductions) and reductions which increase the amount of variables
by a constant (constant variable reductions or CV-reductions). Note the following:
(1) if a problem A is solvable in O(cn ·poly(m)) time (where n denotes the number of
variables and m the size of the instance) for all c > 1 and if problem B is LV-reducible
to A then B is also solvable in O(cn ·poly(m)) time for all c > 1 and (2) if A is solvable
in time O(cn · poly(m)) and if B is CV-reducible to A then B is also solvable in time
O(cn ·poly(m)). Thus, LV-reductions preserve subexponential complexity while CV-
reductions preserve the exact constant in an exponential running time of the form
O(cn ·poly(m)).

While there exist NP-hard problems solvable in subexponential time, e.g., the
FEEDBACK ARC SET problem restricted to tournaments [8], it is widely believed that
this is not the case for all NP-hard problems. The particular conjecture that the 3-
SAT problem is not solvable in subexponential time is known as the exponential-time
hypothesis (ETH) [9]. Thus, the ETH can be seen as a stronger, more fine-grained variant
of P 6= NP, which has proven to be an immensely useful tool for proving superpolynomial
lower bounds for many different types of problems [10]. In this vein, and with the
aforementioned algebraic approach, Jonsson et al. [4] studied the Boolean satisfiability
SAT(·) problem and identified an NP-hard SAT({R}) problem CV-reducible to all other
NP-hard SAT(·) problems. Hence SAT({R}) is, in a sense, the easiest NP-complete
SAT(·) problem since if any other NP-hard SAT(Γ) can be solved in O(cn) time, then
this holds for SAT({R}), too. The existence of an ‘easiest problem’ of this form is not
only an interesting theoretical curiosity, but has important consequences. For example:
if there exists any NP-hard SAT(Γ) problem solvable in subexponential time, then the
easiest problem SAT({R}) must be solvable in subexponential time, too. Hence, if we
can prove that 3-SAT is no harder than SAT({R}), via a suitable LV-reduction, then
no NP-hard SAT(Γ) problem is solvable in subexponential time without violating the
ETH. The advantage is then that it is significantly easier to show the existence of an LV-
reduction of this form for a concrete language {R}, than to consider arbitrary intractable
problems SAT(Γ). With the aid of this result, Jonsson et al. [4] also analyzed the
applicability of the sparsification lemma [11] for arbitrary SAT(·) problem, and proved
that sparsification of SAT(Γ) is always possible when Γ is finite. This should not be
taken for granted since Santhanam and Srinivasan [12] have proven that sparsification is
not always possible for infinite constraint languages. This study was later generalised to
a broad class of finite-domain constraint satisfaction problems where it was proven that
one can find an ‘easiest NP-hard CSP’ for every fixed, finite, domain [13]. Curiously,
this sequence of problems was shown to decrease in complexity, in the sense that one
for every c > 1 can find an NP-hard finite-domain CSP problem solvable in O(cn)
time, even though none of these problems are solvable in subexponential time without
contradicting the ETH. However, if one steps into the realm of infinite-domain CSPs,
then it is known that there cannot exist an ‘easiest NP-hard infinite-domain CSP’, unless
the ETH is false [14]. Thus, while easiest problems of this form exist for finite-domain
CSPs and SAT problems, they should in general not be taken for granted. We believe
that the existence and construction of such easiest languages forms an important puzzle
piece in the quest of relating the complexity of NP-hard problems with each other, since
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it effectively gives a lower bound on the time complexity of a given problem with respect
to constraint language restrictions.

Our results

As a logical continuation on the work on SAT(·) and CSP(·) we pursue the study
of CV- and LV-reducibility in the context of Boolean optimization problems and logical
reasoning problems. In particular, we investigate the complexity of the maximum ones
problem (MAX-ONES(·)), the surjective satisfiability problem (SSAT(·)), the propo-
sitional abduction problem (ABD(·)) and the Boolean valued constraint satisfaction
problem (VCSP(·)). These problems are presented in greater detail in Section 2, but for
the moment they can be summarised as follows.

• The MAX-ONES(·) problem [15] is a variant of SAT(·) where the goal is to find
a satisfying assignment which maximizes the number of variables assigned the
value 1. This problem is closely related to the 0/1 LINEAR PROGRAMMING
problem.

• The SSAT(Γ) problem is another twist on the classical SAT(Γ) problem where
the goal is to find a surjective solution, which in the Boolean domain simply means
that the presented solution is not constantly 0 or constantly 1 [16]. The SSAT(·)
problem is not only of theoretical interest and its complexity classification has
been used to simplify complexity classifications of other problems of practical
interest, e.g., enumeration problems [17].

• The ABD(Γ) problem is a well-known problem within artificial intelligence
where the goal is to find an explanation of a manifestation which is consistent
with a given Γ-formula. A complexity trichotomy is known for every finite,
Boolean language Γ [18, 19], and we concentrate on the case when ABD(Γ) is
included in NP.

• The VCSP(·) problem is a function minimization problem that generalizes the
MAX-CSP and MIN-CSP problems [15].

We treat both the unweighted and weighted versions of MAX-ONES(·) and VCSP(·)
and use the prefix U to denote the unweighted problem and W to denote the weighted
version. All of these problems are well-studied with respect to separating tractable
cases from NP-hard cases [15, 20] but much less is known when considering the
weaker schemes of LV-reductions and CV-reductions. We begin (in Section 3) by
identifying the easiest languages for SSAT(·), W-MAX-ONES(·), and ABD(·). The
idea behind these proofs is to first perform a ‘coarse-grained’ complexity analysis,
based on existing classical complexity classifications, and for each such case determine
the easiest problem by identifying a constraint language with the richest set of partial
polymorphisms. However, this may still result in a large number of cases that needs
to be compared, and to identify an easiest problem one needs to prove that one such
problem is CV-reducible to every other problem, which in general is highly non-trivial.
To accomplish this for the W-MAX-ONES(·) problem we investigate a novel reduction
technique based on weighted primitive positive implementations [21].
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For VCSP(·) the situation differs even more since the algebraic techniques de-
veloped for CSP(·) are not applicable — instead we use multimorphisms [22] when
considering the complexity of VCSP(·) in Section 3.4. We prove that the binary func-
tion f 6=, which returns 0 if its two arguments are different and 1 otherwise, results in the
easiest NP-hard VCSP(·) problem. This problem is very familiar since it is the MAX
CUT problem slightly disguised. The complexity landscape surrounding these problems
is outlined in Section 3.5. Interestingly, it turns out that none of the identified problems,
with the possible exception of the easiest ABD(·) problem, is easier than the easiest
SAT(·) problem from Jonsson et al. [4].

With the aid of the languages identified in Section 3, we continue (in Section 4)
by relating the problems to subexponential complexity, using the ETH as a guiding
star. This is accomplished via the aforementioned LV-reductions since they preserve
subexponential complexity. For each such problem there are then two main questions
with respect to subexponential complexity: is it possible to find an LV-reduction from
3-SAT, and is every such problem LV-reducible to 3-SAT? Since LV-reductions preserve
subexponential complexity this means that we (1) rule out the possibility of subexpo-
nential algorithms if the ETH is true, and (2) show that every such problem is solvable
in subexponential time if the ETH is false. If both of these conditions are proven to
hold for a problem one therefore obtains a complete understanding of subexponential
complexity (under the ETH). In particular, our results imply (1) if the ETH is true
then no NP-complete U-MAX-ONES(Γ), W-MAX-ONES(Γ), SSAT(Γ), ABD(Γ), or
VCSP(∆) problem is solvable in subexponential time and (2) if the ETH is false then
U-MAX-ONES(Γ), SSAT(Γ), and U-VCSPd(∆) are solvable in subexponential time
for every choice of Γ and ∆ and d ≥ 0. Here, U-VCSPd(∆) is the U-VCSP(∆) problem
restricted to instances where the sum to minimize contains at most dn terms. Thus, to
disprove the ETH, our result implies that it is sufficient to find a single language Γ or
a set of cost functions ∆ such that U-MAX-ONES(Γ), W-MAX-ONES(Γ), SSAT(Γ),
ABD(Γ), or VCSP(∆) is NP-hard and solvable in subexponential time.

2. Preliminaries

Let Γ denote a finite set of finitary relations over B= {0,1}. We call Γ a Boolean
constraint language, and when there is no risk for confusion, simply a constraint
language. Given R⊆ Bk we let ar(R) = k denote its arity, and similarly for functions.
When Γ = {R} we typically omit the set notation and treat R as a constraint language.
We write Q≥0 for the set of all rational numbers larger than or equal to 0.

2.1. Problem Definitions

Let us now properly define the problems under consideration in this article. We
begin with the constraint satisfaction problem over a set of relations Γ over a domain D
(CSP(Γ)), which is defined as follows.

5



CSP(Γ)
INSTANCE: A set V of variables and a set C of constraint applications R(v1, . . . ,vk)
where R ∈ Γ, k = ar(R), and v1, . . . ,vk ∈V .
QUESTION: Is there a function f : V →D such that ( f (v1), . . . , f (vk)) ∈ R for each
R(v1, . . . ,vk) in C?

For the Boolean domain this problem is typically denoted as SAT(Γ), and in addition
we write k-SAT to denote the variant of the satisfiability problem where each input
clause is of length k. One may also remark that k-SAT can be formulated as a SAT(Γ)
problem by letting the constraint language Γ consist of relations corresponding to the
set of models of k-ary clauses. By SAT(Γ)-B we mean the SAT(Γ) problem restricted
to instances where each variable can occur in at most B constraints. Similarly, we write
k-SAT-B for the variant of k-SAT where each variable can occur in at most B constraints.
These restricted problems are occasionally useful since each instance contains at most
Bn constraints. We now define the variants of SAT(Γ) that are considered in this article.
The weighted maximum ones problem over Γ (W-MAX-ONES(Γ)) is defined as follows.

W-MAX-ONES(Γ)
INSTANCE: A SAT(Γ) instance ({x1, . . . ,xn},C) where each variable xi has an
associated weight wi ∈Q≥0
OBJECTIVE: Find a satisfying assignment h to ({x1, . . . ,xn},C) which maximises
the sum ∑

n
i=1 wi h(xi).

Example 1. Naturally, every NP-hard SAT(Γ) problem results in a natural optimisation
variant W-MAX-ONES(Γ) where one wishes to find a solution maximising the number of
variables assigned 1. However, W-MAX-ONES(·) also includes many problems without
a clear link to the standard satisfiability problem. For example, consider the relation
NAND2 = {(0,0),(0,1),(1,0)}, and take an instance of W-MAX-ONES(NAND2),
interpreted as the complement of a graph (i.e., a constraint NAND2(x,y) means that
there is no edge between x and y). The resulting problem is then nothing else than a
reformulation of the (weighted variant of) the MAX INDEPENDENT SET problem, which
is well known to be NP-hard. In contrast, SAT(NAND2) is a special case of 2-SAT,
and is thus solvable in polynomial time.

The unweighted maximum ones problem (U-MAX-ONES(Γ)) is the W-MAX-ONES(Γ)
problem where all weights have the value 1. Occasionally, it does not matter whether the
problem is weighted or unweighted, and in that case we simply write MAX-ONES(Γ).

SSAT(Γ)
INSTANCE: A SAT(Γ) instance I.
QUESTION: Does there exist a satisfying assignment to I which is surjective?
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Note that, since we operate in the Boolean domain, an assignment is surjective if
and only if it is non-constant, i.e., does not assign the same value to each variable.

A finite-valued cost function on B is a function f : Bk→Q≥0. The valued constraint
satisfaction problem over a finite set of finite-valued cost functions ∆ (VCSP(∆)) is
defined as follows.

VCSP(∆)
INSTANCE: A set V = {x1, . . . ,xn} of variables and an objective function

fI(x1, . . . ,xn) =
m

∑
i=1

wi fi(xi),

where fi is a cost function in ∆, xi is a tuple over the variables V , and wi is a
non-negative rational weight.
OBJECTIVE: Find an assignment h : V → B such that fI(h(x1), . . . ,h(xn)) is min-
imised.

When the set of cost functions is singleton { f} we write VCSP( f ) for the VCSP(·)
problem over { f}. We let U-VCSP be the VCSP problem without weights and
U-VCSPd (for d ≥ 0) denote the U-VCSP problem restricted to instances contain-
ing at most d |Var(I)| constraints.

Example 2. Many optimization problems can be viewed as VCSP(∆) problems for suit-
able ∆; well-known examples are the MAX-CSP(Γ) and MIN-CSP(Γ) problems where
the number of satisfied constraints in a CSP instance are maximized or minimized. For
each Γ, there obviously exists sets of cost functions ∆min,∆max such that MIN-CSP(Γ)
is polynomial-time equivalent to VCSP(∆min) and MAX-CSP(Γ) is polynomial-time
equivalent to VCSP(∆max).

For a second, concrete example, recall that f 6= is the Boolean cost function which
returns 0 if and only if its two arguments are unequal, and consider the problem
VCSP( f 6=). Then note that a VCSP( f 6=) instance can be viewed as a graph, and under
this interpretation the task is thus to minimise the (sum of the weight of the) edges
outside the cut, i.e., maximising the edges crossing the cut. Hence, this problem is a
reformulation of the well-known MAX-CUT problem.

We have defined U-VCSP, VCSP, U-MAX-ONES and W-MAX-ONES as optimiza-
tion problems, but to obtain a more uniform treatment we often view them as decision
problems, i.e. given k we ask if there is a solution with objective value k or better. We
note that the representation of k has a size bounded by those of the representations of
the weights. Thus, the introduction of the parameter k does not fundamentally change
the problems.

We close this section by introducing the propositional abduction problem over a con-
straint language Γ (ABD(Γ)) (denoted V-ABD(Γ, PosLits) in Nordh & Zanuttini [19]
and PQ-ABDUCTION(Γ) in Creignou & Zanuttini [18]). Given a set of variables A we
let Lits(A) = {x,¬x | x ∈ A} be the set of all (positive and negative) literals obtainable
from A.
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ABD(Γ)
INSTANCE: (ϕ,A,q), where ϕ is a Γ-formula, A⊆ Var(ϕ), q ∈ Var(ϕ)
QUESTION: Does there exist an E ⊆ Lits(A) such that

1. ϕ ∧∧E is satisfiable, and
2. ϕ ∧∧E ∧¬q is unsatisfiable.

Thus, the task is to find an explanation, which is a subset of literals, which is (1)
consistent with the input formula, and (2) together with the input formula logically
implies the manifestation q.

2.2. Size-Preserving Reductions and Subexponential Time

If A is a computational problem, then we let I(A) be the set of problem instances
and ‖I‖ be the size of any I ∈ I(A), i.e. the number of bits required to represent I. Many
problems can in a natural way be viewed as problems of assigning values from a fixed
finite set to a collection of variables. This is certainly the case for the problems under
consideration in this article but it is also the case for various graph problems such as
MAX-CUT and MAX INDEPENDENT SET. We call problems of this kind variable
problems and let Var(I) denote the set of variables of an instance I.

Definition 1. Let A1 and A2 be variable problems in NP. The function f from I(A1) to
I(A2) is a many-one linear variable reduction (LV-reduction) with parameter C ≥ 0 if

1. I is a yes-instance of A1 if and only if f (I) is a yes-instance of A2,
2. |Var( f (I))|=C · |Var(I)|+O(1), and
3. f (I) can be computed in time O(poly(‖I‖)).

LV-reductions can be seen as a restricted form of SERF-reductions [11]. The term
CV-reduction is used to denote LV-reductions with parameter 1, and we write A1 ≤CV A2
to denote that the problem A1 has an CV-reduction to A2. If A1 and A2 are two NP-hard
problems we say that A1 is at least as easy as (or not harder than) A2 if A1 is solvable
in O(c|Var(I)| ·poly(||I||)) time whenever A1 is solvable in O(c|Var(I)| ·poly(||I||)) time.
By definition, if A1 ≤CV A2 then A1 is not harder than A2 but the converse is not true
in general. If A1 and A2 are two problems mutually CV-reducible to each other, i.e.,
A1 ≤CV A2 and A2 ≤CV A1, then we write A1 =

CV A2.
A problem solvable in time O(2c |Var(I)| ·poly(||I||)) for all c > 0 is a subexponential

problem, and we let SE denote the class of all variable problems solvable in subexpo-
nential time. It is straightforward to prove that LV-reductions preserve subexponential
complexity for all problems A and B considered in this article, in the sense that if A
is LV-reducible to B then A ∈ SE if B ∈ SE. Naturally, SE can be defined using other
complexity parameters than |Var(I)| [11]. The conjecture that 3-SAT is not solvable in
subexponential time is then known as the exponential-time hypothesis (ETH) [9].
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2.3. Operations and Relations
We now define the most important classes of operations and relations. An operation

f is called arithmetical if f (y,x,x) = f (y,x,y) = f (x,x,y) = y for every x,y ∈ B. The
max function is defined as max(x,y) = 0 if x = y = 0 and 1 otherwise. We often express
a Boolean relation R as a logical formula whose satisfying assignment corresponds to
the tuples of R, often using the notation R(x1, . . . ,xn) ≡ ϕ(x1, . . . ,xn), where n is the
arity of R and where ϕ(x1, . . . ,xn) is a first-order formula with free variables x1, . . . ,xn.
F and T are the two constant relations {(0)} and {(1)} while Neq denotes inequality,
i.e. the relation {(0,1),(1,0)}. The relation n-EVEN is defined as {(x1, . . . ,xn) ∈ Bn |
∑

n
i=1 xi is even}. The relation n-ODD is defined dually. The relations ORn and NANDn

are the relations corresponding to the clauses (x1 ∨ . . .∨ xn) and (x1 ∨ . . .∨ xn). For
any n-ary relation R we let Rm 6=, 1≤ m≤ n, denote the (n+m)-ary relation defined as
Rm6=(x1, . . . ,xn+m)≡ R(x1, . . . ,xn)∧Neq(x1,xn+1)∧ . . .∧Neq(xn,xn+m). We let R1/3 =
{(0,0,1),(0,1,0),(1,0,0)}. Variables are typically named x1, . . . ,xn or x, and as a
convention we typically order the arguments of relations in such a way that any constant
arguments occur as the last (one or two) arguments.

2.4. Clone Theory
An operation f : Bk→ B is a polymorphism of a relation R if for every t1, . . . , tk ∈ R

it holds that f (t1, . . . , tk) ∈ R, where f is applied element-wise. In this case R is closed,
or invariant, under f . For a set of functions F we define Inv(F) (often abbreviated as
IF) to be the set of all relations invariant under all functions in F. Dually, for a set of
relations Γ, Pol(Γ) is defined to be the set of polymorphisms of Γ. Sets of the form
Pol(Γ) are known as clones and sets of the form Inv(F) are known as co-clones. A
clone Pol(Γ) can equivalently well be described as a set of functions which (1) contains
every function which returns a fixed argument (projections), and (2) is closed under
functional composition. These two conditions can also be combined to form a closure
operator over functions, and a generating set of a clone is called a base. In the Boolean
domain clones are fully determined due to Post [23]. See Table 2 for a comprehensive
list of Boolean clones, and Figure 1 for a visualization of their inclusion structure. It
is then known that the relationship between clones and co-clones constitute a Galois
connection [24].

Theorem 1. Let Γ, Γ′ be sets of relations. Then Inv(Pol(Γ′))⊆ Inv(Pol(Γ)) if and only
if Pol(Γ)⊆ Pol(Γ′).

Co-clones can equivalently be described as sets containing all relations R definable
through primitive positive implementations (pp-implementations) over a constraint
language Γ, i.e. definitions of the form

R(x1, . . . ,xn)≡ ∃y1, . . . ,ym .R1(x1)∧ . . .∧Rk(xk),

where each Ri ∈ Γ∪{Eq} and each xi is a tuple over x1, . . . ,xn, y1, . . . ,ym and where
Eq = {(0,0),(1,1)}. We typically use the expressions ‘pp-implementations’ and ‘pp-
definitions’ interchangeably. As a shorthand we let 〈Γ〉= Inv(Pol(Γ)) for a constraint
language Γ, and as can be verified this is the smallest set of relations closed under
pp-implementations over Γ. In this case Γ is said to be a base of 〈Γ〉, and if a co-clone
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admits a finite base it is said to be finitely generated; otherwise it is said to be infinitely
generated.

It is known that if Γ′ is finite and Pol(Γ) ⊆ Pol(Γ′) then CSP(Γ′) is polynomial-
time reducible to CSP(Γ) [25]. With this fact and Post’s classification of all Boolean
clones [23] Schaefer’s dichotomy theorem [26] for SAT(·) follows almost immedi-
ately. The complexity of MAX-ONES(Γ) is also preserved under finite expansions
with relations pp-definable in Γ, and hence follow the standard Galois connection [15].
Note, however, that Pol(Γ) ⊆ Pol(Γ′) does not imply that CSP(Γ′) ≤CV CSP(Γ) or
that CSP(Γ′) LV-reduces to CSP(Γ) since the number of constraints is not necessarily
linearly bounded by the number of variables.

To study these restricted classes of reductions we are therefore in need of Galois
connections with increased granularity. In Jonsson et al. [4] the SAT(·) problem is
studied with the Galois connection between closure under pp-definitions without exis-
tential quantification and strong partial clones. Here, we concentrate on the relational
description and instead refer the reader to Schnoor & Schnoor [17], and Couceiro et
al. [7], for the corresponding definitions on the functional side. If R is an n-ary Boolean
relation and Γ a constraint language then R has a quantifier-free primitive positive
implementation (qfpp-implementation) in Γ if

R(x1, . . . ,xn)≡ R1(x1)∧ . . .∧Rk(xk),

where each Ri ∈ Γ∪{Eq} and each xi is a tuple over x1, . . . ,xn. We use 〈Γ〉@ to denote
the smallest set of relations closed under qfpp-definability over Γ. If IC = 〈IC〉@ then IC
is sometimes called a weak system, or a weak co-clone. In Jonsson et al. [4] it is proven
that if Γ′ ⊆ 〈Γ〉@ and if Γ and Γ′ are both finite constraint languages then SAT(Γ′)≤CV

SAT(Γ). It is not hard to extend this result to the weighted W-MAX-ONES(·) problem
since it follows the standard Galois connection, and therefore we use this fact without
explicit proof. The only minor complication is that one has to ensure that the resulting
variable is given a weight which matches the sum of the weights of the variables which
it has replaced when equality constraints are removed, and variables are identified.
Similarly, it is very straightforward to show that the same reduction technique works for
SSAT(·) and ABD(·), and we thus have the following theorem.

Theorem 2. Let Γ and ∆ be finite Boolean constraint languages. If Γ⊆ 〈∆〉@, then

1. SAT(Γ)≤CV SAT(∆),
2. W-MAX-ONES(Γ)≤CV W-MAX-ONES(∆),
3. SSAT(Γ)≤CV SSAT(∆), and
4. ABD(Γ)≤CV ABD(∆).

Example 3. We consider a simple example to highlight the type of reduction one ob-
tains via Theorem 2. Recall that R1/3 is the ternary relation {(0,0,1),(0,1,0),(1,0,0)},
define the relation R6=01

1/3 as {(0,0,1,1,0,1),(0,1,0,1,0,1),(1,0,0,0,0,1)}, and ob-

serve that this relation is qfpp-definable over R1/3 since R6=01
1/3 (x1,x2,x3,x4,x5,x6) =

R1/3(x1,x2,x3)∧R1/3(x5,x5,x6)∧R1/3(x1,x4,x5). Next, consider an instance (V,C) of
(e.g.) W-MAX-ONES(R1/3). Any constraint R6=01

1/3 (x1
i ,x

2
i ,x

3
i ,x

4
i ,x

5
i ,x

6
i ) is then replaced
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by the constraints prescribed by the above qfpp-definition, i.e., we introduce the con-
straints R1/3(x1

i ,x
2
i ,x

3
i )∧R1/3(x5

i ,x
5
i ,x

6
i )∧R1/3(x1

i ,x
4
i ,x

5
i ). Crucially, while the number

of constraints increases by a constant factor, the number of variables does not change
at all, and it follows that the original instance has a solution of cost m if and only if the
new instance has a solution of cost m.

However, this does not hold (a priori) for the unweighted U-MAX-ONES(·) problem
since one cannot safely remove equality constraints without using weights. We will
circumvent this problem by introducing a special class of relations which are qfpp-
definable without using equality.

Definition 2. (Schnoor & Schnoor [17]) A weak base Γw of a co-clone IC is a base of
IC with the property that for any base Γ of IC it holds that Γw ⊆ 〈Γ〉@.

Weak bases for Boolean co-clones are well understood due to Lagerkvist [27], and
Lagerkvist & Wahlström [28]. See Table 1 for a comprehensive list of weak bases. As a
convention, we write RIC for the weak base of the co-clone IC in Table 1. In addition,
these weak bases satisfy an additional minimality condition which implies that they
can be qfpp-defined without using equality. Hence, the aforementioned problem for
U-MAX-ONES(·) does not occur, and we obtain the following theorem.

Theorem 3. Let IC be a finitely generated Boolean co-clone and let RIC be the weak
base of IC from Table 1. Let Γ be an arbitrary finite base of IC. Then:

1. CSP(RIC)≤CV CSP(Γ),
2. W-MAX-ONES(RIC)≤CV W-MAX-ONES(Γ),
3. U-MAX-ONES(RIC)≤CV U-MAX-ONES(Γ),
4. SSAT(RIC)≤CV SSAT(Γ), and
5. ABD(RIC)≤CV ABD(Γ).

Naturally, this is only impactful if the problem in question is intractable, since two
polynomially solvable problems are trivially CV-reducible to each other.

Example 4. Let us take a concrete example from Table 1. Recall the relational def-
initions from Section 2.3. We now see that RII2(x1, . . . ,x6,x7,x8)≡ R 6=6=6=1/3 (x1, . . . ,x6)∧
F(x7)∧T(x8) and RIN2(x1, . . . ,x8) ≡ 4-EVEN4 6=(x1, . . . ,x8)∧ (x1x4 ↔ x2x3) from Ta-
ble 1 are the two relations (where the tuples in the relations are listed as rows)

RII2 =
{0 0 1 1 1 0 0 1

0 1 0 1 0 1 0 1
1 0 0 0 1 1 0 1

}
and RIN2 =


0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0
1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1

 .

3. The Easiest NP-Hard SSAT, ABD, MAX-ONES, and VCSP Problems

We will now study the complexity of SSAT, ABD, W-MAX-ONES, and VCSP
with respect to CV-reductions (we return to the complexity of U-MAX-ONES(·) in
Section 4). We remind the reader that constraint languages Γ and sets of cost functions
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Table 1: Weak bases for all Boolean co-clones from Lagerkvist [27].
Co-clone Weak base
IBF {Eq(x1,x2)}
IR0 {F(x1)}
IR1 {T(x1)}
IR2 {F(x1)∧T(x2)}
IM {(x1→ x2)}
IM0 {(x1→ x2)∧F(x3)}
IM1 {(x1→ x2)∧T(x3)}
IM2 {(x1→ x2)∧F(x3)∧T(x4)}
ISn

0 ,n≥ 2 {ORn(x1, . . . ,xn)∧T(xn+1)}
IS0 {ORn(x1, . . . ,xn)∧T(xn+1) | n≥ 2}
ISn

02,n≥ 2 {ORn(x1, . . . ,xn)∧F(xn+1)∧T(xn+2)}
IS02 {ORn(x1, . . . ,xn)∧F(xn+1)∧T(xn+2) | n≥ 2}
ISn

01,n≥ 2 {ORn(x1, . . . ,xn)∧ (xn+1→ x1 · · ·xn)∧T(xn+2)}
IS01 {ORn(x1, . . . ,xn)∧ (xn+1→ x1 · · ·xn)∧T(xn+2) | n≥ 2}
ISn

00,n≥ 2 {ORn(x1, . . . ,xn)∧ (xn+1→ x1 · · ·xn)∧F(xn+2)∧T(xn+3)}
IS00 {ORn(x1, . . . ,xn)∧ (xn+1→ x1 · · ·xn)∧F(xn+2)∧T(xn+3) | n≥ 2}
ISn

1 ,n≥ 2 {NANDn(x1, . . . ,xn)∧F(xn+1)}
IS1 {NANDn(x1, . . . ,xn)∧F(xn+1) | n≥ 2}
ISn

12,n≥ 2 {NANDn(x1, . . . ,xn)∧F(xn+1)∧T(xn+2)}
IS12 {NANDn(x1, . . . ,xn)∧F(xn+1)∧T(xn+2) | n≥ 2}
ISn

11,n≥ 2 {NANDn(x1, . . . ,xn)∧ (x1→ xn+1)∧ . . .∧ (xn→ xn+1)∧F(xn+2)}
IS11 {NANDn(x1, . . . ,xn)∧ (x1→ xn+1)∧ . . .∧ (xn→ xn+1)∧F(xn+2) | n≥ 2}
ISn

10,n≥ 2 {NANDn(x1, . . . ,xn)∧ (x1→ xn+1)∧ . . .∧ (xn→ xn+1)∧F(xn+2)∧T(xn+3)}
IS10 {NANDn(x1, . . . ,xn)∧ (x1→ xn+1)∧ . . .∧ (xn→ xn+1)∧F(xn+2)∧T(xn+3) | n≥ 2}
ID {Neq(x1,x2)}
ID1 {Neq(x1,x2)∧F(x3)∧T(x4)}
ID2 {OR2(x1,x2)∧Neq(x1,x3)∧Neq(x2,x4)∧F(x5)∧T(x6)}
IL {4-EVEN(x1,x2,x3,x4)}
IL0 {3-EVEN(x1,x2,x3)∧F(x4)}
IL1 {3-ODD(x1,x2,x3)∧T(x4)}
IL2 {3-EVEN3 6=(x1, . . . ,x6)∧F(x7)∧T(x8)}
IL3 {4-EVEN4 6=(x1, . . . ,x8)}
IV {(x1↔ x2x3)∧ (x2 ∨ x3→ x4)}
IV0 {(x1↔ x2x3)∧F(x4)}
IV1 {(x1↔ x2x3)∧ (x2 ∨ x3→ x4)∧T(x5)}
IV2 {(x1↔ x2x3)∧F(x4)∧T(x5)}
IE {(x1↔ x2x3)∧ (x2 ∨ x3→ x4)}
IE0 {(x1↔ x2x3)∧ (x2 ∨ x3→ x4)∧F(x5)}
IE1 {(x1↔ x2x3)∧T(x4)}
IE2 {(x1↔ x2x3)∧F(x4)∧T(x5)}
IN {4-EVEN(x1,x2,x3,x4)∧ x1x4↔ x2x3}
IN2 {4-EVEN46=(x1, . . . ,x8)∧ x1x4↔ x2x3}
II {(x1↔ x2x3)∧ (x4↔ x2x3)}
II0 {(x1 ∨ x2)∧ (x1x2↔ x3)∧F(x4)}
II1 {(x1 ∨ x2)∧ (x1x2↔ x3)∧T(x4)}
II2 {R 6=6=6=1/3 (x1, . . . ,x6)∧F(x7)∧T(x8)}
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Figure 1: The lattice of Boolean clones.

13



Table 2: List of all Boolean clones with definitions and bases, where id(x) = x and hn(x1, . . . ,xn+1) =∨n+1
i=1 x1 · · ·xi−1xi+1 · · ·xn+1, dual( f )(a1, . . . ,an) = 1− f (a1, . . . ,an). See e.g. [29].
Clone Definition Base
BF All Boolean functions {x∧ y,¬x}
R0 { f | f is 0-reproducing} {x∧ y,x⊕ y}
R1 { f | f is 1-reproducing} {x∨ y,x⊕ y⊕1}
R2 R0 ∩R1 {x∨ y,x∧ (y⊕ z⊕1)}
M { f | f is monotonic} {x∨ y,x∧ y,0,1}
M1 M∩R1 {x∨ y,x∧ y,1}
M0 M∩R0 {x∨ y,x∧ y,0}
M2 M∩R2 {x∨ y,x∧ y}
Sn

0 { f | f is 0-separating of degree n} {x→ y,dual(hn)}
S0 { f | f is 0-separating} {x→ y}
Sn

1 { f | f is 1-separating of degree n} {x∧¬y,hn}
S1 { f | f is 1-separating} {x∧¬y}
Sn

02 Sn
0 ∩R2 {x∨ (y∧¬z),dual(hn)}

S02 S0 ∩R2 {x∨ (y∧¬z)}
Sn

01 Sn
0 ∩M {dual(hn),1}

S01 S0 ∩M {x∨ (y∧ z),1}
Sn

00 Sn
0 ∩R2 ∩M {x∨ (y∧ z),dual(hn)}

S00 S0 ∩R2 ∩M {x∨ (y∧ z)}
Sn

12 Sn
1 ∩R2 {x∧ (y∨¬z),hn}

S12 S1 ∩R2 {x∧ (y∨¬z)}
Sn

11 Sn
1 ∩M {hn,0}

S11 S1 ∩M {x∧ (y∨ z),0}
Sn

10 Sn
1 ∩R2 ∩M {x∧ (y∨ z),hn}

S10 S1 ∩R2 ∩M {x∧ (y∨ z)}
D { f | f is self-dual} {(x∧¬y)∨ (x∧¬z)∨ (¬y∧¬z)}
D1 D∩R2 {(x∧ y)∨ (x∧¬z)∨ (y∧¬z)}
D2 D∩M {h2}
L { f | f is affine} {x⊕ y,1}
L0 L∩R0 {x⊕ y}
L1 L∩R1 {x⊕ y⊕1}
L2 L∩R2 {x⊕ y⊕ z}
L3 L∩D {x⊕ y⊕ z⊕1}
V { f | f is a disjunction or constants} {x∨ y,0,1}
V0 V∩R0 {x∨ y,0}
V1 V∩R1 {x∨ y,1}
V2 V∩R2 {x∨ y}
E { f | f is a conjunction or constants} {x∧ y,0,1}
E0 E∩R0 {x∧ y,0}
E1 E∩R1 {x∧ y,1}
E2 E∩R2 {x∧ y}
N { f | f depends on at most one variable} {¬x,0,1}
N2 N∩R2 {¬x}
I { f | f is a projection or a constant} {id,0,1}
I0 I∩R0 {id,0}
I1 I∩R1 {id,1}
I2 I∩R2 {id}
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∆ are always finite. We prove that for all of these problems we can identify identify a
single language which is CV-reducible to every other NP-hard language. Hence, each
such problem can be regarded as being ‘maximally easy’, in the sense that there cannot
exist any other NP-hard problem within the class solvable within a strictly smaller
running time. We will typically refer to each such problem as the ‘easiest NP-hard
problem’ within the class, but remind the reader that we by this phrase do not claim
that there cannot exist other problems with the same complexity (such a claim would
be much too strong since it might even be the case that all problems are solvable in
polynomial time, and would thus trivially be CV-reducible to each other).

Out of the infinite number of candidate languages generating different co-clones,
we then prove that the language {RII2} defines the easiest SSAT(·) problem and the
easiest W-MAX-ONES(·) problem, while the language {RIV2} results in the easiest NP-
complete ABD(·) problem. Recall that we write RIC for the weak base of the co-clone
IC from Table 1. It might be interesting to note that {RII2} is the same language as
for SAT(·) [4], which might be contrary to intuition since one could be led to believe
that the co-clones in the lower parts of the co-clone lattice, generated by very simple
languages where the corresponding SAT(·) problem is in P, would result in even easier
problems. For example, SAT(Γ) is trivially in P for 〈Γ〉 ∈ {II0, II1, II, IN} since Γ is then
closed under a constant operation, while SSAT(Γ) is NP-hard for these cases, and a
priori there is no clear reason why the problem SSAT(RII2) should be easier.

For the VCSP(·) problem the situation is a bit different since it is defined in the
setting of cost functions, rather than constraint languages, and here we instead prove that
the familiar problem MAX CUT results in the easiest VCSP(·) problem. In addition,
we summarize and relate the results together by illustrating the complexity landscape of
these problems in Section 3.5.

3.1. The Surjective SAT Problem

Recall that the SSAT(Γ) problem is the problem of determining whether a set of
constraints over a Boolean Γ admits a surjective solution, which in the Boolean domain
simply implies that the solution in question is not constant. While very little is known
known regarding the complexity of this problem for arbitrary finite domains [30], a
complete complexity dichotomy has been established for SSAT(Γ). Say that a Boolean
operation f : {0,1}k→{0,1} is essentially unary if there exists a unary function g and
i ∈ {1, . . . ,k} such that f (x1, . . . ,xi, . . . ,xn) = g(xi) for all x1, . . . ,xi, . . . ,xn ∈ {0,1}. We
then have the following result from Creignou et al. [16].

Theorem 4. SSAT(Γ) is NP-complete if Pol(Γ) consists of essentially unary operations
and is in P otherwise.

See Figure 2 for a visualization of this dichotomy, and observe that the problem is
NP-complete for exactly six clones. We will now prove that SSAT(RII2) results in the
easiest NP-complete SSAT(Γ) problem.

Theorem 5. Let Γ be a finite constraint language such that SSAT(Γ) is NP-hard. Then
SSAT(RII2)≤CV SSAT(Γ).
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Figure 2: The complexity of SSAT(S).
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SSAT(RIN)

Figure 3: The size preserving reduction sequences for SSAT.

Proof. Recall from Theorem 3 that each weak base RIC results in the easiest NP-
hard SSAT(·) problem for the co-clone IC. Hence, all we have to show is that
SSAT(RII2)≤CV SSAT(RIC) for every IC where SSAT(RIC) is NP-hard.

We first observe that given an instance of SSAT(RII2), we may assume (1) that
|V | ≥ 2, and (2) that every variable occurs in at least one constraint. The other cases are
easy. Indeed, if |V | ≤ 1 we simply output an arbitrary unsatisfiable instance. Otherwise,
if there exists some variable that does not occur in any constraint, then surjectivity
is not an issue. In this case we introduce a fresh variable z and add the constraint
RII2(z,z,x,x,x,z,z,x) for every unconstrained variable x. We can assume the properties
(1) and (2) also when given an instance of SSAT(RII0), SSAT(RII1) or SSAT(RIN2),
for very similar reasons.

We give the reductions in terms of local constraint transformations and note that
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in total, they introduce a constant number of global variables and run in polynomial
time since all involved constraint languages are finite. Let Y1,Y2 denote two fresh
variables. Each implementation is written as R(x1, . . . ,xn) 7→ φ , where R(x1, . . . ,xn) is
the relation in question and φ is a qfpp-definition (without equality) over the variables
{x1, . . . ,xn}∪{Y1,Y2}. Using these implementations we can then obtain a CV-reduction
by (1) introducing the two fresh variables Y1 and Y2 and (2) replacing each constraint in
the input instance by the constraints prescribed by the qfpp-definition. The reduction
sequences are summarized in Figure 3.

With RIN2 we use the following implementation:

RII2(x1,x2,x3,x4,x5,x6,x7,x8) 7→ RIN2(x7,x1,x2,x6,x8,x4,x5,x3)

∧RIN2(Y1,x7,x7,Y1,Y2,x8,x8,Y2).

The second constraint ensures that the constraints Eq(x7,Y1), Eq(x8,Y2) and Neq(Y1,Y2)
hold. If f is a satisfying assignment where f (Y2) = 0 then we may use the assignment
f ′(x) = 1− f (x) instead since the complement of a valid assignment is also a valid
assignment for languages closed under complement.

To implement RIN2 with RIN use

RIN2(x1,x2,x3,x4,x5,x6,x7,x8) 7→ RIN(x1,x2,x3,x4)∧RIN(Y1,x1,x5,Y2)

∧RIN(Y1,x2,x6,Y2)∧RIN(Y1,x3,x7,Y2)∧RIN(Y1,x4,x8,Y2).

Note that RIN(0,x,y,1)⇔RIN(1,x,y,0)⇔Neq(x,y), RIN(0,x,y,0)⇔ (x∧y), and RIN(1,x,y,1)⇔
(x∧ y). Hence, any solution f where f (Y1) = f (Y2) = a, assigns all variables a and is
therefore trivial.

The reductions from RII2 to RII0 and RII1 are very similar, hence we only include the
latter. The implementation is

RII2(x1,x2,x3,x4,x5,x6,x7,x8) 7→ RII1(x6,x5,x1,x8)∧RII1(Y1,Y2,x7,x8)

∧RII1(x1,x4,Y1,Y2)∧RII1(x2,x5,Y1,Y2)∧RII1(x3,x6,Y1,Y2).

One verifies that RII1(x,y,0,1)⇔Neq(x,y) and RII1(1,1,x,y)⇔RII1(x,y,1,1)⇔ (x∧y).
Therefore, any solution f where f (Y1)= f (Y2)= 1 assigns all variables 1 and is therefore
trivial.

For the last step it is easy to verify that RII can implement both RII0 and RII1 with
one global variable in each case.

Interestingly, SSAT(RII2) is CV-interreducible to the easiest NP-hard SAT problem,
SAT(RII2), since every instance of the latter admits a solution if and only if it admits a
surjective solution (provided that every variable appears in at least one constraint). To
see this, simply observe that a RII2-constraint which is not trivially unsatisfiable, can
only be satisfied by a surjective assignment.

3.2. The Propositional Abduction Problem
The complexity of propositional abduction is well-studied, and for constraint lan-

guages this problem enjoys a trichotomy between Σ
p
2-complete, NP-complete, and

tractable cases (recall that we by constraint language always mean a finite set of rela-
tions).
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Figure 4: The complexity of ABD(Γ): the Σ
p
2-complete cases are colored in red, the NP-complete cases for

finitely generated co-clones are colored in gray, the NP-complete cases for infinitely generated co-clones are
drawn as dashed, gray circles, and the tractable cases are drawn in white.

Theorem 6 (Creignou & Zanuttini [19]). Let Γ be a Boolean (finite) constraint language.
Then ABD(Γ) is NP-complete if 〈Γ〉 ∈ {IV2, IV0, IV1, IV, IE2, IE0}, Σ

p
2-complete if 〈Γ〉 ∈

{II2, II0, II1, II, IN2, IN}, and in P otherwise.

Here, finiteness is not merely a simplifying assumption, but absolutely crucial,
since it is known that there exists an infinite set of relations Γ such that ABD(Γ) is
NP-intermediate [31]. In the sequel, we thus concentrate on the case when ABD(Γ) is
NP-complete and when Γ is finite.

Theorem 7. If Γ is a finite constraint language such that ABD(Γ) is NP-complete, then
ABD(RIE2

)≤CV ABD(Γ).

Our proof makes use of the following two lemmas.

Lemma 1. Suppose R(x1, . . . ,xn) = R′(xπ(1), . . . ,xπ(n))∧ x j for some j and some func-
tion π : {1, . . . ,n} → {1, . . . ,m}, and that the binary relation x1∨¬x2 is pp-definable
from R′. Then ABD(R)≤CV ABD(R′).

Proof. Let (ϕ,A,q) be an instance of ABD(R). We construct a R′-formula ϕ ′ over the
variables Var(ϕ)∪{Y}, where Y is a fresh variable, as follows: For every constraint
R(x1, . . . ,xn) in ϕ , create the constraints R′(xπ(1), . . . ,xπ(n))∧ (x j = Y ), and finally add
the constraint (Y ∨¬q). The very last constraint is over a relation that is pp-definable
from R′, and can therefore be eliminated while only introducing a constant number of
additional variables. The equality constraints can all be eliminated by identification of
variables.
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We claim that (ϕ,A,q) is a Yes-instance of ABD(R) if and only if (ϕ ′,A∪{Y},q)
is a Yes-instance of ABD(R′). For (⇒), if ϕ ∧∧E is satisfiable and ϕ ∧∧E ∧¬q is
unsatisfiable, then ϕ ′∧∧(E ∪{Y}) is satisfiable and ϕ ′∧∧(E ∪{Y})∧¬q is unsatisfi-
able. For (⇐), assume ϕ ′∧∧E ′ is satisfiable and ϕ ′∧∧E ′∧¬q is unsatisfiable. Then
ϕ ′∧∧E ′∧Y must also be satisfiable (since (Y ∨¬q) is part of ϕ ′), and ϕ ′∧∧E ′∧Y ∧¬q
must be unsatisfiable (since it is a restriction). From this follows that ϕ∧∧(E ′\{Y,¬Y})
is satisfiable and ϕ ∧∧(E ′ \{Y,¬Y})∧¬q is unsatisfiable.

Let flip : {0,1}→ {0,1} be the function that maps 0 to 1 and 1 to 0. We define this
function also on relations through flip(R) = {(flip(x1), . . . ,flip(xn)) : (x1, . . . ,xn) ∈ R}.

Lemma 2. Suppose R(x1, . . . ,xn) = flip(R′)(xπ(1), . . . ,xπ(n)) for some permutation π ,
and that the binary relation x1 ∨ x2 is pp-definable from R′. Then ABD(R) ≤CV

ABD(R′).

Proof. Let (ϕ,A,q) be an instance of ABD(R). We construct a R′-formula ϕ ′ on
variables Var(ϕ)∪{q′}, where q′ is a fresh variable, as follows. For each constraint
R(x1, . . . ,xn) in ϕ , create the constraint R′(xπ(1), . . . ,xπ(n)). Finally, add the constraint
(q∨ q′). The last constraint can be eliminated at the cost of only a constant number
of additional variables since is over a relation that is pp-definable from R′ (possibly
introduced equality constraints can be eliminated by identification of variables).

We claim that (ϕ,A,q) is a Yes-instance of ABD(R) if and only if (ϕ ′,A,q′) is
a Yes-instance of ABD(R′). For (⇒), let E be an arbitrary set of literals and define
flip(E) = {¬` : ` ∈ E}. If ϕ ∧∧E is satisfiable and ϕ ∧∧E ∧¬q is unsatisfiable, then
ϕ ′ ∧∧flip(E) is satisfiable and ϕ ′ ∧∧flip(E)∧ q is unsatisfiable. This means, since
(q∨q′) is part of ϕ ′, also that ϕ ′∧∧flip(E)∧¬q′ is unsatisfiable. For (⇐), again let
E ′ be an arbitrary set of literals and define flip(E ′) = {¬` : ` ∈ E ′}. Assume ϕ ′∧∧E ′

is satisfiable and ϕ ′ ∧∧E ′ ∧¬q′ is unsatisfiable. Since the only constraint in ϕ ′ in
which q′ occurs is (q∨q′), this means that also ϕ ′ ∧∧E ′ ∧q is unsatisfiable. Hence,
ϕ ∧∧flip(E ′) is satisfiable and ϕ ∧∧flip(E ′)∧¬q is unsatisfiable.

We can now prove the theorem.

Proof of Theorem 7. According to Theorem 6 (see also Figure 4) there are six distinct
cases to consider when the propositional abduction problem is NP-complete. These are
the co-clones IV, IV0, IV1, IV2, IE0, and IE2. For each such co-clone IC let RIC denote
the weak base from Table 1, and recall from Theorem 3 that ABD(RIC)≤CV ABD(Γ)
when Γ is a finite base of IC.

Note that

RIE2
(x1,x2,x3,x4,x5) = RIE0

(x1,x2,x3,x5,x4)∧ x5,

RIV1
(x1,x2,x3,x4,x5) = RIV(x1,x2,x3,x4)∧ x5,

RIV2
(x1,x2,x3,x4,x5) = RIV0

(x1,x2,x3,x4)∧ x5.

One easily verifies that the binary relation x1∨¬x2 is pp-definable from each of RIE0
, RIV

and RIV0
. From Lemma 1 it follows that ABD(RIE2

)≤CV ABD(RIE0
), ABD(RIV1

)≤CV

ABD(RIV), and ABD(RIV2
)≤CV ABD(RIV0

).
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Note also that

RIE2
(x1,x2,x3,x4,x5) = flip(RIV2

)(x1,x2,x3,x5,x4),

RIE0
(x1,x2,x3,x4,x5) = flip(RIV1

)(x1,x2,x3,x4,x5).

It is easy to check that the binary relation x1 ∨ x2 is pp-definable both from RIV2

and from RIV1
. Hence, by Lemma 2 it follows that ABD(RIE2

) ≤CV ABD(RIV2
) and

ABD(RIE0
)≤CV ABD(RIV1

).
Figure 5 summarises the reductions.

ABD(RIE2
)

ABD(RIE0
)ABD(RIV2

)

ABD(RIV0
) ABD(RIV1

)

ABD(RIV)

Figure 5: Size preserving reductions for the NP-complete cases of ABD(Γ).

3.3. The MAX-ONES Problem
Here we use a slight reformulation of Khanna et al. ’s [15] complexity classification

of the MAX-ONES problem expressed in terms of polymorphisms. Say that a constraint
language is 1-closed if it is preserved by the constant Boolean function 1.

Theorem 8 ([15]). Let Γ be a finite Boolean constraint language. MAX-ONES(Γ) is
solvable in polynomial time if Γ is 1-closed, closed under max, or closed under an
arithmetical operation, and is NP-hard otherwise.

See Figure 6 for a visualization of this dichotomy theorem. The theorem holds
for both the weighted and the unweighted version of the problem and showcases the
strength of the algebraic method since it tells us exactly which cases are intractable, and
which properties they satisfy.

Theorem 9. Let Γ be a finite constraint language such that MAX-ONES(Γ) is NP-
complete. Then there exists R ∈ {RIS21

,RII2
, RIN2

, RIL0
, RIL2

, RIL3
, RID2

} (relations

defined in Table 2) such that MAX-ONES({R})≤CV MAX-ONES(Γ). This holds both
for the weighted and the unweighted version of the problem.

We will prove the theorem with the help of the following lemmas, all of which holds
both in the weighted and unweighted case.

Lemma 3. If Γ is a constraint language and R is a relation that is qfpp-definable
without equality in Γ, then MAX-ONES({R})≤CV MAX-ONES(Γ).
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Figure 6: The complexity of MAX-ONES(S).

Proof. Since R is qfpp-definable without equality in Γ, every constraint over R can be
replaced with a finite set of constraints over Γ.

Note that if equality relations were allowed in the qfpp-formula for R, then these
would have to be eliminated. The natural way to do this is by identification of variables,
but for this approach to work we need general weights for the variables.

Lemma 4. If R and R′ are relations that satisfy

R(x1, . . . ,xn)⇒ R′(x1, . . . ,xn,0,1), (1)

R′(x1, . . . ,xn,y0,y1)⇒ R(x1, . . . ,xn)∧F(y0)∧T (y1)∨
n∧

i=1

F(xi)∧F(y0)∧F(y1), (2)

then MAX-ONES({R})≤CV MAX-ONES({R′}).

Proof. To see why this is true, consider the following reduction. Given an instance of
MAX-ONES({R}) over n variables, we construct an instance of MAX-ONES({R′}) over
the same set of variables (preserving variable weights), extended with two fresh, unit-
weight, variables y0 and y1. Let wfree be the summed weights of every variable in the
given instance that does not occur in any constraint. For every constraint R(x1, . . . ,x`)
in the given instance we add the constraint R′(x1, . . . ,x`,y0,y1) to the new instance.
From (1) and the fact that a solution always can be changed to map each unconstrained
variable to the value 1, it follows that if the original instance has a solution with objective
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value ≥ k, then the new instance has a solution with objective value ≥ k+1, and hence
≥max(k,wfree)+1 since k ≥ wfree must hold in the original instance (since setting all
unconstrained variables to 1 is a solution).

For the other direction, consider a solution to the new instance with objective value
≥max(k,wfree)+1. Assume first that y1 is assigned the value 0. By (2) it follows that
every variable that occurs in a constraint must be assigned the value 0, so the objective
is at most wfree. This is a contradiction, so y1 must be assigned the value 1. It then
follows from (2) that there is a solution the the original instance with objective value
≥max(k,wfree). Hence, the original instance has a solution with objective value ≥ k if
and only if the new instance has a solution with objective value≥max(wfree,k)+1.

We now have all the results in place that we need to prove the theorem.

Proof of Theorem 9. By Theorem 8 in combination with Table 2 and Figure 1 it follows
that MAX-ONES(Γ) is NP-complete if and only if 〈Γ〉⊇ IS21 or if 〈Γ〉 ∈ {IL0, IL3, IL2, IN2}.
Then, in principle, for every co-clone we have to decide which language is CV-reducible
to every other base of the co-clone, but since a weak base always has this property, we can
eliminate a lot of tedious work and directly consult the precomputed relations in Table 1.
From this we first see that 〈RIS21

〉@ ⊂ 〈RISn1
〉@, 〈RIS212

〉@ ⊂ 〈RISn12
〉@, 〈RIS211

〉@ ⊂ 〈RISn11
〉@

and 〈RIS210
〉@ ⊂ 〈RISn10

〉@ for every n≥ 3. Hence, in the four infinite chains ISn1, ISn12, ISn11,

ISn10 we only have to consider the bottom-most co-clones IS21, IS212, IS211, IS210.
For RIS21

(x1,x2,x3) we can define relations R′
IS21

(x1,x2,x3,y0,y1) with RIS212
, RIS211

,
RIS210

, RIE2
, and RIE0

, satisfying the requirements of Lemma 4 as follows

R′
IS21

(x1,x2,x3,y0,y1)≡ RIS212
(x1,x2,x3,y1)∧RIS212

(x1,x2,y0,y1),

R′
IS21

(x1,x2,x3,y0,y1)≡ RIS211
(x1,x2,y1,x3)∧RIS211

(x1,x2,y1,y0),

R′
IS21

(x1,x2,x3,y0,y1)≡ RIS210
(x1,x2,y1,x3,y1)∧RIS210

(x1,x2,y1,y0,y1),

R′
IS21

(x1,x2,x3,y0,y1)≡ RIE2
(x3,x1,x2,x3,y1)∧RIE2

(x3,x1,x2,y0,y1),

R′
IS21

(x1,x2,x3,y0,y1)≡ RIE0
(x3,x1,x2,y1,x3)∧RIE0

(y0,x1,x2,y1,y0),

and similarly a relation R′II2 using RII0
, also satisfying the requirements of Lemma 4, as

follows

R′II2(x1,x2,x3,x4,x5,x6,x7,x8,y0,y1)≡ RII0
(x1,x2,x6,x7)∧RII0

(x7,x8,y1,y0)

∧RII0
(x1,x4,y1,y0)∧RII0

(x2,x5,y1,y0)∧RII0
(x3,x6,y1,y0).

Since these are qfpp-definitions without equality, the corresponding CV-reductions to
the bases from Table 2 follows from Lemma 3.

Using Figure 1 we then see that the only remaining cases for Γ when 〈Γ〉 ⊇ IS21 is
when 〈Γ〉= II2 or when 〈Γ〉= ID2. This concludes the proof.

Using qfpp-implementations to further decrease the set of relations in Theorem 9
appears difficult and we therefore make use of more powerful implementations. Let
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Table 3: arg max definitions for W-MAX-ONES(·).
R1 R2 arg max definition of R1 with R2
RII2

RIN2
arg max(x1 ,...,x8)∈B8:(x7 ,x1 ,x2 ,x6 ,x8 ,x4 ,x5 ,x3)∈RIN2

x8
RII2

RID2
arg max(x1,...,x8)∈B8:(x5 ,x4 ,x2 ,x1 ,x7 ,x8),(x6,x4 ,x3,x1 ,x7,x8),(x6 ,x5,x3 ,x2,x7 ,x8)∈RID2

(x1 + x2 + x3)

RII2
RIL2

arg max(x1 ,...,x8)∈B8:(x4 ,x5,x6 ,x1 ,x2 ,x3 ,x7 ,x8)∈RIL2
(x4 + x5 + x6)

RIL2
RIL3

arg max(x1 ,...,x8)∈B8:(x7 ,x1 ,x2 ,x3 ,x8 ,x4 ,x5 ,x6)∈RIL3
x8

RIL2
RIL0

arg max(x1 ,...,x8)∈B8:(x1 ,x2 ,x3 ,x7),(x8 ,x1,x4 ,x7),(x8,x2 ,x5,x7),(x8 ,x3,x6 ,x7)∈RIL0
x8

RII2
RIS21

arg max(x1 ,...,x8)∈B8:(x1,x2 ,x7),(x1 ,x3 ,x7),(x2 ,x3 ,x7),(x1 ,x4 ,x7),(x2 ,x5,x7),(x3 ,x6,x7)∈R
IS21

(
∑

8
i=1 xi +∑

3
i=1 xi

)

Optsol(I) be the set of all optimal solutions of a W-MAX-ONES(Γ) instance I. A
relation R has a weighted pp definition (wpp-definition) [21] in Γ if there exists an
instance I of W-MAX-ONES(Γ) on variables V such that

R = {(φ(v1), . . . ,φ(vm)) | φ ∈ Optsol(I)}
for some v1, . . . ,vm ∈V . The set of all relations wpp-definable in Γ is denoted 〈Γ〉w and
we furthermore have that if Γ′ ⊆ 〈Γ〉w is finite then W-MAX-ONES(Γ′) is polynomial-
time reducible to W-MAX-ONES(Γ) [21]. If there is a W-MAX-ONES(Γ) instance I on
V such that

R = {(φ(v1), . . . ,φ(vm)) | φ ∈ Optsol(I)}
for v1, . . . ,vm ∈V satisfying {v1, . . . ,vm}=V , then we say that R is qfwpp-definable in
Γ. We use 〈Γ〉@,w for set of all relations qfwpp-definable in Γ. It is not hard to check that
if Γ′ ⊆ 〈Γ〉@,w, then every instance is mapped to an instance of equally many variables —
hence W-MAX-ONES(Γ′) is CV-reducible to W-MAX-ONES(Γ) whenever Γ′ is finite.

Theorem 10. Let Γ be a constraint language such that W-MAX-ONES(Γ) is NP-hard.
Then it holds that W-MAX-ONES(RII2)≤CV W-MAX-ONES(Γ).

Proof. We need to prove that RII2
∈ 〈R〉@,w for every R∈{RIS21

,RIN2
,RIL0

,RIL2
,RIL3

,RID2
}.

Let us first consider the case of RII2
∈ 〈RIN2

〉@,w. First, note that

RII2
= arg max(x1,...,x8)∈B8:(x7,x1,x2,x6,x8,x4,x5,x3)∈RIN2

x8. (†)

We will see that it is not difficult to obtain a qfwpp-definition of RII2
with RIN2

, armed
with this information. Let I be the W-MAX-ONES({RIN2

}) instance over the variables
{x1, . . . ,x8} with the single constraint RIN2

(x7,x1,x2,x6,x8,x4,x5,x3), where x8 have the
weight 1 and all other variables the weight 0. It is then easy to see that I has exactly
three optimal solutions φ1, φ2, φ3, and that

((φ1(x1), . . . ,φ1(x8))) = (0,0,1,1,1,0,0,1) ∈ RII2
,

((φ2(x1), . . . ,φ2(x8))) = (0,1,0,1,0,1,0,1) ∈ RII2
,

and
((φ3(x1), . . . ,φ3(x8))) = (1,0,0,0,1,1,0,1) ∈ RII2

,

which implies that RII2
∈ 〈R〉@,w. Hence, it is rather easy, albeit tedious, to prove that a

relation is qfwpp-definable over another relation when given an equality akin to (†). To
avoid needless repetition, we have prepared these arg max definitions in Table 3, from
which it is easy to derive the necessary qfwpp-definitions.

23



3.4. The VCSP Problem
Let us first remark that the VCSP(·) problem does not follow the standard Galois

connection in Theorem 1. For a concrete counter example, recall the two relations
F = {(0)} and T = {(1)}, and consider the problem MAX-CSP({F,T}) (crucially,
remember that every MAX-CSP problem can be seen as a special case of a VCSP
problem). On the one hand, it is then known that MAX-CSP({F,T}) is tractable, but
on the other hand, the pp-definable relation R01(x1,x2) ≡ F(x1)∧T(x2) results in an
NP-hard problem (see, e.g., Theorem 2.11 in Khanna et al. [32]).

Thus, the weak base method is not applicable, and alternative methods are required.
For this purpose we use multimorphisms from Cohen et al. [22]. Let ∆ be a set of cost
functions on B, let p be a unary operation on B, and let f ,g be binary operations on
B. We say that ∆ admits the binary multimorphism ( f ,g) if it holds that ν( f (x,y))+
ν(g(x,y))≤ ν(x)+ν(y) for every ν ∈ ∆ and x,y ∈ Bar(ν). Similarly ∆ admits the unary
multimorphism (p) if it holds that ν(p(x))≤ ν(x) for every ν ∈ ∆ and x ∈ Bar(ν). We
have the following result.

Theorem 11 ([22]). Let ∆ be a set of finite-valued cost functions on B. If ∆ admits
the unary (0)-multimorphism, the unary (1)-multimorphism or the binary (min,max)-
multimorphism, then VCSP(∆) is in PO. Otherwise VCSP(∆) is NP-hard.

Recall that the function f 6= equals {(0,0) 7→ 1,(0,1) 7→ 0,(1,0) 7→ 0,(1,1) 7→ 1}
and that the minimisation problem VCSP( f 6=) and the maximisation problem MAX
CUT are trivially CV-reducible to each other. We will make use of (a variant of) the
concept of expressibility [22]. We say that a cost function g is @-expressible in ∆ if

g(x1, . . . ,xn) =
m

∑
i=1

wi fi(si)+w

for some tuples si over {x1, . . . ,xn}, weights wi ∈Q≥0, w ∈Q and cost functions fi ∈ ∆.
It is not hard to see that if every function in a finite set ∆′ is @-expressible in ∆, then
VCSP(∆′) ≤CV VCSP(∆). Note that if a unary cost function fc is expressible in ∆

with arg minx∈B fc(x) = {c}, then we can force a variable to take the constant value
c. If we can force variables to the constants 0 and 1, then we can allow tuples si over
{x1, . . . ,xn,0,1} in the @-expression, and still obtain a CV-reduction.

Theorem 12. Let ∆ be a set of finite-valued cost functions on B. If the problem
VCSP(∆) is NP-hard, then VCSP( f 6=)≤CV VCSP(∆).

Proof. The proof consists of two parts. Using the assumption that VCSP(∆) is NP-hard
we will (1) prove that we can @-express f 6= or force two variables v0 and v1 to 0 and 1,
respectively, and (2) (in case we did not already @-express f 6= in previous step) show
that there exists a certain function which is @-expressible over ∆, which together with
the two constant variables v0 and v1 can @-express f 6=.

Step 1. VCSP(∆) is NP-hard, so by Theorem 11 we know that ∆ does not admit the
unary (0)-multimorphism or the unary (1)-multimorphism, unless P=NP. Therefore
there are g,h ∈ ∆ and u = (u1, . . . ,uk), v = (v1, . . . ,v`) such that g(0) > g(u) and
h(1)> h(v). We may assume g(u) = minx g(x) and h(v) = minx h(x).
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Define f01(x,y) = g(z1, . . . ,zk)+h(w1, . . . ,w`) where

zi =

{
x if ui = 0,
y otherwise,

and wi =

{
x if vi = 0,
y otherwise.

Note that

f01(0,1) = g(u)+h(v),
f01(0,0) = g(0)+h(0)> g(u)+h(0)≥ g(u)+h(v) = f01(0,1),
f01(1,1) = g(1)+h(1)> g(1)+h(v)≥ g(u)+h(v) = f01(0,1),
f01(1,0) = g(u′)+h(v′)≥ g(u)+h(v) = f01(0,1) (for some u′,v′).

If f01(0,1) = f01(1,0), then f 6=(x,y) = α1( f01(x,y)+ f01(y,x))+α2 for suitable
α1 ∈Q≥0 and α2 ∈Q. This is an @-expression, and we are done. Otherwise f01(0,1)<
f01(1,0), which means we can force variables v0 and v1 to 0 and 1, respectively, with
the term f01(v0,v1) (given sufficiently high weight).

Step 2. Assume now that f 6= was not @-expressed in the previous step and recall that
we have access to variables v0 and v1 that are forced to take values 0 and 1, respectively.
We know that ∆ does not admit the (min,max)-multimorphism (by Theorem 11) since
VCSP(∆) is NP-hard by assumption. Hence, there exists a k-ary function f ∈ ∆ and
s = (s1, . . . ,sk), t = (t1, . . . , tk) such that

f (min(s, t))+ f (max(s, t))> f (s)+ f (t).

Define g(x,y) = f (z1, . . . ,zk) where

zi =


v1 if min(si, ti) = 1,
v0 if max(si, ti) = 0,
x otherwise if si > ti, and
y otherwise,

for 1≤ i≤ k. Note the following:

g(0,0) = f (min(s, t)),
g(1,1) = f (max(s, t)),
g(1,0) = f (s),
g(0,1) = f (t).

Set h(x,y) = g(x,y)+g(y,x). Now h(0,1) = h(1,0) and

h(0,1) = g(0,1)+g(1,0) = f (s)+ f (t)

< f (min(s, t))+ f (max(s, t)) =
1
2
(h(0,0)+h(1,1)). (3)

If h(0,0) = h(1,1), then f 6= = α1h+α2 for some α1 ∈Q≥0 and α2 ∈Q.
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Otherwise, assume h(1,1) > h(0,0). We can do this without loss of generality
since the other case is symmetric. Furthermore, we can without loss of generality (by
scaling and translating the function h) assume that h(1,1)−h(0,0) = 2. Let f1(x) =
α1 f01(v0,x)+α2 for some α1 ∈ Q≥0 and α2 ∈ Q such that f1(1) = 0 and f1(0) = 1.
Then define h′(x,y) = f1(x)+ f1(y)+h(x,y). This function satisfies h′(0,0) = h′(1,1)
and h′(0,1) = h′(1,0). Moreover, we have

h′(0,0) =
1
2
(h′(0,0)+h′(1,1)) =

1
2
(2+h(0,0)+h(1,1))> 1+h(0,1) = h′(0,1),

where the inequality follows from (3). Hence, we can @-express f 6= as α1h′+α2 for
some α1 ∈Q≥0 and α2 ∈Q.

3.5. The Broader Picture
The results in Section 3 do not describe the relative complexity between SAT(·),

SSAT(·), ABD(·), MAX-ONES(·) and VCSP(·). We have thus far not been able to
precisely pinpoint the complexity of ABD(·) to the other problems, but we readily see
that

1. SSAT(RII2) =
CV SAT(RII2)≤CV W-MAX-ONES(RII2), and

2. W-MAX-ONES(RII2)≤CV W-MAX-ONES(NAND2)=CV W-MAX INDEPENDENT
SET ≤CV VCSP({ fnand, f0, f1}),

where f0 and f1 are the unary cost functions {0 7→ 0,1 7→ 1} and {0 7→ 1,1 7→ 0}, respec-
tively, and fnand denotes the the binary cost function {(0,0) 7→ 0,(0,1) 7→ 0,(1,0) 7→
0,(1,1) 7→ 1}.

We have the following relation.

Lemma 5. VCSP({ fnand, f0, f1})≤CV VCSP( f 6=).

Proof. Note that fnand is @-expressible in { f 6=, f0, f1} since

fnand(x,y) =
1
2
( f 6=(x,y)+ f0(x)+ f0(y)−1).

Hence (see Section 3.4), VCSP({ fnand, f0, f1})≤CV VCSP({ f 6=, f0, f1}).
To complete the proof, we present a CV-reduction from VCSP({ f 6=, f0, f1}) to

VCSP({ f 6=}). Let v0 and v1 be two fresh variables. We make sure v0 and v1 are not
mapped to the same value with the term f 6=(v0,v1) (with a sufficiently high weight). Let
σ = {0 7→ 1,1 7→ 0} and note that f 6= is invariant under σ in the sense that f 6= = f 6= ◦σ .
Hence, if I is an instance of VCSP({ f 6=}) and φ is a solution to I of cost C, then σ ◦φ

is another solution to I of cost C. We can therefore, without loss of generality, assume
that every solution maps v0 to 0 and v1 to 1. Now, every term f0(x) can be replaced with
f 6=(x,v1), and every term f1(x) with f 6=(x,v0).

Combining Lemma 5 and Theorem 12, we get VCSP({ fnand, f0, f1})=CV VCSP( f 6=).
Thus, there is no unique easiest NP-hard set of finite-valued cost functions for VCSP.
The complexity results are summarized in Figure 7. Some trivial inclusions are omitted
in the figure, for example it holds that SAT(Γ)≤CV W-MAX-ONES(Γ) for all Γ.
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Figure 7: The complexity landscape of some Boolean optimization and satisfiability problems. A directed
arrow from one node A to B means that A≤CV B. Relation 1 holds when SAT(Γ) is NP-hard, relation 2 holds
when SSAT(Γ) is NP-hard, relation 3 holds when W-MAX-ONES(Γ) is NP-hard, and relation 4 holds for
every finite-valued ∆ such that VCSP(∆) is NP-hard.

4. Subexponential Time and the Exponential-Time Hypothesis

Recall that the ETH states that 3-SAT /∈ SE [9]. We remind the reader that the ETH
can be based on different size parameters (such as the number of variables or the number
of clauses) and that these different definitions often coincide [11]. In this section we
investigate the consequences of the ETH for the SSAT, ABD, U-MAX-ONES, and
U-VCSP problems. A direct consequence of Section 3 is that if there exists any finite
constraint language Γ or set of cost functions ∆ such that W-MAX-ONES(Γ), SSAT(Γ)
or VCSP(∆) is NP-hard and in SE, then SAT(RII2) is in SE which implies that the
ETH is false [4]. The other direction is interesting too since it highlights the likelihood
of subexponential time algorithms for the problems, relative to the ETH. We investigate
these questions for SSAT(·), ABD(·), U-MAX-ONES(·), and VCSP(·), in Section 4.1–
4.4. In Section 4.5 we summarize our results and bring them together with the help of
the ETH.

4.1. Lower Bounds for Surjective Satisfiability

Recall from Figure 7 that if there exists an NP-hard SSAT(Γ) problem in SE
then SSAT(RII2) =

CV SAT(RII2) ∈ SE which contradicts the ETH [4]. Hence, all that
remains to show is that every SSAT(Γ) problem is in SE if the ETH is false, which we
accomplish with the following lemma.

Lemma 6. If the ETH is false then for every finite constraint language Γ the problem
SSAT(Γ) is in SE.

Proof. If the ETH does not hold then SAT(Γ∪{F,T}) is in SE since Γ is finite [4]. We
present an SE algorithm for SSAT(Γ) based on an SE algorithm for SAT(Γ∪{F,T}).

Arbitrarily choose ε > 0 and let A be an algorithm for SAT(Γ∪{F,T}) that runs in
2ε·n time. Given an instance (V,C) of SSAT(Γ), do the following:
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1. ans := ‘no’
2. for every pair of distinct variables v,w∈V , let ans := ‘yes’ if A((V,C∪{F(v),T(w)}))

or A((V,C∪{F(w),T(v)}))
3. return ans

This algorithm answers ‘yes’ if and only if (V,C) has a surjective solution. Further-
more, it runs in poly(||(V,C)||) ·2ε·n time, so SSAT(Γ) is in SE.

4.2. Lower Bounds for Propositional Abduction

From Theorem 7 we see that if there exists an NP-complete ABD(Γ) problem in
SE then ABD(RIE2) ∈ SE, too. We now show that this problem cannot be solvable in
subexponential time without violating the ETH, which implies that no NP-complete
ABD(Γ) problem is solvable in subexponential time (under the ETH).

Lemma 7. If ABD(Γ) ∈ SE for some finite constraint language Γ such that ABD(Γ)
is NP-complete then the ETH is false.

Proof. First, assume ABD(Γ) ∈ SE and that ABD(Γ) is NP-complete. In particular
this implies that the problem ABD({RIE2

}) ∈ SE via Theorem 7. From Jonsson et
al. [4] there exists a B > 0 such that 3-SAT-B ∈ SE if and only if 3-SAT ∈ SE. Hence,
to prove the claim we will give an LV-reduction from 3-SAT-B to ABD({RIE2

}).
In Creignou and Zanuttini [33] it is proven that there exists a reduction which, given

a SAT formula ϕ over n variables and m constraints, produces an instance (ϕ ′,L,q)
of ABD(IE2) over 3n variables where ϕ ′ contains O(m+ n) binary constraints, and
a single constraint of arity f (n) ∈ O(n+m) of the form (`1 ∨ `2 . . .∨ ` f (n)), where
each `i is either a positive or negative atom of the form x or ¬x. Since m is linearly
bounded with respect to n it therefore follows that ϕ ′ contains O(n) binary constraints
and a single constraint of arity O(n), of the aforementioned form. Using standard
techniques (see, e.g., Section 5.2 in Creignou and Zanuttini [33]) one can then prove
that (`1 ∨ `2 . . .∨ ` f (n)) can be pp-defined by RIE2

requiring only O(n) variables and
constraints. Similarly, each binary constraint in ϕ ′ can be pp-defined by RIE2

with
a constant number of fresh variables, and if we replace each constraint in ϕ ′ in this
manner we obtain an instance of ABD(RIE2

) with a linear amount of fresh variables
and constraints.

Hence, NP-complete ABD(Γ) problems are unlikely to be solvable in subexpo-
nential time, since this would contradict the ETH. However, we have been unable to
strengthen the other direction, showing that every NP-complete ABD(Γ) problem is in
SE if the ETH is false, and it is currently unclear whether such a result is feasible. We
discuss this in greater detail in Section 5.

4.3. Lower Bounds for Max-Ones

We now turn to the unweighted U-MAX-ONES(·) problem, where we obtain a
complete understanding of subexponential complexity with respect to the ETH.

Lemma 8. If U-MAX-ONES(Γ) is in SE for some finite constraint language Γ such
that U-MAX-ONES(Γ) is NP-hard, then the ETH is false.
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Proof. From Jonsson et al. [4] it follows that 3-SAT ∈ SE if and only if SAT(RII2)-
2 ∈ SE. Combining this with Theorem 9 we only have to prove that SAT(RII2)-2
LV-reduces to U-MAX-ONES(R) for R ∈ {RIS21

,RIN2
,RIL0

,RIL2
,RIL3

,RID2
}. We provide

an illustrative reduction from SAT(RII2)-2 to U-MAX-ONES(RIS21
); the remaining re-

ductions are presented in Lemmas 10–14 in the end of this section. Since RIS21
is the

NAND relation with one additional constant column, the U-MAX-ONES(RIS21
) problem

is basically the maximum independent set problem or, equivalently, the maximum clique
problem in the complement graph. Given an instance I of CSP(RII2)-2 we create for
every constraint 3 vertices, one corresponding to each feasible assignment of values to
the variables occurring in the constraint. We add edges between all pairs of vertices that
are not inconsistent and that do not correspond to the same constraint. The instance I is
satisfied if and only if there is a clique of size m where m is the number of constraints in
I. Since m≤ 2n this implies that the number of vertices is ≤ 6n.

Hence, we have ruled out the possibility that, assuming the ETH, there could exist
a U-MAX-ONES(Γ) ∈ SE problem which is NP-complete. It is also not difficult to
prove the opposite, i.e., that if the ETH is false, then U-MAX-ONES(Γ) ∈ SE for every
Boolean constraint language Γ.

Lemma 9. If the ETH is false, then U-MAX-ONES(Γ) ∈ SE for every Boolean con-
straint language Γ.

Proof. Define SNP to be the class of properties expressible by formulas of the type
∃S1 . . .∃Sn∀x1 . . .∀xm.F where F is a quantifier-free logical formula, ∃S1 . . .∃Sn are
second order existential quantifiers, and ∀x1 . . .∀xm are first-order universal quantifiers.
Monadic SNP (MSNP) is the restriction of SNP where all second-order predicates are
required to be unary [34]. The associated search problem tries to identify instantiations
of S1, . . . ,Sn that make the resulting first-order formula true. We will be interested in
properties that can be expressed by formulas that additionally contain size-constrained
existential quantifiers. A size-constrained existential quantifier is of the form ∃S, |S| ./ s,
where |S| is the number of inputs where relation S holds, and ./∈ {=,≤,≥}. Define size-
constrained SNP as the class of properties of relations and numbers that are expressible
by formulas ∃S1 . . .∃Sn∀x1 . . .∀xm.F where the existential quantifiers are allowed to be
size-constrained.

If the ETH is false then 3-SAT is solvable in subexponential time. By Impagliazzo
et al. [11] this problem is size-constrained MSNP-complete under size-preserving
SERF reductions. Hence, we only have to prove that U-MAX-ONES(·) is included in
size-constrained MSNP for it to be solvable in subexponential time. Impagliazzo et
al. [11] shows that k-SAT is in SNP by providing an explicit formula ∃S.F where F is a
universal formula and S a unary predicate interpreted such that x ∈ S if and only if x is
true. Let k be the highest arity of any relation in Γ. Since k-SAT can qfpp implement
any k-ary Boolean relation it is therefore sufficient to prove that U-MAX-ONES(Γk

SAT)
is in size-constrained MSNP. This is easy to do with the formula

∃S, |S| ≥ K.F

where K is the parameter corresponding to the number of variables that have to be
assigned 1.
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Additional reductions for U-MAX-ONES(·)
In this section we provide the reductions for U-MAX-ONES(·) which were missing

in Lemma 8.

Lemma 10. SAT(RII2)-2 LV-reduces to U-MAX-ONES(RIL2).

Proof. We reduce an instance I of SAT(RII2)-2 on n variables and m constraints to
an instance of U-MAX-ONES(RIL2) containing at most 2+ 8n variables. Let v0,v1
be two fresh global variables constrained as RIL2(v0,v0,v0,v1,v1,v1,v0,v1). Note that
this forces v0 to 0 and v1 to 1 in any satisfying assignment. Now, for every vari-
able x in the SAT-instance we create an additional variable x′ which we constrain as
RIL2(x

′,x,v1,x,x′,v0,v0,v1). This correctly implements Neq(x,x′). For the i-th con-
straint, RII2(x1, . . . ,x8), in I we (1) create three variables z1

i ,z
2
i ,z

3
i , and (2) add the

constraints

RIL2(z
1
i ,z

2
i ,z

3
i ,x1,x2,x3,x7,x8)∧RIL2(x4,x5,x6,x1,x2,x3,x7,x8).

Note that this correctly defines RII2 if z1
i ,z

2
i ,z

3
i are not all assigned 0. Since every variable

in the SAT-instance I can occur in at most two constraints we have that m≤ 2n. Hence,
the resulting U-MAX-ONES instance contains at most 2+2n+3 ·2n = 2+8n variables.
Now, importantly, since x and x′, and v0 and v1, must take different values it holds that
the measure of a solution of this new instance is exactly the number of variables z j

i
that are mapped to 1. Thus, the crucial observation is that one cannot have an optimal
solution with objective value ≥ n+2m unless one for each block of auxiliary variables
z1

i ,z
2
i ,z

3
i assign at least one of them a non-zero value. Hence, for an optimal solution the

objective value is ≥ n+2m if and only if I is satisfiable.

Lemma 11. U-MAX-ONES(RIL2) LV-reduces to U-MAX-ONES(RIL0).

Proof. We reduce an instance I of U-MAX-ONES(RIL2) on n variables to an instance
of U-MAX-ONES(RIL0) on 2+2n variables. Let v0,v1,y1, . . . ,yn be fresh variables and
constrain them as RIL0(v0,v0,v0,v0)∧RIL0(v1,v0,y1,v0)∧ . . .∧RIL0(v1,v0,yn,v0). Note
that this forces v0 to 0, and that if v1 is mapped to 0, then so are the variables y1, . . . ,yn.
If v1 is mapped to 1 on the other hand, then y1, . . . ,yn can be mapped to 1. For every
constraint RIL2(x1, . . . ,x8) we create the constraints

RIL0(x1,x2,x3,v0)∧RIL0(v1,x1,x4,v0)∧RIL0(v1,x2,x5,v0)

∧RIL0(v1,x3,x6,v0)∧RIL0(v1,x7,x8,v0)∧RIL0(x7,x7,x7,x7).

The resulting U-MAX-ONES(RIL0) instance has 2+2n variables and has a solution with
measure n+1+ k if and only if I has a solution with measure k.

Lemma 12. U-MAX-ONES(RII2) LV-reduces to U-MAX-ONES(RIN2).

Proof. We reduce an instance I of U-MAX-ONES(RII2) over n variables to an instance
of U-MAX-ONES(RIN2) over 3+2n variables. Create two fresh variables v0,v1 and con-
strain them as RIN2(v0,v0,v0,v0,v1,v1,v1,v1) in order to force v0 and v1 to be mapped
to different values. We then create the n+1 variables y1, . . . ,yn+1 and constrain them as
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∧n+1
i=1 RIN2(v0,v0,v0,v0,yi,yi,yi,yi). This forces all of the variables yi to be mapped to

the same value as v1. We can now express RII2(x1, . . . ,x8) using the implementation

RIN2(v0,x1,x2,x6,v1,x4,x5,x3)∧RIN2(v0,x7,x7,v0,v1,x8,x8,v1).

Note that in any optimal solution of the new instance v1 will be mapped to 1 which
means that the implementation of RII2 given above will be correct. The resulting instance
has a solution with measure 2+n+k if and only if I has a solution with measure k.

Lemma 13. U-MAX-ONES(RIS21
) LV-reduces to U-MAX-ONES(RID2).

Proof. We reduce an instance of U-MAX-ONES(RIS21
) on n variables to an instance

of U-MAX-ONES(RID2) on 2+3n variables. Create two new variables v0 and v1 and
constrain them as RID2(v1,v1,v0,v0,v0,v1). Note that this forces v0 to 0 and v1 to
1. For every variable x we introduce two extra variables x′ and x′′ and constrain
them as RID2(x,x

′,x′,x,v0,v1)∧RID2(x
′,x′′,x′′,x′,v0,v1). Note that this implements the

constraints Neq(x,x′) and Neq(x′,x′′), and that no matter what x is mapped to exactly
one of x′ and x′′ is mapped to 1. For every constraint RIS21

(x,y,z) we then introduce
the constraint RID2(x

′,y′,x,y,z,v1). The resulting instance has a solution with measure
1+n+ k if and only if I has a solution with measure k.

Lemma 14. U-MAX-ONES(RIL2) LV-reduces to U-MAX-ONES(RIL3).

Proof. We reduce an instance of U-MAX-ONES(RIL2) on n variables to an instance of
U-MAX-ONES(RIL3) on 2+2n+1 variables. Create two new variables v0 and v1 and
constrain them as RIL3(v0,v0,v0,v0,v1,v1,v1,v1). Note that this forces v0 and v1 to be
mapped to different values. We then introduce fresh variables y1, . . . ,yn+1 and constrain
them as

∧2n
i=1 RIL3(v0,v0,v0,v0,yi,yi,yi,yi). This will ensure that every variables yi is

mapped to the same value as v1 and therefore that in every optimal solution v0 is mapped
to 0 and v1 is mapped to 1. For every constraint RIL2(x1, . . . ,x8) we introduce the
constraints

RIL3(x7,x1,x2,x3,x8,x4,x5,x6)∧RIL3(x7,x7,x7,x7,v1,v1,v1,v1)

∧RIL3(v0,v0,v0,v0,x8,x8,x8,x8).

The resulting instance has a solution with measure 2+n+k if and only if I has a solution
with measure k.

4.4. Lower Bounds for VCSP
For VCSP we have already established that there cannot exist any NP-hard VCSP(∆)

problem in SE (under the ETH). The other direction appears significantly harder, if
true, but we do manage to prove a partial converse for the unweighted VCSP problem
with at most d|Var(I)| constraints for some fixed d ≥ 0 (U-VCSPd(∆)). We state the
following results using U-MAX-ONES(Γ) as a starting point, rather than the ETH, since
it simplifies the proof of the forthcoming Theorem 13.

Lemma 15. If U-MAX-ONES(Γ) ∈ SE for every finite Boolean constraint language Γ

then U-VCSPd(∆) ∈ SE for every finite set of Boolean cost functions ∆ and d ≥ 0.
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Proof. We first show that if every U-MAX-ONES(Γ) ∈ SE, then U-MIN-ONES(Γ) ∈
SE for all Γ, too. Here U-MIN-ONES(Γ) denotes the minimisation variant of U-MAX-ONES(Γ)
where the goal instead is to minimise the number of variables assigned 1. Arbitrar-
ily choose a finite constraint language Γ over B. We present an LV-reduction from
U-MIN-ONES(Γ) to U-MAX-ONES(Γ∪{Neq}). Let ({v1, . . . ,vn},C) be an arbitrary
instance of U-MIN-ONES(Γ) with optimal value K. Consider the instance I = (V ′,C′)
of U-MAX-ONES(Γ∪{Neq}) where:

V ′ = {v1,v′1,v
′′
1 , . . . ,vn,v′n,v

′′
n}, and

C′ =C∪{Neq(v1,v′1),Neq(v1,v′′1), . . . ,Neq(vn,v′n),Neq(vn,v′′n}.

For each variable vi ∈ {v1, . . . ,vn} that is assigned 0, the corresponding variables v′i,v
′′
i

are assigned 1, and vice-versa. It follows that the optimal value of I′ is 2n−K. Hence,
U-MIN-ONES(Γ) ∈ SE since U-MAX-ONES(Γ∪{Neq}) ∈ SE.

Now, arbitrarily choose d ≥ 0 and a finite set of Boolean cost functions ∆. Since
∆ is finite, we may without loss of generality assume that each function f ∈ ∆ has its
range in {0,1,2, . . .}.

We show that U-VCSPd(∆)∈ SE by exhibiting an LV-reduction from U-VCSPd(∆)
to U-MIN-ONES(Γ) where Γ is finite and only depends on ∆. Given a tuple a =
(a1, . . . ,ak) ∈ Bk, let val(a) = 1+∑ j:a j=1 2 j−1. Adding 1 to the sum ensures a non-zero
value, which is necessary since the value of val(a) corresponds to an index, which starts
with 1. For each f ∈ ∆ of arity k, define

R f =

{
(x1, . . . ,xk,y1, . . . ,y2k) ∈ Bk+2k

∣∣∣∣∣ f (x1, . . . ,xk)> 0,
{i : yi 6= 0}= {val(x1, . . . ,xk)}

}
∪{(x1, . . . ,xk,0, . . . ,0) ∈ Bk+2k | f (x1, . . . ,xk) = 0},

and let Γ = {Eq,Neq}∪{R f | f ∈ ∆}.
One may interpret R f as follows: for each (x1, . . . ,xk) ∈ Bk the relation R f contains

exactly one tuple (x1, . . . ,xk,y1, . . . ,y2k). If f (x1, . . . ,xk) = 0, then this is the tuple
(x1, . . . ,xk,0, . . . ,0). If f (x1, . . . ,xk)> 0, then this is the tuple (x1, . . . ,xk,0, . . . ,1, . . . ,0)
where the 1 is in position k+val(x1, . . . ,xk). We show below how R f can be used for
‘translating’ each x ∈ Bk into its corresponding weight as prescribed by f .

Let (V,∑m
i=1 fi(xi)) be an arbitrary instance of U-VCSPd(∆) where V = {v1, . . . ,vn}.

For each variable vi ∈V we begin by introducing a fresh variable wi. Now, assume the
instance has an optimal solution with value K. For each term fi(v1, . . . ,vk) in the sum,
do the following:

1. introduce 2k fresh variables v′1, . . . ,v
′
2k ,

2. for each a∈Bk such that fi(a)> 1, introduce n′= fi(a) fresh variables u0, . . . ,un′−1,
3. introduce the constraint R fi(v1, . . . ,vk,v′1, . . . ,v

′
2k),

4. introduce the constraints Neq(v1,w1), . . . ,Neq(vk,wk), and
5. for each a ∈ Bk, let n′ = fi(a) and do the following if n′ > 1: let p = val(a) and

introduce the constraints Eq(v′p,u0),Eq(u0,u1), . . . ,Eq(un′−2,un′−1).
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It is not difficult to realise that the resulting instance has optimal value K+∑
m
i=1 ar( fi)

given the interpretation of R f and the following motivation of step 5: the Neq constraints
introduced in step 5 ensure that the weight of (x1, . . . ,xk) does not influence the weight
of the construction and this explains that we need to adjust the optimal value with
∑

m
i=1 ar( fi).

Furthermore, the instance contains at most

2|V |+ |C| · (2s + t · (2s +1))

variables where s = max{ar( f ) | f ∈ ∆} and t = max{ f (a) | f ∈ ∆ and a ∈ Bar( f )}.
By noting that |C| ≤ d|V | and that s, t are constants that only depend on ∆, it follows
that the reduction is an LV-reduction.

4.5. Wrapping Up
We have seen several consequences of the ETH in the preceding sections. These

results can more generally be related together as follows.

Theorem 13. The following statements are equivalent.

1. The exponential-time hypothesis is false.
2. SSAT(Γ) ∈ SE for every finite Γ.
3. SSAT(Γ) ∈ SE for some finite Γ such that SSAT(Γ) is NP-hard.
4. U-MAX-ONES(Γ) ∈ SE for every finite Γ.
5. U-MAX-ONES(Γ) ∈ SE for some finite Γ such that U-MAX-ONES(Γ) is NP-

hard.
6. U-VCSP(∆)d ∈ SE for every finite set of finite-valued cost functions ∆ and d ≥ 0.

Proof. The implication 1⇒ 2 follows from Lemma 6, and the implication 2⇒ 3 is
trivial. For the implication 3⇒ 4, first observe from Figure 7 that if there exists an
NP-hard SAT(Γ) problem in SE, then SSAT(RII2) ∈ SE, too, which contradicts the
ETH [4]. An application of Lemma 9 then gives the implication 3⇒ 4.

Next, the implication 4⇒ 5 is trivial, and 5⇒ 1 follows by Lemma 8. The impli-
cation 4⇒ 6 follows from Lemma 15. We finish the proof by showing 6⇒ 1. Let
I = (V,C) be an instance of SAT(RII2)-2. Note that I contains at most 2 |V | constraints.
Let f be the function defined by f (x) = 0 if x ∈ RII2 and f (x) = 1 otherwise. Create
an instance of U-VCSP2( f ) by, for every constraint Ci = RII2(x1, . . . ,x8) ∈C, adding
to the cost function the term f (x1, . . . ,x8). This instance has a solution with objective
value 0 if and only if I is satisfiable. Hence, SAT(RII2)-2 ∈ SE which contradicts the
ETH [4].

5. Future Research

We have studied the fine-grained complexity of several variants and extensions of the
Boolean satisfiability problems. In many cases we were able to identify an ‘easiest NP-
hard problem’ in each class, which we were able to use in order to relate the complexity
of these problems to the ETH. Interestingly, for SSAT(·) and U-MAX-ONES(·) we were
able to obtain a complete understanding of the possibility of obtaining subexponential
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algorithms, under the ETH. While the results for ABD(·) and VCSP(·) are not quite as
strong, it is worth mentioning that our results, to the best of our knowledge, are still the
first of their kind for these problems. Let us now touch upon some directions for future
research.

The abduction problem. While we were able to identify an ‘easiest NP-complete
ABD(·) problem’, several questions remain unanswered. First, it would be interesting
to generalise the study to infinite constraint languages, where ABD(·) is more interesting
than the other problems under consideration due to the existence of NP-intermediate
problems [31], i.e., there exists an infinite ΓNPI such that ABD(ΓNPI) is neither tractable,
nor NP-complete, if P 6= NP. Despite this, is it possible to use the algebraic approach to
study fine-grained complexity of NP-intermediate problems? Here, the good news are
that the algebraic aspect works equivalently well for infinite sets of relations, e.g., the
co-clone 〈ΓNPI〉 admits a weak base [28]. The more challenging aspect is thus to apply
the algebraic approach in such a way that it leads to interesting reductions. Is it, for
example, possible to find an ‘easiest NP-intermediate ABD(·) problem’ with respect to
the co-clone 〈ΓNPI〉? Another interesting direction is to perform a more careful analysis
of the easiest NP-complete problem ABD(RIE2): is it possible to relate it to the easiest
SAT(·) problem, or are the two problems fundamentally incomparable?

Weighted versus unweighted problems. Theorem 13 only applies to unweighted prob-
lems and lifting these results to the weighted case does not appear straightforward. We
believe that some of these obstacles could be overcome with generalized sparsification
techniques and provide an example proving that if any NP-hard W-MAX-ONES(Γ)
problem is in SE, then MAX-CUT can be approximated within a multiplicative error of
(1±ε) (for any ε > 0) in subexponential time. Assume that W-MAX-ONES(Γ) ∈ SE is
NP-hard, and arbitrarily choose ε > 0. Let MAX-CUTc be the MAX-CUT problem re-
stricted to graphs G= (V,E) where |E| ≤ c · |V |. We first prove that MAX-CUTc is in SE
for arbitrary c≥ 0. By Theorem 10, we infer that W-MAX-ONES(RII2) ∈ SE. Given an
instance (V,E) of MAX-CUTc, one can introduce one fresh variable xv for each v∈V and
one fresh variable xe for each edge e∈ E. For each edge e = (v,w), we then constrain the
variables xv,xw and xe as R(xv,xw,xe) where R = {(0,0,0),(0,1,1),(1,0,1),(1,1,0)} ∈
〈RII2〉. It can then be verified that that the maximum value of ∑e∈E weh(xe) for an
optimal solution h (where we is the weight associated with the edge e) equals the weight
of a maximum cut in (V,E). This is an LV-reduction since |E|= c · |V |. Now consider
an instance (V,E) of the unrestricted MAX-CUT problem. By Batson et al. [35], we
can (in polynomial time) compute a cut sparsifier (V ′,E ′) with only Dε · n/ε2 edges
(where Dε is a constant depending only on ε), which approximately preserves the value
of the maximum cut of (V,E) to within a multiplicative error of (1± ε). By using the
LV-reduction above from MAX-CUTDε/ε2 to W-MAX-ONES(Γ), it follows that we can
approximate the maximum cut of (V,E) within (1± ε) in subexponential time.

Acknowledgements

The thank the anonymous reviewer for several helpful comments and suggestions
which were used to improve the article. The first author is partially supported by the

34



Swedish Research Council (VR) under grant 2017-04112, and the second author by VR
under grant 2019-03690.

References

[1] G. Woeginger, Exact algorithms for NP-hard problems: a survey, in: M. Juenger,
G. Reinelt, G. Rinaldi (Eds.), Combinatorial Optimization – Eureka! You Shrink!,
2000, pp. 185–207.

[2] D. Lokshtanov, D. Marx, S. Saurabh, Lower bounds based on the exponential time
hypothesis, Bulletin of the EATCS 105 (2011) 41–72.

[3] E. Grandjean, F. Olive, Graph properties checkable in linear time in the number of
vertices, Journal of Computer and System Sciences 68 (3) (2004) 546–597.

[4] P. Jonsson, V. Lagerkvist, G. Nordh, B. Zanuttini, Strong partial clones and the
time complexity of SAT problems, Journal of Computer and System Sciences 84
(2017) 52 – 78.

[5] A. Bulatov, A dichotomy theorem for nonuniform CSPs, in: Proceedings of the
58th Annual Symposium on Foundations of Computer Science (FOCS-2017),
IEEE Computer Society, 2017.

[6] D. Zhuk, A proof of the CSP dichotomy conjecture, Journal of the ACM 67 (5)
(2020) 30:1–30:78.

[7] M. Couceiro, L. Haddad, V. Lagerkvist, A survey on the fine-grained complexity
of constraint satisfaction problems based on partial polymorphisms, Journal of
Multiple-Valued Logic and Soft Computing. To appear. (2020).

[8] N. Alon, D. Lokshtanov, S. Saurabh, Fast FAST, in: S. Albers, A. Marchetti-
Spaccamela, Y. Matias, S. E. Nikoletseas, W. Thomas (Eds.), Proceedings of
the 36th International Colloquium on Automata, Languages and Programming
(ICALP-2009), Vol. 5555 of Lecture Notes in Computer Science, Springer, 2009,
pp. 49–58.

[9] R. Impagliazzo, R. Paturi, On the complexity of k-SAT, Journal of Computer and
System Sciences 62 (2) (2001) 367 – 375.

[10] M. Cygan, F. V. Fomin, LOGSPACE. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, S. Saurabh, Lower Bounds Based on the Exponential-
Time Hypothesis, Springer International Publishing, Cham, 2015, pp. 467–521.

[11] R. Impagliazzo, R. Paturi, F. Zane, Which problems have strongly exponential
complexity?, Journal of Computer and System Sciences 63 (4) (2001) 512 – 530.

[12] R. Santhanam, S. Srinivasan, On the limits of sparsification, in: Proceeding of
the 39th International Colloquium on Automata, Languages, and Programming
(ICALP-2012), 2012, pp. 774–785.

35



[13] P. Jonsson, V. Lagerkvist, B. Roy, Fine-grained time complexity of constraint
satisfaction problems, ACM Transactions on Computation Theory 13 (1) (2021).

[14] P. Jonsson, V. Lagerkvist, Lower bounds and faster algorithms for equality con-
straints, in: Proceedings of the 29th International Joint Conference on Artificial
Intelligence (IJCAI-2020), 2020, pp. 1784–1790.

[15] S. Khanna, M. Sudan, L. Trevisan, D. Williamson, The approximability of con-
straint satisfaction problems, SIAM Journal on Computing 30 (6) (2000) 1863–
1920.

[16] N. Creignou, S. Khanna, M. Sudan, Complexity classifications of Boolean con-
straint satisfaction problems, SIAM Monographs on Discrete Mathematics and
Applications, 2001.

[17] H. Schnoor, I. Schnoor, Partial polymorphisms and constraint satisfaction prob-
lems, in: N. Creignou, P. G. Kolaitis, H. Vollmer (Eds.), Complexity of Constraints,
Vol. 5250 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2008,
pp. 229–254.

[18] N. Creignou, B. Zanuttini, A complete classification of the complexity of proposi-
tional abduction, SIAM Journal on Computing 36 (1) (2006) 207–229.

[19] G. Nordh, B. Zanuttini, What makes propositional abduction tractable, Artificial
Intelligence 172 (2008) 1245–1284.

[20] N. Creignou, H. Vollmer, Boolean constraint satisfaction problems: when does
Post’s lattice help?, in: N. Creignou, P. G. Kolaitis, H. Vollmer (Eds.), Complexity
of Constraints, Vol. 5250, Springer Verlag, Berlin Heidelberg, 2008, pp. 3–37.

[21] J. Thapper, Aspects of a constraint optimisation problem, Ph.D. thesis, Linköping
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