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Abstract

We study the constraint satisfaction problem (CSP) parameterized by a
constraint language Γ (CSP(Γ)) and how the choice of Γ affects its worst-
case time complexity. Under the exponential-time hypothesis (ETH), we rule
out the existence of subexponential algorithms for finite-domain NP-complete
CSP(Γ) problems. This extends to certain infinite-domain CSPs and struc-
turally restricted problems. For CSPs with finite domain D and where all
unary relations are available, we identify a relation SD such that the time
complexity of the NP-complete problem CSP({SD}) is a lower bound for all
NP-complete CSPs of this kind. We also prove that the time complexity of
CSP({SD}) strictly decreases when |D| increases (unless the ETH is false),
and provide stronger complexity results in the special case when |D| = 3.

1 Introduction

The constraint satisfaction problem over a constraint language Γ (CSP(Γ)) is
the computational decision problem of verifying whether a set of constraints
over Γ is satisfiable or not. The principal aim of this article is to investigate the
seemingly large discrepancy in time complexity of NP-complete CSPs, using
methods from universal algebra. This study can be seen as a continuation
of Jonsson et al. [35] who studied related questions for Boolean Γ. However,
constraint languages over arbitrary finite domains introduce a large array of
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complicating factors, requiring us to use and develop several new algebraic
techniques to accomplish our goal.

This introduction is split into three sections which describes these goals in
greater detail. We begin in Section 1.1 by highlighting similar research and
describe the overarching research field, continue in Section 1.2 by explaining
our algebraic approach, and in Section 1.3 we conclude the introduction by
outlining the main results established in the article.

1.1 Background and Motivation

The constraint satisfaction problem is widely studied from both a theoretical
and a practical standpoint. From a practical point of view this problem can
be used to model many natural problems occurring in real-world applications.
From a more theoretical point of view the CSP problem is (among several
other things) of great interest due to its connections with universal algebra.
The details of the so-called algebraic approach will be expanded in Section 1.2,
but at the moment it is sufficient to know that there exists an algebraic corre-
spondence between constraint languages and certain closed sets of operations,
polymorphisms, determining the complexity of a CSP up to polynomial-time
reductions [32]. Most recently, the algebraic approach culminated into a di-
chotomy theorem separating tractable from NP-complete CSPs [15, 47].

However, the mere fact that two CSPs are polynomial-time interreducible
does not offer much insight into their relative worst-case time complexity. For
example, on the one hand, it has been conjectured that the Boolean satis-
fiability problem with unrestricted clause length, CNF-SAT, is not solvable
strictly faster than O(2n), where n denotes the number of variables [30]. On
the other hand, k-SAT is known to be solvable strictly faster than O(2n) for
every k ≥ 1 [29], and even more efficient algorithms are known for severely
restricted satisfiability problems such as 1-in-3-SAT [46]. This discrepancy in
complexity stems from the fact that a polynomial-time reduction can change
the structure of an instance and e.g. introduce a large number of fresh vari-
ables. Hence, it is worthwhile to study the complexity of NP-complete CSPs
using more fine-grained notions of reductions. To make this a bit more precise,
given a constraint language Γ we let

T(Γ) = inf{c | CSP(Γ) is solvable in time 2cn}

where n denotes the number of variables. For each k let Γk
SAT denote the

constraint language where each relation is the set of models of a k-ary clause.
If T(Γ) = 0 then CSP(Γ) is said to be solvable in subexponential time, and
the conjecture that CSP(Γ3

SAT) (i.e., 3-SAT) is not solvable in subexponential
time is known as the exponential-time hypothesis (ETH) [30]. The stronger
conjecture that the limit of the sequence T(Γ3

SAT), T(Γ4
SAT),T(Γ5

SAT), . . . tends
to 1 is known as the strong exponential-time hypothesis [30, 18].

It is worth remarking that no concrete values of T(Γ) are known when
CSP(Γ) is NP-complete. Despite this, studying properties of the function T
can still be of great interest since such properties can be used to compare and
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relate the worst-case running times of NP-complete CSP problems. More-
over, for Boolean constraint languages, several properties of the function T are
known. For example, it is known that there exists a finite Boolean constraint
language Γ such that CSP(Γ) is NP-complete and T(Γ) = 0 if and only if
T(∆) = 0 for every Boolean constraint language ∆ [35]. Hence, even though
the status of the ETH is unclear at the moment, finding a subexponential time
algorithm for one NP-complete Boolean CSP problem is tantamount to being
able to solve every Boolean CSP problem in subexponential time. It is also
known that there exists a Boolean relation R 6= 6= 6=01

1/3 such that CSP({R 6= 6= 6=01

1/3 }) is
NP-complete but T({R 6= 6= 6=01

1/3 }) ≤ T(Γ) for every Boolean constraint language
Γ such that CSP(Γ) is NP-complete. In Jonsson et al. [35] this problem is
referred to as the easiest NP-complete Boolean CSP problem. The existence of
this relation e.g. rules out the possibility that for each Boolean constraint lan-
guage Γ there exists ∆ such that T(∆) < T(Γ) — a scenario which otherwise
would have been compatible with the ETH. Hence, even though no concrete
values are known for T(Γ) when CSP(Γ) is NP-complete, quite a lot is known
concerning the relationship between T(Γ) and T(∆) for Boolean Γ and ∆.

In this article we are interested in studying properties of the function T for
constraint languages Γ over arbitrary finite domains. In particular we are in-
terested in relating T(Γ) to the ETH, and the possibility of implicitly bounding
T from below by finding an “easiest NP-complete CSP(Γ) problem”. However,
in contrast to the Boolean domain where the algebraic landscape is relatively
simple, arbitrary finite domains pose significant obstacles to overcome, which
is the topic of the forthcoming section.

1.2 The Algebraic Approach

In this section we describe the algebraic approach in greater detail and outline
how it is used in this article. A k-ary operation f : Dk → D over a universe, or
domain, D is said to be a polymorphism of a constraint language Γ if, for every
relation R ∈ Γ, f(t1, . . . , tk) ∈ R for every t1, . . . , tk ∈ R, where f is applied
componentwise to the tuples t1, . . . , tk. Another way of viewing this is that the
tuples t1, . . . , tk form the rows in a matrix, and that one then applies the func-
tion f to the columns of this matrix. Hence, a polymorphism may simply be
viewed as a homomorphism from the kth power of R to R itself, and we write
Pol(Γ) for the set of operations preserving all relations in the constraint lan-
guage Γ. Sets of operations of the form Pol(Γ) are known as clones and form a
lattice for every domain when ordered by set inclusion. The importance of poly-
morphisms in the context of CSPs stems from their correspondence to sets of
relations closed under logical formulas consisting of existential quantification,
conjunction, and equality constraints, so-called primitive positive definitions
(pp-definitions). With this correspondence Jeavons [32] proved that CSP(Γ)
is polynomial-time many-one reducible to CSP(∆) if Pol(∆) ⊆ Pol(Γ).

One shortcoming of this approach is that the lattice of clones, despite being
well understood in the Boolean domain due to Post’s lattice [38], are not nearly
as well described for arbitrary finite domains. Hence, it was realized early that
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more powerful methods for characterizing polymorphisms was needed [17], and
the majority of research concentrated on classifying polymorphisms according
to identities. In simple terms, this approach offers a simplification in the sense
that instead of studying properties of specific polymorphisms, it is sufficient
to study classes of algebras satisfying certain identities, so-called varieties. In
this article we will concentrate on the relational counterpart to such classes
of algebras, primitive positive interpretations, which is a generalization of pp-
definitions which can be used to compare the expressive strength of constraint
languages defined over different finite domains (see Section 2.4 for a formal def-
inition). Similar to pp-definitions it is then possible to use pp-interpretations
in order to obtain polynomial-time many-one reductions between CSPs (cf.
Theorem 5.5.6 in Bodirsky [5]). With the notion of pp-interpretations the
CSP dichotomy theorem can then simply be stated as follows [17, 15, 47].

Theorem 1. Let Γ be an idempotent constraint language over a finite do-
main. Then CSP(Γ) is NP-complete if Γ pp-interprets 3-SAT and is tractable
otherwise.

By idempotent we here mean that the constraint language contains all
possible constants over the domain. However, it is a priori not obvious how
the assumption that Γ pp-interprets 3-SAT can be used to characterise the
behaviour of T(Γ). In the Boolean domain Jonsson et al. [35] handled this
difficulty by considering more refined algebras than polymorphisms, so-called
partial polymorphisms. These operations are defined similarly to total poly-
morphisms with the exception that they are allowed to be undefined, and we
write pPol(Γ) for the set of partial polymorphisms of the constraint language
Γ. Sets of the form pPol(Γ) are sometimes referred to as strong partial clones
and it is known that T(Γ) ≤ T(∆) if pPol(∆) ⊆ pPol(Γ) [35]. Hence, par-
tial polymorphisms carry sufficient information to study the worst-case time
complexity of NP-complete CSPs. It is also worth remarking that partial poly-
morphisms are not only useful when studying CSPs with this very fine-grained
notion of complexity, and have been used to study the classical complexity of
many different computational problems where polymorphisms are not directly
applicable [4, 12, 16, 28].

However, it is not straightforward to see how Theorem 1 together with
partial polymorphisms can be used to say anything non-trivial concerning the
function T for arbitrary finite domains. In the Boolean case Jonsson et al. [35]
essentially circumvented this difficulty by utilising Schaefer’s dichotomy theo-
rem [43] together with Post’s lattice [38] of Boolean clones. This approach is
not possible for larger domains since little is known about the set {Pol(Γ) | Γ
pp-interprets 3-SAT}. We describe how to overcome this difficulty in Sec-
tion 1.3 where the results of the article are described in greater detail.

1.3 Our Results

As a starting point we begin in Section 3 by investigating the possibility of
finding NP-complete CSPs solvable in subexponential time. That is, assum-
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ing the ETH, can there exist CSP(Γ) where Γ pp-interprets 3-SAT and where
T(Γ) = 0? For this question we develop a complete understanding and prove
that (1) the ETH is false if and only if (2) there exists a finite constraint lan-
guage Γ over a finite domain such that CSP(Γ) is NP-complete and T(Γ) = 0,
if and only if (3) T(Γ) = 0 for every finite constraint language Γ defined over
a finite domain. In other words, finding a subexponential time algorithm for a
single NP-complete, finite-domain CSP problem is tantamount to being able
to solve all CSP problems in subexponential time. We also study structurally
restricted CSPs where the maximum number of constraints a variable may
appear in is bounded by a constant B (CSP(Γ)-B). For problems of this form
our results are not as sharp, but we prove that, if CSP(Γ) is NP-complete and
Γ satisfies an additional algebraic condition, then there exists a constant B
such that CSP(Γ)-B is not solvable in subexponential time (unless the ETH is
false). We also remark that our proof extends to certain constraint languages
defined over infinite domain, and give several examples of infinite-domain NP-
complete CSP problems that are not solvable in subexponential time, unless
the ETH is false. These results may be interesting to compare to those of
De Haan et al. [23], who study subexponential algorithms for structurally re-
stricted CSPs. One crucial difference to our results is that De Haan et al. do
not consider constraint language restrictions. For example, it is proved that
CSP(∆)-2, where ∆ is the set of all finite-domain relations, is not solvable in
subexponential time unless the ETH is false. However, a result of this form
tells us very little about the complexity of CSP(Γ)-2 for specific constraint lan-
guages, since it does not imply that CSP(Γ)-2 is not solvable in subexponential
time for every Γ such that CSP(Γ)-2 is NP-complete.

We have thus established that T(Γ) > 0 for every NP-complete, finite-
domain CSP(Γ), assuming only the ETH. This immediately raises the question
of which further insights can be gained concerning the behaviour of the function
T. Is the easiest NP-complete SAT problem also the easiest NP-complete CSP
problem (for each fixed domain)? If not, is it possible to find an easiest CSP
problem over the domain, or can one for every c > 0 construct an NP-complete
CSP solvable in O(2cn) time? Or, formulated using T, for some fixed finite
domain, is it possible to construct an infinite chain of NP-complete CSPs
with strictly decreasing complexity, such that T tends to 0? This would not
directly contradict the ETH, but would certainly make finite-domain CSPs
fundamentally different to SAT problems. We study such questions in Section 4
for CSPs where in an instance one is allowed to restrict the values of individual
variables arbitrarily. This restricted CSP problem is particularly well-studied,
and it is used as the definition of CSPs in many cases: see, for instance, the
textbook by Russell and Norvig [42, Section 3.7] and the handbook by Rossi
et al. [41, Section 2]. This may be viewed as restricting oneself to constraint
languages that contain all unary relations. A closely related restriction (that is
typically used when studying CSPs from the algebraic viewpoint) is that every
unary relation is primitively positively definable in Γ (see Section 2). Such
constraint languages are known as conservative. These two restrictions are
computationally equivalent up to polynomial-time many-one reductions, but it
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is not known whether they are equivalent with respect to the function T. Thus,
we need to separate them, so we say that a constraint language that contains
all unary relations is ultraconservative. Clearly, the CSP dichotomy theorem
is valid also for conservative and ultraconservative constraint languages, but
the conservative case was known to hold well before Theorem 1 [14].

We then show that for every finite domain D there exists a relation SD
such that CSP({SD}) is NP-complete and T({SD}) = T({SD} ∪ 2D) ≤ T(Γ)
for every ultraconservative and NP-complete CSP(Γ) over D (2D is the set
of all unary relations over D). This relation will be formally defined in Sec-
tion 4.1, but it is worth pointing out that SD contains only three tuples and
that CSP({SD}) can be viewed as a higher-domain variant of the monotone
1-in-3-SAT problem. We refer to CSP({SD}∪ 2D) as the easiest NP-complete
ultraconservative CSP problem over D. Note that the properties of the re-
lation SD rule out the possibility of an infinite sequence of ultraconservative
languages Γ1,Γ2, . . . such that each CSP(Γi) is NP-complete and T(Γi) tends
to 0, but also have stronger implications, since the value T({SD}) is a con-
ditional lower bound for the complexity of all NP-complete, ultraconservative
CSPs over D.

To prove the existence of the relation SD we begin in Section 4.1 by first
proving that there for each finite D and NP-hard and conservative CSP(Γ)
exists a relation R over D of cardinality 3 such that (1) CSP({R}) is NP-
complete and (2) T({R}) ≤ T(Γ). However, this is not enough in order to find
an “easiest problem”, since for every finite domain there exists a large number
of such relations. In Section 4.2 we show that T({SD}) ≤ T({R}) for every
such relation R of cardinality 3. We then analyse the time complexity of the
problem CSP({SD}) and prove that T({SD}) tends to 0 for increasing values
of |D|. This also shows, despite the fact that no finite-domain NP-complete
CSP(Γ) is solvable in subexponential time (if the ETH is true), that for every
c > 0 one can find Γ over a finite domain such that CSP(Γ) is NP-complete
and solvable in O(2cn) time. Based on an existing reduction [36], we also
prove that the CSP problem over D where every possible constraint over D
may appear in an instance, is not solvable strictly faster than O(|D|n) time
(unless the SETH is false). Colloquially speaking, one interpretation of these
results is that easy CSPs become easier, while the hard CSPs become harder,
when the domain increases in size.

Having identified an easiest ultraconservative NP-complete CSP for every
finite domain, it is tempting to prove similar results for arbitrary NP-complete
CSPs. As a reasonable starting point we first investigate the case when Γ is
conservative but not necessary ultraconservative (in Section 5). Surprisingly,
even the conservative case is far from straightforward, and to make progress
we have to develop new algebraic constructions. Furthermore, in contrast to
the ultraconservative case, these constructions explicitly require the usage of
partial polymorphisms, giving the impression that further progress could hinge
on stronger algebraic techniques. For ternary domains D we then manage
to prove that T({SD}) ≤ T(Γ) for every conservative Γ over D such that
CSP(Γ) is NP-complete, but it is not obvious that similar proof techniques
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are applicable to larger domains.
When adjoined, our results in this article clearly demonstrate that the func-

tion T can be analysed without an extensive knowledge of the polymorphisms
related to a constraint language. Hence, fine-grained complexity analyses are
in no way limited to Boolean CSPs but can be pursued for much richer classes
of problems. We have also established that lower bounds based on the ETH
and the SETH can be obtained for both finite-domain CSPs and many classes
of infinite-domain CSPs.

2 Preliminaries

In this section we introduce and define the technical notions needed for the
remainder of the article.

2.1 Relations and Constraint Languages

A k-ary relation R over a set D is a subset of Dk, and we write ar(R) = k to
denote its arity. A finite set of relations Γ over a set D is called a constraint
language. We will typically refer to the set D as a domain, and will always
assume that |D| > 1.

Given two tuples s and t we let s_t denote the concatenation of s and t, i.e.,
if s = (s1, . . . , sk1) and t = (t1, . . . , tk2) then s_t = (s1, . . . , sk1 , t1, . . . , tk2).
If t is an n-ary tuple we let t[i] denote its ith element and Proji1,...,in′ (t) =
(t[i1], . . . , t[in′ ]), n

′ ≤ n, denote the projection of t on the coordinates i1, . . . , in′ ∈
{1, . . . , n}. Similarly, if R is an n-ary relation we let

Proji1,...,in′ (R) = {Proji1,...,in′ (t) | t ∈ R}.

We write EqD for the equality relation {(x, x) | x ∈ D}. If there is no risk
for confusion we omit the subscript and simply write Eq. For each d ∈ D we
write Rd for the unary, constant relation {(d)}. We will occasionally represent
relations by first-order formulas, and if ϕ(x1, . . . , xk) is a first-order formula
with free variables x1, . . . , xk then we write R(x1, . . . , xk) ≡ ϕ(x1, . . . , xk) to
define the relation R = {(f(x1), . . . , f(xk)) | f is a model of ϕ(x1, . . . , xk)}.

As a graphical representation, we will sometimes view a k-ary relation
R = {t1, . . . , tm} as anm×k matrix where the columns of the matrix enumerate
the arguments of the relation (in some fixed ordering). For example,(

0 0 1 1
0 1 0 1

)
represents the relation {(0, 0, 1, 1), (0, 1, 0, 1)}.

2.2 The Constraint Satisfaction Problem

The constraint satisfaction problem over a constraint language Γ overD (CSP(Γ))
is the computational decision problem defined as follows.
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Instance: A set V of variables and a set C of constraint applicationsR(x1, . . . , xk)
where R ∈ Γ, ar(R) = k, and x1, . . . , xk ∈ V .
Question: Does there exist f : V → D such that (f(x1), . . . , f(xk)) ∈ R for
each R(x1, . . . , xk) in C?

If Γ = {R} is singleton then we write CSP(R) instead of CSP({R}), and
if Γ is Boolean we typically write SAT(Γ) instead of CSP(Γ). We let B =
{0, 1}. For example, if R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, then SAT(R1/3)
is an alternative formulation of 1-in-3-SAT without negation. Also, for each
k ≥ 3 let Γk

SAT be the constraint language which for every t ∈ Bk contains the
relation Bk\{t}. Then, SAT(Γk

SAT) can be viewed as an alternative formulation
of k-SAT. Last, let us define the 8-ary relation R 6= 6= 6=01

1/3 from Jonsson et al [35]
as

R 6= 6= 6=01

1/3 = {(0, 0, 1, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 1, 1, 0, 1)}.

Then SAT(R 6= 6= 6=01

1/3 ) can be seen as a variant of SAT(R1/3) where each variable
in each constraint is constant (0 or 1) or has a complementary variable (ex-
plaining the three inequalities in the notation R 6= 6= 6=01

1/3 ). We will return to this
SAT problem several times in the sequel.

2.3 Representing Constraints

We have defined a constraint language Γ as a finite set of relations, implying
that constraints in instances of CSP(Γ) can be represented in a multitude of
equivalent ways. Since our main interest in this article lies in studying the time
complexity of CSPs over finite constraint languages, such a relaxed notion of
representation is typically sufficient.

One exception to this finitary stance is when discussing the so-called uni-
form CSP problem over a finite domain D where every possible relation over
D may appear in an instance. We let D-CSP denote this problem and adopt
a simple representation of constraints: each involved relation is explicitly rep-
resented as a list of tuples. This is the predominant method of representing
constraints in the majority of theoretical CSP research, but is in stark contrast
to CNF-SAT where a clause of arbitrary length is usually encoded by a list of
literals. Hence, the only difference between {0, 1}-CSP and CNF-SAT is the
preferred choice of representation.

2.4 Primitive Positive Definitions and Interpretations

Let Γ be a constraint language. A k-ary relation R is said to have a primitive
positive definition (pp-definition) over Γ if

R(x1, . . . , xk) ≡ ∃y1, . . . , yk′ . R1(x1) ∧ . . . ∧Rm(xm),

where each Ri ∈ Γ ∪ {Eq} and each xi is an ar(Ri)-ary tuple of variables over
x1, . . . , xk, y1, . . . , yk′ . In addition, if the primitive positive formula does not
contain any existentially quantified variables, we say that it is a quantifier-
free primitive positive formula (qfpp), and if each Ri ∈ Γ, we say that it is
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a equality-free primitive positive formula (efpp). Hence, an efpp-formula can
only utilise equality constraints if they are already included in Γ.

For example, the reader can verify that the standard reduction from k-SAT
to (k−1)-SAT, where a clause of length k is replaced by clauses of length k−1
making use of one fresh variable, can be formulated as a pp-definition but
not as a qfpp-definition. We write 〈Γ〉, 〈Γ〉6∃, and 〈Γ〉6= to denote the smallest
set of relations containing Γ and which are closed under pp-definitions, qfpp-
definitions, and efpp-definitions, respectively. The intended mnemonic for the
latter two cases is thus that existential quantification, respectively equality, is
not allowed. If Γ = {R} is singleton then we instead write 〈R〉, 〈R〉6∃, and
〈R〉6=.

Note that 〈Γ〉 is closed under projections, in the sense that if R ∈ 〈Γ〉
then Proji1,...,in(R) ∈ 〈Γ〉 for all i1, . . . , in ∈ {1, . . . , ar(R)}. The same is true
for 〈Γ〉6=, but it does not necessarily hold for 〈Γ〉6∃. Jeavons [32] proved the
following important result.

Theorem 2. Let Γ and ∆ be constraint languages. If ∆ ⊆ 〈Γ〉 then CSP(∆)
is polynomial-time reducible to CSP(Γ).

Theorem 2 naturally holds also for relations defined by qfpp- or efpp-
formulas. However, there are additional advantages of these more restricted
ways of defining relations and we will return to them later on. We are now
ready to define the concept of primitive positive interpretations.

Definition 3. Let D and E be two domains and let Γ and ∆ be two constraint
languages over D and E, respectively. A primitive positive interpretation (pp-
interpretation) of ∆ over Γ consists of a d-ary relation F ⊆ Dd and a surjective
function f : F → E such that F, f−1(EqE) ∈ 〈Γ〉 and f−1(R) ∈ 〈Γ〉 for every
R ∈ ∆, where f−1(R), ar(R) = k, denotes the (k · d)-ary relation

{(x1
1, . . . , x

d
1, . . . , x

1
k, . . . , x

d
k) ∈ Dk·d |

(f(x1
1, . . . , x

d
1), . . . , f(x1

k, . . . , x
d
k)) ∈ R}.

The main purpose of pp-interpretations is to relate constraint languages
which might be incomparable with respect to pp-definitions. Let us consider
a concrete example.

Example 1. Recall that R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}, and let R =
{(0, 0, 2), (0, 2, 0), (2, 0, 0)}. Then neither R1/3 ∈ 〈R〉 nor R ∈ 〈R1/3〉, even
though CSP(R1/3) and CSP(R) are trivially reducible to each other. However,
it is easy to show that R can pp-interpret R1/3, and vice versa: simply choose
d = 1, F = {(0), (2)} and the parameter f(0) = 0, f(2) = 1. Then F ∈ 〈R〉
since F (x) ≡ ∃y, z.R(x, y, z), f−1(R1/3) = R and f−1(EqB) = Eq{0,2}, from
which it follows that R can pp-interpret R1/3.

Second, consider the relation R6= = {(x, y) ∈ {0, 1, 2}2 | x 6= y}, and
observe that CSP(R 6=) corresponds to the 3-coloring problem. We invite the
reader to verify that the standard reduction from 3-coloring to 3-SAT can be
phrased as a pp-interpretation of R 6= over Γ3

SAT, but that this reduction cannot
be expressed via pp-definitions due to the different domains.
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Hence, pp-interpretations are generalisations of pp-definitions, and can be
used to obtain polynomial-time reductions between CSPs.

Theorem 4 (cf. Theorem 5.5.6 in Bodirsky [5]). If Γ,∆ are constraint lan-
guages and there is a pp-interpretation of ∆ over Γ, then CSP(∆) is polynomial-
time reducible to CSP(Γ).

2.5 Polymorphisms and Partial Polymorphisms

Let f be a k-ary function over a domain D. We write ar(f) = k to denote
the arity of f and will occasionally also refer to f as an operation. For a set
D we write OPD for the set of all (finitary) operations over D. An operation
f : Dk → D is said to be idempotent if f(x, . . . , x) = x for each x ∈ D. A
k-ary partial function, or a partial operation, is a map X → D where X ⊆ Dk,
and we write pOPD for the set of all (finitary) partial operations over D. If f
is a k-ary partial operation we let ar(f) = k denote its arity and dom(f) = X
denote its domain, i.e., the set of values where it is defined.

If f is a k-ary operation and R an n-ary relation, both defined over the
same domain, it is easy to extend f to tuples t1, . . . , tk from R as follows:

f(t1, . . . , tk) = (f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])).

This immediately leads to the following important definition.

Definition 5. Let f : Dk → D be a k-ary operation and R ⊆ Dn an n-ary
relation. The operation f is a polymorphism of R if f(t1, . . . , tk) ∈ R for each
sequence of tuples t1, . . . , tk ∈ R.

This notion is easy to generalise to partial operations as follows.

Definition 6. Let f be a k-ary partial operation over D and R ⊆ Dn an
n-ary relation. The partial operation f is a partial polymorphism of R if
f(t1, . . . , tk) ∈ R for each sequence of tuples t1, . . . , tk ∈ R such that (t1[i], . . . , tn[i]) ∈
dom(f) for each 1 ≤ i ≤ n.

If f is a polymorphism or a partial polymorphism of a relation R then we
occasionally also say that R is invariant under f , or that R is closed under f .

Definition 7. Let R be a relation over D and Γ a constraint language over
D. We make the following definitions.

1. Pol(R) = {f ∈ OPD | f is a polymorphism of R}.
2. pPol(R) = {f ∈ pOPD | f is a partial polymorphism of R}.
3. Pol(Γ) =

⋂
R∈Γ Pol(R).

4. pPol(Γ) =
⋂
R∈Γ pPol(R).

Sets of the form Pol(Γ) are in the literature usually known as clones and
sets of the form pPol(Γ) known as strong partial clones. Both clones and strong
partial clones form a lattice when ordered by set inclusion. For the majority
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of applications in this paper we will not need any sophisticated algebraic ma-
chinery, but we remark that the lattice of Boolean clones, Post’s lattice, is
countably infinite and completely described [38], but that each larger domain
contains a continuum of clones [25] with a mostly unknown structure. For
strong partial clones the situation is even more severe as there exists a contin-
uum of strong partial clones already in the Boolean domain [1], and only small
fragments of this lattice have been determined [45], while the remaining parts
are largely unexplored.

We write Inv(F ) to denote the set of all relations invariant under the set
of total or partial functions F . It is known that Inv(Pol(Γ)) = 〈Γ〉 and that
Inv(pPol(Γ)) = 〈Γ〉6∃, giving rise to the following Galois connections.

Theorem 8 ([10, 11, 26, 40]). Let Γ and Γ′ be two constraint languages.
Then Γ ⊆ 〈Γ′〉 if and only if Pol(Γ′) ⊆ Pol(Γ) and Γ ⊆ 〈Γ′〉 6∃ if and only if
pPol(Γ′) ⊆ pPol(Γ).

2.6 Time complexity and size-preserving reductions

Given a constraint language Γ we let

T(Γ) = inf{c | CSP(Γ) is solvable in time 2cn}

where n denotes the number of variables in a given instance. If T(Γ) = 0
then CSP(Γ) is said to be subexponential, or solvable in subexponential time.
The conjecture that T(Γ3

SAT) > 0 is known as the exponential-time hypothesis
(ETH) [30], and the conjecture that limk→∞ T(Γk

SAT) = 1 is known as the strong
exponential- time hypothesis (SETH). Hence, the ETH states that 3-SAT is not
solvable in subexponential time, and the SETH that the complexity of k-SAT
tends to 2n for increasing values of k. Note in particular that the SETH implies
that CNF-SAT is not solvable in O(cn) time for any c < 2.

We now introduce a type of reduction useful for studying the complexity
of CSPs with respect to the function T.

Definition 9. Let Γ and ∆ be two constraint languages. The function f from
the instances of CSP(Γ) to the instances of CSP(∆) is a many-one linear vari-
able reduction (LV-reduction) with parameter d ≥ 0 if (1) f is a polynomial-
time many-one reduction from CSP(Γ) to CSP(∆) and (2) |V ′| = d·|V |+O(1)
where V , V ′ are the set of variables in I and f(I), respectively.

The term CV-reduction, short for constant variable reduction, is used to
denote LV-reductions with parameter 1, and we write CSP(Γ) ≤CV CSP(∆)
when CSP(Γ) has a CV-reduction to CSP(∆). It follows that if CSP(Γ) ≤CV

CSP(∆) then T(Γ) ≤ T(∆), and if CSP(Γ) LV-reduces to CSP(∆) then
T(Γ) = 0 if T(∆) = 0. Note that T(Γ) ≤ T(∆) also holds if there exists a
polynomial-time many-one reduction from CSP(Γ) to CSP(∆) which intro-
duces o(|V |) fresh variables, but for our purposes CV-reductions are sufficient.

We then have the following theorem from Jonsson et al. [35], relating
the partial polymorphisms of constraint languages with the existence of CV-
reductions.
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Theorem 10 ([35]). Let D be a finite domain and let Γ and ∆ be two con-
straint languages over D. If pPol(∆) ⊆ pPol(Γ) then CSP(Γ) ≤CV CSP(∆).

We remark that the original proof only concerned Boolean constraint lan-
guages but that the same proof also works for arbitrary finite domains. Using
Theorem 10 and algebraic techniques from Schnoor and Schnoor [44], Jonsson
et al. [35] proved that T({R 6= 6= 6=01

1/3 }) ≤ T(Γ) for any finite Γ such that SAT(Γ)
is NP-complete. The problem SAT(R 6= 6= 6=01

1/3 ) was referred to as the easiest NP-
complete SAT problem. We will not go into the details but remark that the
proof idea does not work for arbitrary finite domains since it requires a char-
acterisation of every Pol(Γ) such that CSP(Γ) is NP-complete. Such a list is
known for the Boolean domain due to Post [38] and Schaefer [43], but not for
larger domains.

2.7 Complexity of CSP

Let Γ be a constraint language over a finite domain D. We say that Γ is
idempotent if Rd ∈ 〈Γ〉 for every d ∈ D, conservative if 2D ⊆ 〈Γ〉, and ultra-
conservative if 2D ⊆ Γ. A unary function f ∈ Pol(Γ) is said to be an endo-
morphism, and if f in addition is bijective it is said to be an automorphism.
A constraint language Γ is a core if every endomorphism is an automorphism.
Every finite-domain Γ admits a core which is unique up to isomorphism, and
we will therefore sometimes speak of the core of Γ. The following theorem is
well-known, see e.g., Theorem 3.6 in Barto [2], but is usually expressed in term
of polynomial-time many-one reductions instead of CV-reductions.

Theorem 11. Let Γ be a core constraint language over the domain {d0, . . . , dk−1}.
Then CSP(Γ ∪ {Rd0 , . . . , Rdk−1}) ≤CV CSP(Γ).

If Γ is a constraint language overD = {d0, . . . , dk−1}, then Γ∪{Rd0 , . . . , Rdk−1}
is both idempotent and a core since its only endomorphism is the identity
function on D. The question of whether CSP(Γ) is always tractable or NP-
complete has traditionally been referred to as the CSP dichotomy conjecture
and was first posed by Feder and Vardi [24]. The conjecture was later refined
by Bulatov et al. [17] to also induce a sharp characterisation of the tractable
and intractable cases, expressed in terms of algebraic properties of the con-
straint language, and was only recently proved by Bulatov [15] and Zhuk [47].
We will use the following variant of the CSP dichotomy theorem expressed in
terms of pp-interpretations.

Theorem 12. Let Γ be an idempotent constraint language over a finite do-
main. Then CSP(Γ) is NP-complete if Γ pp-interprets Γ3

SAT and tractable
otherwise.

It is worth remarking that if Γ pp-interprets Γ3
SAT then Γ can pp-interpret

every finite-domain relation [5, Theorem 5.5.17].
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3 Subexponential Time Complexity

For Boolean constraint languages it has been proved that SAT(Γ3
SAT) is solvable

in subexponential time if and only if there exists a finite Boolean constraint
language Γ such that SAT(Γ) is NP-complete and solvable in subexponen-
tial time [35]. In this section we strengthen this result to arbitrary domains
and prove that CSP(Γ) is never solvable in subexponential time if Γ can pp-
interpret Γ3

SAT, unless the ETH is false.

3.1 Complexity of CSPs in Light of the ETH

Before we present the main result of this section we define a class of structurally
restricted CSPs which are relevant when pursuing lower bounds based on the
ETH. The degree of a variable x ∈ V of an instance (V,C) of CSP(Γ) is the
number of constraints in C containing x. We let CSP(Γ)-B, B ≥ 1, denote the
restricted CSP(Γ) problem where each variable occurring in an instance has
degree at most B. Note that the number of constraints in an instance (V,C)
of CSP(Γ)-B is bounded by |V | ·B.

Now recall that an equality-free primitive positive definition (efpp-definition)
is a primitive positive definition without explicit equality constraints, and that
EqD denotes the equality relation over a domain D. In particular observe
that T(Γ) = T(Γ ∪ {EqD}) but that CSP(Γ ∪ {EqD})-B is not necessarily
CV-reducible to CSP(Γ)-B for every B.

Theorem 13. Assume that the ETH is true and let Γ be a finite constraint
language over a (possibly infinite) domain D such that Γ pp-interprets Γ3

SAT.
Then CSP(Γ) is not solvable in subexponential time, and if Γ efpp-defines EqD
then there exists a constant B, depending only on Γ, such that CSP(Γ)-B is
not solvable in subexponential time.

Proof. Due to the assumption that Γ pp-interprets Γ3
SAT, Γ can pp-interpret

any Boolean ∆, as was pointed out in Section 2.7. In particular, Γ can
pp-interpret the constraint language {R 6= 6= 6=1/3 } from Jonsson et al. [35], where
R 6= 6= 6=1/3 = Proj1,...,6(R 6=6= 6=01

1/3 ). It is known that SAT(R 6=6= 6=1/3 )-2 is NP-complete and
that if it is solvable in subexponential time, then the ETH is false [35]. Hence,
we will prove the theorem by giving an LV-reduction from SAT(R 6= 6= 6=1/3 )-2 to
CSP(Γ), respectively to CSP(Γ)-B for some B > 0.

Let F ⊆ Dd and f : F → B denote the parameters in the pp-interpretation
of {R 6= 6= 6=1/3 }. Note in particular that d ∈ N is a fixed constant. For some formulas
ϕ1 and ϕ2 let

f−1(R 6=6= 6=1/3 )(x1,1, . . . , x1,d, . . . , x6,1, . . . , x6,d) ≡
∃y1, . . . , yk1 .ϕ1(x1,1, . . . , x1,d, . . . , x6,1, . . . , x6,d, y1, . . . , yk1)

and
F (x1, . . . , xd) ≡ ∃z1, . . . , zk2 .ϕ2(x1, . . . , xd, z1, . . . , zk2)
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denote efpp-definitions of f−1(R 6= 6=6=1/3 ) and F over Γ if EqD is efpp-definable
over Γ, and otherwise pp-definitions of f−1(R 6= 6= 6=1/3 ) and F over Γ. Let L denote
the maximum degree of any variable occurring in these pp-definitions, and note
that L is a fixed constant depending only on Γ.

Let I = (V,C) be an instance of SAT({R 6= 6= 6=1/3 })-2. Since each variable may
occur in at most 2 constraints it follows that |C| ≤ 2|V |. For each variable xi
introduce d fresh variables xi,1, . . . , xi,d, k2 fresh variables zi,1, . . . , zi,k2 , and
introduce the constraint corresponding to

ϕ2(xi,1, . . . , xi,d, zi,1, . . . , zi,k2).

For each constraint Ci = R 6= 6=6=1/3 (xi, yi, zi, x
′
i, y
′
i, z
′
i) introduce k1 fresh variables

wi,1, . . . , wi,k1 and replace Ci by

ϕ1(xi,1, . . . , xi,d, yi,1, . . . , yi,d, zi,1, . . . , zi,d,

x′i,1, . . . , x
′
i,d, y

′
i,1, . . . , y

′
i,d, z

′
i,1, . . . , z

′
i,d, wi,1, . . . , wi,k1).

If Γ cannot efpp-define EqD then we in addition identify variables according
to their occurrence in equality constraints. This can be accomplished by the
following: for each equality constraint EqD(x, y) we repeatedly replace each
occurrence of y by x throughout the instance. Let I ′ = (V ′, C ′) denote the
resulting instance of CSP(Γ). Clearly, I ′ can be constructed in polynomial
time. We begin by proving that I ′ has a solution if and only if I has a solution.
Let s′ : V ′ → D be a solution to I ′. Recall that every variable xi in V
corresponds to a ’block’ of variables xi,1, . . . , xi,d in V ′. Now, consider a subset
X of constraints corresponding to

ϕ1(xi,1, . . . , xi,d, yi,1, . . . , yi,d, zi,1, . . . , zi,d,

x′i,1, . . . , x
′
i,d, y

′
i,1, . . . , y

′
i,d, z

′
i,1, . . . z

′
i,d, wi,1, . . . , wi,k1).

Consider one block of variables xi,1, . . . , xi,d. We know that (s′(xi,1), . . . , s′(xi,d)) ∈
F due to the constraint F (xi,1, . . . , xi,d) and that s′ satisfies X. Since X and
the block of variables are arbitrarily chosen, we conclude that the function
s : V → B defined by

s(x) = f(s′(x1), . . . , s′(xd))

is a solution to I.
Assume instead that s : V → B is a solution to I. Arbitrarily choose

t0, t1 ∈ F such that f(t0) = 0 and f(t1) = 1. For each variable xi ∈ V ,
let xi,1, . . . , xi,d denote the corresponding block of variables in V ′, and let

V̂ = {xi,1, . . . , xi,d | xi ∈ V } be the set of all such variables. Define the

function ŝ : V̂ → F such that ŝ(xi,j) = t0[j] if s(xi) = 0 and ŝ(xi,j) =
t1[j] otherwise. The function ŝ satisfies every constraint F (xi,1, . . . , xi,d) by
definition. Consider a subset X of constraints corresponding to

ϕ1(xi,1, . . . , xi,d, yi,1, . . . , yi,d, zi,1, . . . , zi,d,

x′i,1, . . . , x
′
i,d, y

′
i,1, . . . , y

′
i,d, z

′
i,1, . . . , z

′
i,d, wi,1, . . . , wi,k1).
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Recall that ϕ1 is a pp-definition of f−1(R 6= 6= 6=1/3 ). Thus, the variables wi,1, . . . , wi,k1
can be assigned values that in combination with the values provided by ŝ sat-
isfies ϕ1 and, consequently, X. This implies that there is a solution to I ′.

We continue by analysing this reduction. First, observe that if Γ can efpp-
define EqD then the maximum degree of any variable is 3L. This follows from
the fact that any original variable occurs in at most 2 constraints, resulting
in at most 2L occurences in the ϕ1-constraints, and that we for each variable
in addition introduce a ϕ2-constraint, contributing at most L additional oc-
curences. This implies that I ′ is in fact an instance of CSP(Γ)-3L. Second,
note that |C| ≤ 2|V |, and that we introduce k1 fresh variables for every con-
straint in C. This implies that |V ′| ≤ |V |d+ 2|V |k1 +k2, and, since k1, k2 and
d are fixed constants, there exists a constant K such that |V ′| = K|V |+O(1).
Since this reduction is an LV-reduction from SAT(R 6= 6= 6=1/3 )-2 to CSP(Γ)-3L
(or to CSP(Γ) if Γ cannot efpp-define EqD), it follows that SAT(R 6= 6= 6=1/3 )-2
is solvable in subexponential time if CSP(Γ)-3L (or CSP(Γ)) is solvable in
subexponential time.

We have now obtained a complete understanding of subexponential solv-
ability of finite-domain CSP(Γ) problems (modulo the ETH), and made im-
portant progress on the structurally restricted problems CSP(Γ)-B.

Theorem 14. The following statements are equivalent.

1. The ETH is false.

2. CSP(Γ) is solvable in subexponential time for every finite Γ over a finite
domain.

3. CSP(Γ)-B is solvable in subexponential time for every B ∈ N for every
finite Γ over a finite domain.

4. There exists a finite constraint language Γ over a finite domain D such
that CSP(Γ) is NP-complete and subexponential.

5. There exists a finite constraint language Γ over a finite domain D such
that CSP(Γ) is NP-complete, EqD ∈ 〈Γ〉6=, and CSP(Γ)-B is subexpo-
nential for every B ∈ N.

Proof. The implication from (1) to (2) follows from Impagliazzo et al. [31,
Theorem 3]. The implication (2) to (3) is trivial since CSP(Γ)-B is solvable
in subexponential time for every B if CSP(Γ) is solvable in subexponential
time. For the implication (3) to (4), we may for example pick the problem
SAT(R 6= 6= 6=1/3 ) from Jonsson et al. [35] which is subexponential if and only if
SAT(R 6= 6= 6=1/3 )-2 is subexponential. For (4) to (5), let Γ be a constraint language
over D such that CSP(Γ) is NP-complete and subexponential. We then take
the constraint language Γ ∪ {EqD} which trivially can efpp-define EqD, and
observe that CSP(Γ ∪ {EqD}) is NP-complete and subexponential, implying
that CSP(Γ ∪ {EqD})-B is subexponential for every B ∈ N.

Last, for the implication from (5) to (1), we first observe that Theorem 13 is
not directly applicable since it might not be the case that Γ pp-interprets Γ3

SAT
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(e.g., if Γ is not core). To circumvent this we have to employ a few algebraic
tricks. First, let D be the domain of Γ, and note that CSP(Γc) ≤CV CSP(Γ),
where Γc is the core of Γ [2, Theorem 3.5], and that CSP(Γc) is NP-complete,
too. It is also straightforward to verify that CSP(Γc)-B is subexponential
for all B ∈ N, since CSP(Γ)-B is subexponential for every B ∈ N. Now, let
D′ = {d1, . . . , dk} ⊆ D be the domain of Γc. It is easy to see that EqD′ ∈ 〈Γc〉6=
since we assumed that EqD ∈ 〈Γ〉 6=. Indeed, we can simply take any efpp-
definition of EqD over Γ and replace each constraint by the corresponding
constraint over Γc, and the resulting efpp-definition correctly defines EqD′ .
Hence, since CSP(Γc ∪{Rd1 , . . . , Rdk}) is also NP-complete we now only need
to prove that CSP(Γc ∪ {Rd1 , . . . , Rdk})-B is subexponential for all B ∈ N.
Let I = (V,C) be an instance of CSP(Γc∪{Rd1 , . . . , Rdk})-B. First, define the
relation R = {(e(d1), . . . , e(dk)) | e is an endomorphism of Γc}. This relation is
known to be qfpp-definable over Γc [2, Theorem 3.6] and we let ϕ(x1, . . . , xk)
be a qfpp-definition over Γc i.e., R(x1, . . . , xk) ≡ ϕ(x1, . . . , xk). Then we
introduce k fresh variables y1, . . . , yk and the constraints ϕ(y1, . . . , yk). Let b
denote the maximum degree of any variable in ϕ(y1, . . . , yk), and observe that
b is a fixed constant. For each xi ∈ V introduce k variables c1i , . . . , c

k
i . For

each j ∈ {1, . . . , k} let Ij ⊆ {1, . . . , |V |} denote the set of indices such that
Rdj (xi) ∈ C. In order to ensure that the resulting instance has bounded degree
we then for every such index set Ij = {i1, . . . , im} introduce the constraints

EqD′(yj , c
j
i1

) ∧ EqD′(c
j
i1
, cji2) ∧ EqD′(c

j
i2
, cji3) ∧ . . . ∧ EqD′(c

j
im−1

, cjim). Note
that each variable occurs in at most two constraints in this sequence, and
that the total number of variables in the resulting instance is bounded by
k · |V |+O(1). It follows that the maximum degree of any variable is b+B+ 2,
and since CSP(Γc)-B′ is solvable in subexponential time for all B′, CSP(Γc ∪
{Rd1 , . . . , Rdk})-B is solvable in subexponential time, too. It follows that
Γc ∪ {Rd1 , . . . , Rdk} can pp-interpret Γ3

SAT, and Theorem 13 then gives the
desired implication from (5) to (1).

Example 2. For each finite domain D let RD6= denote the binary inequality

relation over D, i.e., RD6= = {(x, y) ∈ D2 | x 6= y}. In Example 1 we saw

that CSP(R
{0,1,2}
6= ) is an alternative formulation of the 3-coloring problem,

and it is straightforward to verify that CSP(RD6= ) in general corresponds to the
|D|-coloring problem. Since |D|-coloring is NP-complete for |D| ≥ 3, a quick
application of Theorem 13 gives the desired result that CSP(RD6= ), |D| ≥ 3,
cannot be solved in subexponential time, unless the ETH is false. This was
already proved by Impagliazzo et al. [31, Theorem 4], but it might be inter-
esting to note that our result also carries over to any constraint language Γ
such that Pol(Γ) = Pol(RD6= ). More importantly, we are able to prove this us-
ing general methods without actually constructing a concrete, size-preserving
reduction between 3-SAT and k-coloring.

It is also straightforward to show that this result carries over to the bounded
degree case. We show how R 6={0,1,2} can efpp-define Eq{0,1,2} (larger domains
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follow through similar arguments). Define Eq{0,1,2} as

Eq{0,1,2}(x, y) ≡ ∃z1, z2.R
6=
{0,1,2}(x, z1) ∧R 6={0,1,2}(y, z1) ∧R 6={0,1,2}(x, z2)∧

R 6={0,1,2}(y, z2) ∧R 6={0,1,2}(z1, z2).

By Theorem 13 it then follows that for every |D| ≥ 3 there exists B such that
CSP(RD6= )-B is NP-complete but not solvable in subexponential time, unless
the ETH is false. The ETH-hardness for degree-bounded k-coloring is typically
referred to as folklore (see, e.g., Cygan et al. [22, Lemma 1]), but our results
show that this property can be phrased in a purely algebraic manner.

Theorem 13 also applies to many interesting classes of infinite-domain
CSPs. For example, if we consider Γ such that each R ∈ Γ has a first-order
definition over the structure (Q;<), it is known that CSP(Γ) is NP-complete
if and only if Γ can pp-interpret Γ3

SAT [5, 8]. Hence, Theorem 13 is applicable,
implying that if CSP(Γ) is not solvable in subexponential time if it is NP-
complete, unless the ETH fails. More examples of infinite-domain CSPs where
Theorem 13 is applicable include graph satisfiability problems [9] and phy-
logeny constraints [6]. We also remark that the intractable cases of the CSP
dichotomy conjecture for infinite-domain CSPs over reducts of finitely bounded
homogeneous structures are all based on pp-interpretability of Γ3

SAT [3]. If this
conjecture is correct, Theorem 13 and the ETH imply that none of these prob-
lems are solvable in subexponential time.

3.2 Defining Equality

For CSP(Γ)-B our results are not as precise since we need the additional as-
sumption that the equality relation is efpp-definable. This is not surprising
since dichotomy results for CSPs are usually concerned with either constraint
language restrictions [15, 47, 17, 14] or structural restrictions [23, 27], but
rarely both simultaneously1. In the Boolean domain there are plenty of exam-
ples which illustrates how the equality relation may be efpp-defined [35, 21],
suggesting that similar techniques may also exist for larger domains. In this
section we consider two such techniques.

For finite domains we may in fact give a straightforward condition for when
it is possible to efpp-define the equality relation. For this result we make use of
a Galois connection between sets 〈Γ〉 6= closed under efpp-definitions and their
dual objects, usually referred to as hyperpolymorphisms [13]. Let P(D) be the
powerset of a set D. A k-ary function f : Dk → P(D) \ {∅} is said to be a
hyperoperation, or multifunction, over D. If R is an n-ary relation over D then
a k-ary hyperoperation f is said to preserve R if f(t1, . . . , tk) ⊆ R for each se-
quence of tuples t1, . . . , tk ∈ R (where f(t1, . . . , tk) = f(t1[1], . . . , tk[1])× . . .×
f(t1[n], . . . , tk[n])). Naturally, if the hyperoperation f preserves R then we say
that f is a hyperpolymorphism of R. Similar to polymorphisms and partial

1However, a few examples of such hybrid restrictions exist, and we refer the reader to the
surveys [19, 20] for concrete examples.
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polymorphisms we then write hPol(Γ) for the set of all hyperpolymorphisms
of a constraint language Γ. A hyperoperation f : Dk → P(D) is elementary if
|f(x1, . . . , xk)| = 1 for all sequences of arguments x1, . . . , xk ∈ D. Hence, an
elementary hyperoperation is simply an ordinary operation in slight disguise.
Hyperoperations and efpp-definitions can then be related by the following Ga-
lois connection.

Theorem 15 ([26, 37]). Let Γ and ∆ be constraint languages. Then Γ ⊆ 〈∆〉6=
if and only if hPol(∆) ⊆ hPol(Γ).

With these notions we can then characterise efpp-definitions of the equality
relation as follows.

Theorem 16. Let Γ be a constraint language over a finite domain D. Then
EqD ∈ 〈Γ〉 6= if and only if every f ∈ hPol(Γ) is elementary.

Proof. Assume first that EqD ∈ 〈Γ〉 6= and that there exists an n-ary f ∈
hPol(Γ) and x ∈ Dn such that f(x) = X, |X| > 1. Let t1, . . . , tn ∈ EqD such
that (t1[1], . . . , tn[1]) = x, and observe that this implies that (t1[2], . . . , tn[2]) =
x. It directly follows that f(t1, . . . , tn) = f(x) × f(x) = X × X, and since
|X| > 1, X ×X 6⊆ EqD.

For the other direction, assume that every hyperpolymorphism of Γ is el-
ementary. Each f ∈ hPol(Γ) can then viewed as a polymorphism of Γ. It
follows that each f ∈ hPol(Γ) preserves EqD, and Theorem 15 then implies
that EqD ∈ 〈Γ〉6=.

This holds, for example, if Pol(Γ) consists only of projections, since a non-
elementary operation which preserves Γ can be used to construct an operation
which is not a projection (see Proposition 3.2 in Romov [39]).

Let us consider an additional example showcasing how EqD can be efpp-
defined for constraint languages over infinite domains D.

Lemma 17. Assume that the relation R ⊆ Dk is pp-definable in Γ. If

Proj{i,j}(R) 6⊆ EqD

whenever 1 ≤ i 6= j ≤ k, then R is efpp-definable in Γ.

Proof. Assume that R is pp-defined in Γ by

R(x1, . . . , xk) ≡ ∃y1, . . . , ym.φ(x1, . . . , xk, y1, . . . , ym)

where φ is chosen to contain the minimal number of EqD(·, ·) constraints.
If EqD(xi, xj) is in φ for some 1 ≤ i 6= j ≤ k, then Proj{i,j}(R) ⊆ EqD which
leads to a contradiction. If EqD(yi, yj) is in φ for some 1 ≤ i 6= j ≤ m, then we
can replace yi with yj , remove EqD(yi, yj) and the existential quantification
of yi, and still have a pp-definition of R in Γ. Once again, this leads to
a contradiction, since we assumed that φ was minimal with respect to the
number of equality constraints. Finally, if EqD(xi, yj) is in φ, then we replace
yj with xi and do the same modifications to the formula as above. Again, this
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contradicts the minimality of the number of equality constraints in φ, and we
conclude that there exists an efpp-definition of R in Γ.

It is not difficult to find concrete examples where Lemma 17 is applicable.
A straightforward class of constraint languages is equality constraint languages
Γ where each R ∈ Γ is the set of models of a first-order formula over a structure
(D,EqD). Note that EqD ∈ 〈Γ〉6= does not hold a priori for an equality con-
straint language Γ over (D,EqD). However, as the following theorem shows,
this does in fact hold whenever CSP(Γ) is NP-complete.

Theorem 18. Let Γ be an equality constraint language over an infinite domain
D. If Γ pp-interprets Γ3

SAT (and thus, CSP(Γ) is NP-hard) then EqD ∈ 〈Γ〉6=.

Proof. It is known that the relation NeqD = {(x, y) | x, y ∈ D,x 6= y} is
pp-definable in Γ [7, Lemma 11] together with the relation

S(x1, x2, x3) ≡ (x1 = x2 ∧ x2 6= x3) ∨ (x1 6= x2 ∧ x2 = x3)

(see the remark preceding Lemma 14 in Bodirsky and Kára [7]). Clearly,
NeqD is not a subset of EqD, so NeqD has an efpp-definition in Γ by Lemma 17.
Arbitrarily choose two distinct elements d1, d2 in D. The following tuples are in
S: t1 = (d1, d1, d2) and t2 = (d2, d1, d1). The tuple t1 shows that Proj1,3(S) 6⊆
EqD and Proj2,3(S) 6⊆ EqD while t2 shows that Proj1,2(S) 6⊆ EqD. It follows
that S has an efpp-definition in Γ by Lemma 17. It is thus possible to efpp-
define the relation EqD in Γ since EqD(x, y) ≡ ∃z.S(x, y, z) ∧NeqD(y, z).

Moreover, for every equality constraint language Γ it is known that CSP(Γ)
is NP-complete if and only if Γ pp-interprets Γ3

SAT [7]. Combining Theorem 13
and Theorem 18 we can therefore claim the following corollary.

Corollary 19. Let Γ be an equality constraint language over an infinite do-
main D. Then either

1. CSP(Γ) is tractable, or

2. there exists a B depending only on Γ such that CSP(Γ)-B is NP-complete,
but not solvable in subexponential time unless the ETH is false.

4 The Easiest Ultraconservative CSP Problem

The results from Section 3, assuming the ETH, implies that T(Γ) > 0 for
any finite-domain and NP-complete CSP(Γ). However, it is safe to say that
very little is known about the behaviour of the function T in more general
terms. For example, if CSP(Γ) is NP-complete, is it always possible to find
an NP-complete CSP(∆) such that T(∆) < T(Γ)? Such a scenario would be
compatible with the consequences of Theorem 13. We will show that this is un-
likely, and prove that for every finite domain D there exists a relation SD such
that CSP(SD) is NP-complete but T({SD}) ≤ T(Γ) for any ultraconservative
Γ over D such that CSP(Γ) is NP-complete. To prove this we have divided
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this section into two parts. In Section 4.1 we show that if Γ is ultraconserva-
tive and CSP(Γ) is NP-complete, then there exists a relation R ∈ 〈Γ〉6∃ which
shares certain properties with the relation R 6= 6= 6=01

1/3 . In Section 4.2 we use these
relations to prove that for each finite domain D one can find a relation SD
such that CSP(SD) is CV-reducible to any other NP-complete and ultracon-
servative CSP(Γ) problem over D. We also show that T({SD}) tends to 0 for
increasing values of |D|, and that the uniform D-CSP problem is not solvable
strictly faster than O(cn) for any c < |D| if the SETH is true.

4.1 SB-Extensions

The columns of the matrix representation of the relation R 6= 6= 6=01

1/3 from Jonsson
et al. [35] (resulting in the easiest NP-complete SAT problem) enumerates all
Boolean ternary tuples. We generalise this relation to arbitrary finite domains
as follows.

Definition 20. For each finite D let SD = {t1, t2, t3} denote the |D|3-ary
relation such that for every (d1, d2, d3) ∈ D3 there exists 1 ≤ i ≤ |D|3 such
that (t1[i], t2[i], t3[i]) = (d1, d2, d3).

Hence, similar to R 6= 6=6=01

1/3 , the columns of the matrix representation of SD
enumerates all ternary tuples over D. For each D the relation SD is unique up
to permutation of arguments, and although we will usually not be concerned
with the exact ordering, we sometimes assume that SB = R 6=6= 6=01

1/3 and that
Proj1,...,8(SD) = SB. The notation SD is a mnemonic for saturated, and the
reason behind this will become evident in Section 4.2.1. For example, for
{0, 1, 2} we obtain a relation {t1, t2, t3} with 27 distinct arguments such that
(t1[i], t2[i], t3[i]) ∈ {0, 1, 2}3 for each 1 ≤ i ≤ 27. Jonsson et al. [35] proved that
SB ∈ 〈Γ〉 6∃ for every Boolean and idempotent constraint language Γ such that
SAT(Γ) is NP-complete. This is not true for arbitrary finite domains, and in
order to prove an analogous result we will need the following definition.

Definition 21. Let R be an n-ary relation of cardinality 3 over a domain D,
|D| ≥ 2. If there exists i1, . . . , i8 ∈ {1, . . . , n} such that

Proji1,...,i8(R) = {(a, a, b, b, b, a, a, b), (a, b, a, b, a, b, a, b), (b, a, a, a, b, b, a, b)}

for two distinct a and b, then we say that R is an SB-extension.

For example, SD is an SB-extension for every domain D. Note that CSP(R)
is always NP-complete when R is an SB-extension. We will now prove that if
CSP(Γ) is NP-complete and Γ is conservative, then Γ can pp-define an SB-
extension. Note that for this result we do not require the stronger assumption
that Γ is ultraconservative, which will be exploited in Section 5 where we study
the conservative case in greater detail.

Lemma 22. Let Γ be a conservative constraint language over a finite domain
D such that CSP(Γ) is NP-complete. Then there exists a relation R ∈ 〈Γ〉
which is an SB-extension.
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Proof. Since CSP(Γ) is NP-complete and Γ is conservative, Theorem 12 im-
plies that Γ can pp-interpret Γ3

SAT, which in turn implies that Γ can pp-interpret
every finite-domain relation. Therefore, let f : F → B, F ⊆ Dd denote the pa-
rameters in the pp-interpretation of SB, and note that f−1(SB) ∈ 〈Γ〉, but
that f−1(SB) is not necessarily an SB-extension since it could be the case
that |f−1(SB)| > 3. Pick two tuples s0 and s1 in F such that (1) f(s0) = 0
and f(s1) = 1 and (2) s0 and s1 differ in the smallest possible set of coordi-
nates. Such tuples must exist since f is surjective. Now consider the relation
F ′(x1, . . . , xd) ≡ F (x1, . . . , xd)∧{(s0[1]), (s1[1])}(x1)∧. . .∧{(s0[d], s1[d])}(xd).
This relation is pp-definable over Γ since Γ is conservative and since F ∈ 〈Γ〉,
and we claim that F ′ = {s0, s1}. Indeed, the existence of u ∈ F ′ differing
from both s0 and s1 would contradict the minimality of s0 and s1 since (1)
u[i] ∈ {s0[i], s1[i]} for each 1 ≤ i ≤ d and (2) if u[i] 6= s0[i] for some 1 ≤ i ≤ d
then u[i] = s1[i], and u is strictly closer to s1 than s0 (the case when u[i] 6= s1[i]
is symmetric).

Using the relation F ′ we can then pp-define the relation

R(x1,1, . . . , x1,d, . . . , x8,1, . . . , x8,d) ≡f−1(SB)(x1,1, . . . , x1,d, . . . , x8,1, . . . , x8,d)∧
F ′(x1,1, . . . , x1,d) ∧ . . . ∧ F ′(x8,1, . . . , x8,d).

Clearly, if (a1,1, . . . , a1,d, . . . , a8,1, . . . , a8,d) ∈ R, then (ai,1, . . . , ai,d) ∈ {s0, s1}
for each 1 ≤ i ≤ 8, and (f(a1,1, . . . , a1,d), . . . , f(a8,1, . . . , a8,d)) ∈ SB if and
only if (a1,1, . . . , a1,d, . . . , a8,1, . . . , a8,d) ∈ f−1(SB). Since R ⊆ f−1(SB), this
implies that

(f(a1,1, . . . , a1,d), . . . , f(a8,1, . . . , a8,d)) ∈ SB

if and only if (a1,1, . . . , a1,d, . . . , a8,1, . . . , a8,d) ∈ R and each (ai,1, . . . , ai,d) ∈
{s0, s1}. In other words each element f(ai,1, . . . , ai,d) in a tuple of SB uniquely
corresponds to d arguments ai,1, . . . , ai,d in the corresponding tuple of R,
since (ai,1, . . . , ai,d) = s0 if f(ai,1, . . . , ai,d) = 0, and (ai,1, . . . , ai,d) = s1 if
f(ai,1, . . . , ai,d) = 1. It follows that

R = {s_0 s_0 s_1 s_1 s_1 s_0 s_0 s1, s
_
0 s

_
1 s

_
0 s

_
1 s

_
0 s

_
1 s

_
0 s1, s

_
1 s

_
0 s

_
0 s

_
0 s

_
1 s

_
1 s

_
0 s1},

and since s0 and s1 differ in at least one position it is possible to find indices
satisfying Definition 21, from which we conclude that R is an SB-extension.

Observe that the existence of an SB-extension R ∈ 〈Γ〉 does not imply that
CSP(R) ≤CV CSP(Γ). To accomplish this, we need to show that Γ can also
qfpp-define an SB-extension. We will need the following lemma before we can
present the proof for Lemma 24.

Lemma 23. Let Γ be an ultraconservative language over a finite domain D
and let R ∈ 〈Γ〉 be an n-ary relation such that |R| = 2. Then there exists
R′ ∈ 〈Γ〉6∃ such that (1) |R′| = 2 and (2) Proj1,...,n(R′) = R.

Proof. Let R(x1, . . . , xn) ≡ ∃y1, y2, . . . , ym.ϕ(x1, . . . , xn, y1, y2, . . . , ym) denote
a pp-definition of R over Γ, and let R = {t1, t2}. We will show that it is
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possible to remove the existentially quantified arguments y1, y2, . . . , ym in this
pp-definition by gradually adding new arguments to R. First consider the
relation

R1(x1, . . . , xn, y1) ≡ ∃y2 . . . , ym.ϕ(x1, . . . , xn, y1, y2, . . . , ym).

If |R1| = 2 then we move on with the remaining arguments, so instead assume
that |R1| > 2. Now note that each tuple t ∈ R1 in a natural way can be
associated with either t1 ∈ R or t2 ∈ R, depending on whether t = t_1 t

′ or
t = t_2 t

′. Hence, let S1 = {t[n+ 1] | t ∈ R1, t
_
1 t
′ = t}, and S2 = {t[n+ 1] | t ∈

R1, t
_
2 t
′ = t}. In other words S1 is the set of values taken by y1 in the tuples

corresponding to t1, and S2 the values taken by y1 in the tuples corresponding
to t2. We consider two cases.

Case 1: S1 ∩ S2 = ∅. Arbitrarily choose d1 ∈ S1 and d2 ∈ S2. Con-
struct the relation R′1(x1, . . . , xn, y1) ≡ R1(x1, . . . , xn, y1) ∧ {(d1), (d2)}(y1),
and note that {(d1), (d2)} ∈ Γ since Γ is ultraconservative. We see that
R′1 = {t_1 (d1), t_2 (d2)}.
Case 2: S1 ∩ S2 6= ∅. Arbitrarily choose d ∈ S1 ∩ S2 and construct the
relation R′1(x1, . . . , xn, y1) ≡ R1(x1, . . . , xn, y1) ∧ Rd(y1). We see that R′1 =
{t_1 (d), t_2 (d)}. Note that we cannot choose elements as in Case 1 since if (for
instance) one element is inside S1∩S2 and one element is outside S1∩S2, then
the resulting relation will contain three tuples.

If we repeat this procedure for the remaining arguments y2, . . . , ym we will
obtain a relation R′ which is qfpp-definable over Γ such that |R′| = 2 and
Proj1,...,n(R′) = R.

Lemma 24. Let Γ be an ultraconservative constraint language over a finite
domain D such that CSP(Γ) is NP-complete. Then there exists a relation in
〈Γ〉6∃ which is an SB-extension.

Proof. By Lemma 22 there exists a relation R ∈ 〈Γ〉 which is an SB-extension.
Let

R(x1, . . . , xn) ≡ ∃y1, y2, . . . , ym.ϕ(x1, . . . , xn, y1, . . . , ym)

denote its pp-definition over Γ. Using this pp-definition we will show that
Γ can qfpp-define an SB-extension by gradually removing each existentially
quantified variable. First consider the relation

R1(x1, . . . , xn, y1) ≡ ∃y2, . . . , ym.ϕ(x1, . . . , xn, y1, y2, . . . , ym).

Assume that |R1| > 3, i.e., that R1 is not an SB-extension. Let R = {t1, t2, t3}
and for each 1 ≤ i ≤ 3 let Si = {t[n + 1] | t ∈ R1, t

_
i t
′ = t}, 1 ≤ i ≤ 3. In

other words Si contains the possible values taken by the argument y1 in the
tuples of R1 corresponding to ti ∈ R. There are now a few cases to consider
depending on the sets S1, S2, S3:

1. |S1 ∪ S2 ∪ S3| = 1,

2. |S1 ∪ S2 ∪ S3| = 2, and
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3. |S1 ∪ S2 ∪ S3| ≥ 3,

The first case implies that the (n+1)th argument of R1 is constant, i.e., that
|{t[n+1]|t ∈ R1}| = 1. But then |R1| = |R|, contradicting our assumption that
|R1| > 3. Assume instead that |S1 ∪ S2 ∪ S3| ≥ 3 and that we are in the third
case. First assume that the sets S1, S2, S3 are pairwise disjoint, i.e., S1 ∩S2 =
S1∩S3 = S2∩S3 = ∅. In this case we choose d1 ∈ S1, d2 ∈ S2, and d3 ∈ S3, and
it is then easy to see (by basically reasoning in the same way as in the proof
of Lemma 23) that ∃y2, . . . , ym.{(d1), (d2), (d3)}(y1)∧ϕ(x1, . . . , xn, y1, . . . , ym)
defines an SB-extension. Otherwise, Si ∩ Sj 6= ∅ for distinct i and j. Choose
d1 ∈ Si ∩ Sj and then an element d2 from the remaining set Sk. Let E =
{d1, d2}, and observe that E ∩ S1 6= ∅, E ∩ S2 6= ∅, and E ∩ S3 6= ∅. Consider
the relation R′1(x1, . . . , xn, y) ≡ R1(x1, . . . , xn, y) ∧ E(y). Then |R′1| ≥ 3,
Proj1,...,n(R′1) = {t1, t2, t3}, and if we define S′i = {t[n+ 1] | t ∈ R′1, t_i t′ = t}
for each 1 ≤ i ≤ 3, it is then clear that |S′1 ∪ S′2 ∪ S′3| = 2, and that we may
proceed as in the second case.

Now assume that |S1 ∪ S2 ∪ S3| = 2 and let {d1, d2} = S1 ∪ S2 ∪ S3. If
|S1| = |S2| = |S3| = 1 then |R1| = 3, and R1 is already an SB-extension;
therefore we assume that S1, S2, or S3 is equal to {d1, d2}. Up to symmetry,
we then have the following possible cases:

1. S1 = S2 = S3 = {d1, d2},
2. S1 = S2 = {d1, d2}, S3 = {d1},
3. S1 = {d1}, S2 = {d1}, S3 = {d1, d2}, or

4. S1 = {d1}, S2 = {d2}, S3 = {d1, d2}.

The first three cases are easy to handle: in all three cases, choose the el-
ement d1 and construct the relation R1(x1, . . . , xn, y) ∧ Rd1(y). This leaves
only the case when S1 = {d1}, S2 = {d2} and that S3 = {d1, d2}. Since R
is an SB-extension there exists a, b ∈ D, a 6= b, and indices i1, i2, i3 such that
(t1[i1], t2[i1], t3[i1]) = (b, b, a), (t1[i2], t2[i2], t3[i2]) = (b, a, b), and (t1[i3], t2[i3], t3[i3]) =
(a, b, b). Define the binary relation F such that

F (x, y1) ≡ ∃x1, . . . xi3−1, xi3+1, . . . , xn.R1(x1, . . . , xi3−1, x, xi3+1, . . . , xn, y1)∧Rb(xi1).

We claim that F = {(a, d1), (b, d2)}. To see this, observe that the constraint
Rb(xi1) rules out the tuple t3. This implies that if variable xi3 has value a,
then the variable y1 must have value d1 and if the variable xi3 has value b,
then the variable y1 must have value d2.

From this observation and Lemma 23, it follows that Γ can qfpp-define a
relation F ′ such that |F ′| = 2 and such that Proj1,2(F ′) = F . Let k+2 denote
the arity of F ′ and define a relation

R′1(x1, . . . , xi3 , . . . , xn, y1, z1, . . . , zk) ≡R1(x1, . . . , xi3 , . . . , xn, y1)∧
F ′(xi3 , y1, z1, . . . , zk).

We claim that R′1 is an SB-extension. There are three possible ways of si-
multaneously choosing variables xi1 , xi2 , xi3 . Let us consider the assignment
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(xi1 , xi2 , xi3) = (b, b, a). This particular choice gives all variables x1, . . . , xn
fixed values (via the constraint R1(x1, . . . , xi3 , . . . , xn, y1)). Furthermore, y1 is
assigned the value d2 (via the constraint F ′(xi3 , y1, z1, . . . , zk)) and the vari-
ables z1, . . . , zk are given fixed values (since there is only one tuple in F ′ that
allows y1 to have the value d2). Thus, there is only one tuple in R′1 that allows
(xi1 , xi2 , xi3) = (b, b, a). The two other cases can be verified similarly and we
conclude that |R′1| = 3.

Finally, we see that there are m − 1 existentially quantified variables in
the definition of R′1 since F ′ can be qfpp-defined. By repeating the procedure
outlined above for the remaining arguments we will obtain an SB-extension
which is qfpp-definable over Γ. This concludes the proof.

Example 3. Let us consider a concrete example of the sets S1, S2, S3 from the
proof of Lemma 24. Assume e.g. that D = {0, 1, 2}, and S1∪S2∪S3 = {0, 1, 2}
where S1 = {0, 1}, S2 = {1, 2}, and S3 = {0, 2}. The sets S1, S2, S3 are not
pairwise disjoint, so we e.g. choose 1 ∈ S1 ∩ S2 and 0 ∈ S3, and construct the
relation R′1(x1, . . . , xn, y) ≡ R1(x1, . . . , xn) ∧ {(0), (1)}(y). If we then let the
sets S′1, S

′
2, S
′
3 be the corresponding sets defined with respect to R′1 it is then

clear that S′1 ∪S′2 ∪S′3 = {0, 1} and that |S′1 ∪S′2 ∪S′3| = 2. Since S′1 = {0, 1},
S′2 = {1}, and S′3 = {0}, we end up in a case symmetric to the fourth case
listed in the proof of Lemma 24. This is then handled by qfpp-defining a relation
F ′ such that |F ′| = 2 and such that Proj1,2(F ′) = {(a, 0), (b, 1)} (for distinct
a, b ∈ D) which can then be used to define an SB-extension.

Note that in the proof of Lemma 24 we only require conservative relations
E with |E| ≤ 3. This observation is in line with the proof of the dichotomy
theorem for conservative CSP(Γ) [14, p. 8] which is valid even if it is only
assumed that Γ contains all unary E with |E| ≤ 3.

4.2 Properties of and Reductions between SB-Extensions

By Lemma 24, we can completely concentrate on SB-extensions. We will prove
that T({SD}) ≤ T(Γ) for every ultraconservative Γ over D such that CSP(Γ)
is NP-complete. To prove this, we begin in Section 4.2.1 by investigating prop-
erties of SB-extensions, which we use to simplify the total number of distinct
cases we need to consider. With the help of these results we develop techniques
in Section 4.2.2 to show that CSP(SD) ≤CV CSP(R) for every SB-extension
R over D.

4.2.1 Saturated SB-Extensions

In this section we reduce the number of cases we need to consider in Sec-
tion 4.2.2. First note that if R = {t1, t2, t3} over D is a relation with ar(R) >
|D|3 then there exists i and j such that (t1[i], t2[i], t3[i]) = (t1[j], t2[j], t3[j]).
We say that the jth argument is redundant, and it is possible to get rid of this
by identifying the ith and jth argument with the qfpp-definition

R′(x1, . . . , xi, . . . , xj−1, xj+1, . . . , xn) ≡ R(x1, . . . , xi, . . . , xj−1, xi, xj+1, . . . , xn).
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This procedure can be repeated until no redundant arguments exist, and we
will therefore always implicitly assume that ar(R) ≤ |D|3 and that R has
no redundant arguments. If R is an n-ary relation then the argument i ∈
{1, . . . , n} is said to be k-choice, 1 ≤ k ≤ |R|, if |Proji(R)| = k. Thus, if R is
an SB-extension then each argument is either 1-choice, 2-choice, or 3-choice.

Definition 25. An n-ary SB-extension R = {t1, t2, t3} is said to be saturated
if there for each 1 ≤ i ≤ n and every function τ : {1, 2, 3} → {1, 2, 3}, exists
1 ≤ j ≤ n such that (tτ(1)[i], tτ(2)[i], tτ(3)[i]) = (t1[j], t2[j], t3[j]).

Example 4. The relation SD is saturated for every D, but if we consider the
relations R and R′ over {0, 1, 2} defined by the matrices0 0 1 1 1 0 0 0 1 2

0 1 0 1 0 1 0 0 1 2
1 0 0 0 1 1 2 0 1 2


and 0 0 1 1 1 0 0 0 1 2

0 1 0 1 0 1 1 0 1 2
1 0 0 0 1 1 2 0 1 2


then neither relation is saturated. First, R is not saturated since its matrix
representation, for example, does not contain the column (0, 2, 0). Second, R′

is not saturated since its matrix representation, for example, does not contain
(0, 2, 1) or (0, 0, 2) as columns.

We now prove that we without loss of generality may assume that an SB-
extension is saturated.

Lemma 26. Let R be an SB-extension. Then there exists a saturated SB-
extension R′ ∈ 〈R〉 6∃.

Proof. Let D be the domain of R and let a, b ∈ D be the two distinct domain
values witnessing that R is an SB-extension, i.e.,

Proj1,...,8(R) = {(a, a, b, b, b, a, a, b), (a, b, a, b, a, b, a, b), (b, a, a, a, b, b, a, b)}.

Let R = {t1, t2, t3} and let n denote the arity of R. For each 1 ≤ i ≤ n and
each function τ : {1, 2, 3} → {1, 2, 3} add a fresh argument taking the values
tτ(1)[i], tτ(2)[i], tτ(3)[i]. Let R′ be the resulting relation and let R′ = {t′1, t′2, t′3}
such that Proj1,...,n(t′i) = ti. By construction, R′ is a saturated SB-extension,
but it remains to prove that R′ ∈ 〈R〉6∃. Thus, let 1 ≤ i ≤ n be an index and
τ a function τ : {1, 2, 3} → {1, 2, 3}. We will first show that R can qfpp-define
a relation S = {s1, s2, s3} of arity 2n + 1 where Proj1,...,n(S) = R and where
(s1[2n + 1], s2[2n + 1], s3[2n + 1]) = (tτ(1)[i], tτ(2)[i], tτ(3)[i]). We have three
distinct cases to consider based on the cardinality of {tτ(1)[i], tτ(2)[i], tτ(3)[i]}.
Case 1: |{tτ(1)[i], tτ(2)[i], tτ(3)[i]}| = 1. Then, {tτ(1)[i], tτ(2)[i], tτ(3)[i]} = {c}
for a single element c ∈ D. Let j, j′ ∈ {1, 2, 3} such that t[j] = t[j′] if and only
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if t = tτ(1) for t ∈ R. Then we define S as

S(x1, . . . , xn, y1, . . . , yn, z) ≡R(x1, . . . , xn) ∧R(y1, . . . , yn)∧
EqD(yj , yj′) ∧ EqD(yi, z),

which is correct since (1) Projn+1,...,2n(S) = {tτ(1)} by the constraint EqD(yj , yj′)
and (2) Proj2n+1(S) = Projn+i(S) = {(c)} by the constraint EqD(yi, z).

Case 2: |{tτ(1)[i], tτ(2)[i], tτ(3)[i]}| = 2. Let {tτ(1)[i], tτ(2)[i], tτ(3)[i]} = {c, d},
and assume without loss of generality that tτ(1)[i] = c and that tτ(2)[i] = d
(hence, implying that tτ(3)[i] = tτ(1)[i] or tτ(3)[i] = tτ(2)[i]). Let t ∈ R \
{tτ(1), tτ(2)} be the tuple in R which is distinct to both tτ(1) and tτ(2). Choose
i1, i2 ∈ [8] such that t[i1] 6= t[i2], tτ(1)[i1] = tτ(2)[i2], and tτ(2)[i1] = tτ(2)[i2].
This is possible since the 8 first arguments of R enumerate all ternary tuples
over a 2-element subset of D, since R by assumption is an SB-extension. If we
then define the relation

G(x1, . . . , xn) ≡ R(x1, . . . , xn) ∧ EqD(xi1 , xi2)

it is clear that G = {tτ(1), tτ(2)} and that Proji(G) = {(c), (d)}. Next, choose
j ∈ {1, 2, 3} such that Projj,i(G) = {(a, c), (b, d)}, define the mapping h(a) = c,
h(b) = d, and choose i′ ∈ [8] such that h(t1[i′]) = tτ(1)[i], h(t2[i′]) = tτ(2)[i],
and h(t3[i′]) = tτ(3)[i]. This is possible since the sequence tτ(1)[i], tτ(2)[i], tτ(3)[i]
contains only the two distinct elements c and d, and since R is an SB-extension
it is always possible to find an index in the first 8 positions which matches
this sequence. For example, if tτ(1)[i] = c, tτ(2)[i] = d, tτ(3)[i] = d then we
choose i′ ∈ [8] such that h(t1[i′]) = h(a) = c, h(t2[i′]) = h(b) = d, and
h(t3[i′]) = h(b) = d. Last, we define S as

S(x1, . . . , xn, y1, . . . , yn, z) ≡R(x1, . . . , xn) ∧G(y1, . . . , yn)∧
EqD(xi′ , yj) ∧ EqD(yi, z).

Let {s1, s2, s3} = S be ordered such that Proj1,...,8(s1) = Proj1,...,8(t1), Proj1,...,8(s2) =
Proj1,...,8(t2), and Proj1,...,8(s3) = Proj1,...,8(t3). Then the constraint EqD(yi, z)
first enforces that s1[n + i] = s1[2n + 1], s2[n + i] = s2[2n + 1], s3[n + i] =
s3[2n+1], and the constraints G(y1, . . . , yn) and EqD(xi′ , yj) then implies that
s1[n+ i] = tτ(1)(i), s2[n+ i] = tτ(2)[i], and s3[n+ i] = tτ(3)[i].

Case 3: |{tτ(1)[i], tτ(2)[i], tτ(3)[i]}| = 3. Let {tτ(1)[i], tτ(2)[i], tτ(3)[i]} = {c, d, e}
for three distinct values c, d, e. Then we define the relation S as

S(x1, . . . , xn, y1, . . . , yn, z) ≡R(x1, . . . , xn) ∧R(y1, . . . , yn)∧
EqD(y1, xτ(1)) ∧ EqD(y2, xτ(2))∧
EqD(y3, xτ(3)) ∧ EqD(yi, z).

Let S = {s1, s2, s3} be an enumeration such that Proj1,...,8(s1) = Proj1,...,8(t1),
Proj1,...,8(s2) = Proj1,...,8(t2), and Proj1,...,8(s3) = Proj1,...,8(t3). Consider,
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e.g., the tuple s1. Then, due to the constraints EqD(y1, xτ(1)), EqD(y2, xτ(2)),
and EqD(y3, xτ(3)) we have that s1[n + 1] = tτ(1)[1], s1[n + 2] = tτ(1)[2], and
s1[n + 3] = tτ(1)[3], which implies that Projn+1,...,2n(s1) = tτ(1). Further-
more, due to the constraint EqD(z, yi), we also have that s1[2n+ 1] = tτ(1)[i].
Similarly, it holds that s2[2n+ 1] = tτ(2)[i] and s3[2n+ 1][i].

By repeating this for every i ∈ [n] and every function τ : {1, 2, 3} → {1, 2, 3}
we will therefore be able to qfpp-define the saturated relation R′, by gradually
constructing relations S that are closer and closer to being saturated. Note
that this procedure might introduce a large number of redundant arguments,
but that these can easily be removed by simple variable identification.

Example 5. If R is the relation from Example 4 then a saturated relation in
〈R〉6∃ from Lemma 26 can be given by0 0 1 1 1 0 0 0 2 2 2 0 0 1 2

0 1 0 1 0 1 0 2 0 2 0 2 0 1 2
1 0 0 0 1 1 2 0 0 0 2 2 0 1 2

 .

4.2.2 Reductions Between SB-Extensions

The main result of this section (Theorem 31 and Theorem 32) shows that
T({SD}) = T({SD}∪2D) ≤ T(Γ) whenever Γ is an ultraconservative constraint
language over D such that CSP(Γ) is NP-complete. The result is proved by a
series of CV-reductions that we present in Lemmas 27–30. Before we begin, we
note that if R is an SB-extension over D then {R} is not necessarily a core. For
a simple counterexample, {SB} is not a core over {0, 1, 2} since the endomor-
phism e(0) = 0, e(1) = 1, e(2) = 0, is not an automorphism. However, if R is
an SB-extension and if E = {d1, . . . , dm} is the set

⋃
1≤i≤ar(R) Proji(R), every

endomorphism e : E → E of R must be an automorphism. Hence, Theorem 11
is applicable, and we conclude that CSP({R,Rd1 , . . . , Rdm}) ≤CV CSP(R).
When working with reductions between SB-extensions we may therefore freely
make use of constant relations. Given an instance (V,C) of CSP(R), where R
is a relation, we say that a variable x ∈ V occurring in a k-choice position in a
constraint in C is a k-choice variable. We begin with the following simplifying
lemma which allows us to bound the distribution of 3-choice variables in a very
precise way.

Lemma 27. Let R be a saturated SB-extension. Then there exists a CV-
reduction f from CSP(R) to CSP(R) such that for every instance I of CSP(R),
each variable in f(I) occurs as a 3-choice variable in at most one constraint.

Proof. Let n denote the arity of R and let {t1, t2, t3} = R. Let I = (V,C) be an
instance of CSP(R). We will create an instance I ′ = (V ′, C ′) of CSP(R) such
that if x ∈ V ′ is a 3-choice variable in a constraint then x does not occur as a 3-
choice variable in any other constraint. Hence, let x ∈ V be a 3-choice variable
occurring in a constraint c = R(x1, . . . , xn) in position i1. Assume that x also
appears as a 3-choice variable in a constraint c′ = R(x′1, . . . , x

′
n), distinct from

c, in position i2. Let S = (t1[i1], t2[i1], t3[i1]) and S′ = (t1[i2], t2[i2], t3[i2]).
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Assume first that Proji1(R) = Proji2(R) (hence, |Proji1(R)∩Proji2(R)| =
3). Define the function τ such that for each 1 ≤ i ≤ 3, τ(S[i]) = j if and
only if tj [i2] = S[i] where 1 ≤ j ≤ 3. Using the function τ we then define
the permutation ρ : {1, . . . , n} → {1, . . . , n} such that ρ(i) = j if and only
if (t1[i], t2[i], t3[i]) = (tτ(1)[j], tτ(2)[j], tτ(3)[j]). This is indeed a well-defined
permutation over {1, . . . , n} since R is saturated. Last, identify each variable
x′τ(i) occurring in c′ with the variable xi in c, and remove the constraint c′.

Second, assume that |Proji1(R) ∩ Proji2(R)| = 2, and let Proji1(R) ∩
Proji2(R) = {d, d′}. Assume without loss of generality that t1[i1] = d, t2[i1] =
d′, and that t3[i1] /∈ {d, d′}. Choose i ∈ {1, . . . , n}, distinct from both i1 and
i2, such that t1[i] = t1[i1], t2[i] = t2[i1], and t3[i] 6= t3[i1]. Such an i must exist
since R is saturated. Then identify x with xi. Define the function τ such that
for 1 ≤ i ≤ 2, τ(S[i]) = j if and only if tj [i2] = S[i]. Using the function τ we
then define the permutation ρ : {1, . . . , n} → {1, . . . , n} such that ρ(i) = j if
and only if (t1[i], t2[i]) = (tτ(1)[j], tτ(2)[j]). Clearly, ρ is a well-defined permu-
tation over {1, . . . , n} since R is saturated. Last, identify each variable x′τ(i)

occurring in c′ with the variable xi in c, and remove the constraint c′. The
case when |Proji1(R) ∩Proji2(R)| = 1, i.e., when x is assigned the same value
in any satisfying assignment, is very similar.

Each time this procedure is performed, at least one constraint is removed.
Thus, we let I ′ denote the fixpoint that we will reach in at most |C| iterations.
It is not difficult to verify that I is satisfiable if and only if I ′ is satisfiable.
Furthermore, |V ′| ≤ |V | and the reduction can be computed in polynomial
time. We have thus showed that the reduction is a CV-reduction and have
therefore proved the lemma.

Next, investigate how the removal, or rather, the addition, of 3-choice ar-
guments affect the fine-grained complexity of CSPs.

Lemma 28. Let R be a saturated SB-extension and let R′ be R with one
or more 3-choice arguments removed, such that R′ is still saturated. Then
CSP(R) ≤CV CSP(R′).

Proof. Let n = ar(R), n′ = ar(R′), R = {t1, t2, t3}, and assume that Proj1,...,n′(R) =
R′. Let I = (V,C) be an instance of CSP(R). First apply Lemma 27 in order
to obtain an instance I1 = (V1, C1) of CSP(R) such that each 3-choice variable
only occurs in a 3-choice position in a single constraint. Assume there exists
x ∈ V1 and two distinct constraints c, c′ ∈ C1 such that x occurs in position
i ∈ {n′+ 1, . . . , n} in c and in a 1- or 2-choice position j ∈ {1, . . . , n} in c′. Let
S = Proji(R) ∩ Projj(R), and note that |S| ≤ 2. Assume first that |S| = 2,
let S = {d1, d2}, and assume without loss of generality that t1[i] = t1[j] = d1,
t2[i] = t2[j] = d2, and that t3[i] 6= t3[j] (the other cases can be treated sim-
ilarly). Since R is saturated there exists a 2-choice argument i′ ∈ {1, . . . , n}
such that t1[i′] = t1[i] = t1[j], t2[i′] = t2[i] = t2[j], and such that t3[i′] 6= t3[i].
Let y be the variable occurring in the i′th position of c. Create a fresh variable
x̂, replace x in position i with x̂, and for each constraint where x occurs as
a 1- or 2-choice variable, replace x with y. Repeat this procedure until every
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3-choice variable occurring in position n′+1, . . . , n only occurs in a single con-
straint, and let I2 = (V2, C2) be the resulting instance. Hence, with the help
of the variables x̂ we may assume that any variable occurring in a 3-choice
position not present in R′, only occurs in a single constraint. We will shortly
also see that these variables can safely be removed from the instance.

Assume there exists x ∈ V2 and a constraint c ∈ C2 such that x occurs as
a 3-choice variable in position i ∈ {n′ + 1, . . . , n} and also in a position j ∈
{1, . . . , n}, i 6= j, in c. Let L = {tr | 1 ≤ r ≤ 3, tr[i] = tr[j]}. Since R does not
have any redundant arguments it must be the case that |L| < 3. If |L| = 0 then
the instance is unsatisfiable, in which case we output an arbitrary unsatisfiable
instance, and if |L| = 1 it is easy to see that any variable occurring in c can be
assigned a fixed value, and the constraint may be removed. Therefore, assume
that |L| = 2, and e.g. that L = {t1, t2}. Since R is saturated there exists a
2-choice argument j′ ∈ {1, . . . , n} such that t1[j′] = t2[j′] 6= t3[j′]. Let y be the
variable occurring in position j′ in c and add the constraint Rt1[j′](y). Repeat
this for every variable occurring in position n′ + 1, . . . , n in a constraint in
C2, and then replace each constraint R(x1, . . . , x

′
n, . . . , xn) by R′(x1, . . . , xn).

Note that any variable x̂ introduced in the previous step of this reduction is
removed in this transformation, and without affecting the satisfiability of the
instance since each x̂ variable occur in a unique constraint, and in a unique
3-choice position. Hence, the reduction is a CV-reduction.

Moreover, for saturated relations, the addition of 2-choice arguments does
not affect the fine-grained complexity.

Lemma 29. Let R be a saturated SB-extension and let R′ be an SB-extension
obtained by adding additional 2-choice arguments to R. Then CSP(R′) ≤CV

CSP(R).

Proof. Let n = ar(R), n′ = ar(R′), and R′ = {t′1, t′2, t′3}. By the statement of
the lemma we may assume that Proj1,...,n(R′) = R, and that |Proji(R

′)| = 2
for every n < i ≤ n′. Furthermore, since R is assumed to be saturated, we may
also assume that each fresh argument n < i ≤ n′ satisfies Proji(R

′) = {a, b}
for some b which does not occur in any of the original n arguments (otherwise
i is redundant). Thus, we may also assume that Proji(R

′) for every n < i ≤ n′
is distinct from Projj(R

′) for every 1 ≤ j ≤ n. To simplify the presentation
we also assume that Proj1,...,8(R′) = SB. Let I = (V,C) be an instance of
CSP(R′). Our aim is to construct an instance of CSP(R′) where any variable
which occurs as a 2-choice variable in a constraint in position n < i ≤ n′,
does not occur in any other constraint or in any other position within the
constraint. Then we can easily create a CSP(R) instance by replacing each
constraint over R′ by the corresponding constraint over R, and in the process
removing any variable which occurs in position n < i ≤ n′.

Let x be a variable that appears in (at least) two distinct constraints c1, c2 ∈
C. Assume that x occurs at position n + 1 ≤ i ≤ n′ in c1 and at position
1 ≤ j ≤ n′ in c2. We consider a number of cases based on the cardinality of
S = Proji(R

′) ∩ Projj(R
′).
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• |S| = 3. This is not possible since |Proji(R
′)| = 2.

• |S| = 2. Assume that S = {a, b} for two distinct elements a and b,
and observe that this implies that Proji(R

′) = Projj(R
′) = {a, b}, since

|Projj(R
′)| = 3 cannot happen. Define f : {a, b} → {0, 1} such that

g(a) = 0 and g(b) = 1. It follows that there exist indices l,m ∈ {1, . . . , 8}
such that f(t′r[i]) = t′r[l] and g(t′r[j]) = t′r[m] when r ∈ {1, 2, 3}. Now, let
y be the variable at position l in c1 and let z be the variable at position
m in c2. Then we identify z with y, introduce a fresh variable x̂, and
replace x at the ith position of c1 with x̂.

• |S| = 1. Assume S = {a}, Proji(R
′) = {a, b} (where a, b are distinct

elements), and Projj(R
′) = {a, d, d′} (where a, d, d′ are not necessarily

distinct). Define f : {a, b} → {0, 1} such that f(a) = 0 and f(b) = 1, and
g : {a, d, d′} → {0, 1} such that g(a) = 0 and g(x) = 1 if x 6= a. It is not
hard to see that there exists l,m ∈ {1, . . . , 8} such that f(t′r[i]) = t′r[l]
and g(t′r[j]) = t′r[m] when r ∈ {1, 2, 3}. Let y be the variable at position
l in c1 and z be the variable at position m in c2. Add the unary relations
R0(y) and R0(z), introduce a new variable x̂, and replace x at the ith
position of c1 with x̂.

• |S| = 0. This implies that I1 is unsatisfiable, and we simply output an
arbitrary unsatisfiable instance.

By repeating the procedure above until a fixpoint is reached, we will obtain
an instance I1 = (V1, C1) such that if x ∈ V1 and if x appears in a constraint
c ∈ C1 at position n + 1, . . . , n′, then it does not appear in any other con-
straint. Note that if a variable x occurs in more than two constraints then
this procedure will gradually lower the number of occurrences of x by picking
two distinct constraints at a time. However, it is still possible that x ∈ V1

appear more than once in a single constraint c ∈ C1 where (at least) one of the
occurrences of x is at position n+ 1, . . . , n′. Therefore, assume that x appears
in positions i and j in c ∈ C1 where i ∈ {n+ 1, . . . n′} and j ∈ {1, . . . n′}. Let
L ⊆ {1, 2, 3} denote the set {l | t′l[i] = t′l[j]}.

• |L| = 3. This is not possible since there are no redundant arguments in
the relation R′.

• |L| = 2. Assume (without loss of generality) that t′1[i] = t′1[j], t′2[i] =
t′2[j], and t′3[i] 6= t′3[j]. Pick k ∈ {1, . . . , 8} such that t′1[k] = t′2[k] 6= t′3[k].
Let y be the variable that appear in the kth position in c. Add a unary
constraint Rt

′
1[k](y), introduce a fresh variable x̂, and replace the x at

position i in c with x̂.

• |L| = 1. Without loss of generality we can assume that t′1[i] = t′1[j]. For
each variable y occurring in the lth position in c add the unary constraint
Rt
′
1[l](y), and then remove the constraint c.

• |L| = 0. This implies that I1 is unsatisfiable, and we simply output an
arbitrary unsatisfiable instance.
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Repeat the procedure above until a fixpoint is reached and let I2 = (V2, C2)
be the resulting instance. Observe that a variable x that occurs in a constraint
at position n + 1, . . . , n′ only occur in a single constraint and in a unique
position. Finally, let I3 = (V3, C3) be the instance of CSP(R) obtained by
replacing each constraint R′(x1, . . . , xn, xn+1, . . . , xn′) ∈ C2 by R(x1, . . . , xn).
Note that every fresh variable x̂ that were introduced in the previous steps
are removed in the conversion of I2 into I3. This shows that the reduction is
indeed a CV-reduction.

Lemma 30. Let R be a saturated SB-extension over D with at least one 3-
choice argument. Then CSP(SD) ≤CV CSP(R).

Proof. Let n = ar(R). Choose three distinct values d1, d2, d3 ∈ D such that
there does not exist any i such that Proji(R) = {d1, d2, d3}. If no such i
exists, then R is saturated and already contains all possible 3-choice argu-
ments over D, implying (1) that 〈R〉6∃ = 〈SD〉6∃ and (2) by Theorem 8 and
Theorem 10, that we are done. Hence, we assume that such d1, d2, d3 exist.
First, construct the relation S (with domain D) such that Proj1,...,n(S) = R,
Projn+1(S) = {d1, d2, d3}, and then add the minimum number of arguments
to make S saturated. Second, let S′ be the relation obtained from S by pro-
jecting away every argument i of the form Proji(S) = {d1, d2, d3}. Thus, if we
let i1, . . . , im ∈ [ar(S)] be the set of indices such that Projij (S) 6= {d1, d2, d3},
1 ≤ j ≤ m, then S′ = Proji1,...,im(S). In other words, S′ is equal to R in the
first n coordinates, but potentially contains more 1-choice and 2-choice argu-
ments. Note that S′ is saturated. Via Lemma 29, and the observation that
1-choice arguments do not affect the complexity of CSP(S′), it then follows that
CSP(S′) ≤CV CSP(R). An application of Lemma 28 then gives the desired
result that CSP(S) ≤CV CSP(S′) ≤CV CSP(R). Since d1, d2, d3 were arbi-
trarily chosen and since S is saturated, it is clear that we can repeat the above
argument by choosing three fresh values from D, and extending S. Eventually,
the resulting relation is saturated and will contain all possible 3-choice argu-
ments, and can therefore qfpp-define SD. Hence, CSP(SD) ≤CV CSP(R).

We have thus proved the main result of this section.

Theorem 31. Let D be a finite domain and let Γ be a finite, ultraconservative
constraint language over D. If CSP(Γ) is NP-complete then T({SD}) ≤ T(Γ).

Proof. We first show that if R is an SB-extension over a finite domain D, then
CSP(SD) ≤CV CSP(R). By Lemma 26 we may assume that R is saturated.
If R does not contain any 3-choice arguments we use Lemma 28 together with
Lemma 29 and obtain a CV-reduction from CSP(SD) to CSP(R). Hence,
assume that R contains one or more 3-choice arguments. In this case we use
Lemma 30 and obtain a CV-reduction from CSP(SD) to CSP(R).

By Lemma 24 there exists an SB-extensionR ∈ 〈Γ〉6∃, implying that CSP(R) ≤CV

CSP(Γ) via Theorem 8 and Theorem 10, and we know that CSP(SD) ≤CV

CSP(R). We conclude that T({SD}) ≤ T({R}) ≤ T(Γ).
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4.2.3 Consequences For Finite-Domain CSPs

In this section we wish to make a few additional remarks concerning the time
complexity of finite-domain CSP(Γ), using Theorem 31 as a starting point.
Clearly, {SD} is not an ultraconservative constraint language, but it is possible
to prove that the complexity of CSP(SD) does not change when we expand
the language by adding all unary relations over D.

Lemma 32. Let D be a finite domain. Then T({SD}) = T({SD} ∪ 2D).

Proof. T({SD}) ≤ T({SD} ∪ 2D) holds trivially. To prove T({SD} ∪ 2D) ≤
T({SD}) we show that CSP({SD}∪2D) ≤CV CSP(SD). Since we have already
seen many reductions akin to this we only provide a sketch. Let (V,C) be an
instance of CSP({SD} ∪ 2D). Assume x ∈ V appears in a unary constraint
E(x) ∈ C. If x also appears in another unary constraint E′(x) then these two
constraints can be replaced by (E ∩ E′)(x); hence, we may assume that each
variable occurs in at most one unary constraint. If x does not occur in any
other constraint, then we first check if E = ∅. If this is the case, the instance
is unsatisfiable and we abort the procedure, and otherwise we simply remove
the constraint E(x). Now assume that x also appears in the ith position
in a constraint SD(x1, . . . , xi−1, x, xi+1, . . . , xar(SD)). If E ∩ Proji(SD) = ∅
then the instance is unsatisfiable, and if E ⊇ Proji(SD) then we may safely
remove the constraint E. Therefore assume that either |Proji(SD) ∩ E| = 1
or that |Proji(SD) ∩ E| = 2. The first of these cases is easy to handle since it
implies that x is forced a constant value in any satisfying assignment, which
can be handled by identifying x with the corresponding 1-choice variable in
SD(x1, . . . , xi−1, x, xi+1, . . . , xar(SD)). The second case implies that x appears
in a 2- or 3-choice position, i.e., Proji(SD) = {d1, d2, d3}, for three distinct
values d1, d2, and d3, or Proji(SD) = {d1, d2} for two distinct values d1 and
d2. For simplicity, we assume that x appears in a 3-choice position, since the
2-choice case is similar. Assume that E ⊇ {(d1), (d2)}, and let t ∈ SD be
the tuple satisfying t[i] = d3. Let {s, u} = SD \ {t} and choose j such that
s[j] = s[i], u[i] = u[j], and t[j] ∈ {s[j], u[j]}. Then identify x with the variable
xj throughout the instance. If we repeat this procedure for the remaining
constraints containing x, remove the constraint E(x), and then continue with
all remaining unary constraints, we will obtain an instance of CSP(SD) which
is satisfiable if and only if (V,C) is satisfiable. Furthermore, since D is fixed
and finite, this procedure can be carried out in polynomial time with respect
to |V |, showing that CSP({SD} ∪ 2D) ≤CV CSP(SD).

Thus, no NP-complete CSP over an ultraconservative constraint language
over D is solvable strictly faster than CSP(SD), and, in particular, T({SD′}) ≤
T({SD}) whenever D′ ⊇ D. This raises the question of whether T(SD) =
T(SD′) for all D,D′ ⊇ {0, 1}, or if it is possible to find D and D′ such that
T({SD′}) < T({SD}). As the following theorem shows, this is indeed the case,
unless T({SD}) = 0 for every finite D and the ETH fails.
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Theorem 33. The infimum of {T({SD} ∪ 2D) | D is finite, |D| ≥ 2} equals
0.

Proof. According to Theorem 32, T({SD}) = T({SD} ∪ 2D), so as a simplifi-
cation we will instead prove that inf{T({SD}) | D finite and |D| ≥ 2} = 0.

Let Dk = {0, . . . , k − 1}, k ≥ 5. We will analyse a simple algorithm for
CSP(SDk

). Let I = (V,C) be an arbitrary instance of CSP(SDk
). Extend the

instance with fresh variables Z = {z0, . . . , zk−1} and the constraints Ri(zi),
0 ≤ i ≤ k − 1. These variables will be used to force variables to take constant
values when branching over the constraints in the instance. Arbitrarily choose
a constraint c = SDk

(x1, . . . , xk3) and let X = {x1, . . . , xk3}. Since each tuple
in SD contains exactly k2 occurrences of every domain element in D, it follows
that if a variable x appears in k2 + 1 or more positions, then the constraint c
cannot be satisfied. Thus, |X| ≥ k.

First, assume that X ∩Z = ∅. Then, we branch on the three tuples in SD,
by for each tuple s ∈ SD and 1 ≤ i ≤ k3, identifying xi with zs[i] and removing
the constraint c. Hence, in each branch at least k variables are removed.

Second, assume to the contrary that X ∩Z 6= ∅. If a variable z ∈ Z occurs
in a 3-choice position, then the variables in X \Z can be assigned fixed values
and no branching is needed. If no variable z ∈ Z occurs in a 3-choice position,
then all k(k − 1)(k − 2) 3-choice positions in SDk

are covered by variables
outside Z. Thus, we perform three branches based on the tuples in SDk

, and
similarly to the case when X ∩ Z = ∅ identify variables with z0, . . . , zk−1 as
prescribed by the chosen tuple. Recall that a variable can occur in at most k2

positions in the constraint c, since c is otherwise not satisfiable. This implies

that at least bk(k−1)(k−2)
k2 c ≥ 1 variables are given fixed values in each branch.

When there are no SDk
constraints left, we check whether the remaining

set of unary constraints are satisfiable or not. It is straightforward to perform
this test in polynomial time. A recursive equation that gives an upper bound
on the time complexity of this algorithm is thus

T (1) = poly(||I||), T (n) = 3T

(
n− bk(k − 1)(k − 2)

k2
c
)

+ poly(||I||)),

(where n denotes the number of variables and ||I|| the number of bits required
to represent I) so

T (n) ∈ O(3n·
k2

k(k−1)(k−2) · poly(||I||)).

The function k2

k(k−1)(k−2) obviously tends to 0 with increasing k so the infimum

of the set {T({SD}) | D is finite and |D| ≥ 2} is equal to 0.

We may summarise the results obtained thus far as follows. For each finite
domain D there exists a unique lower bound on T(Γ) for ultraconservative Γ,
namely T({SD}) = T({SD} ∪ 2D). Furthermore, unless the ETH fails, this
value is strictly greater than 0, but tends to 0 for increasing values of |D|.
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A related question is whether it is also possible to find a “hardest” NP-
complete CSP over each domain D, i.e., a Γ such that T(Γ) ≥ T(∆) for each
∆ over D. This question is in a sense trivial since D-CSP can be phrased as
a CSP over the set of all relations over D, which admits a CV-reduction from
every other CSP problem over the domain. However, we may in fact also prove
that D-CSP is not solvable in O(cn) time for any c < |D|, assuming the SETH
(i.e., that the limit of the sequence T(Γ3

SAT), T(Γ4
SAT), . . . tends to 1). This is

a straightforward consequence of a reduction from Lagerkvist [36], but to the
best of our knowledge, this connection between SETH and the complexity of
D-CSP has not explicitly been stated in the literature before.

Theorem 34. Let D be a finite domain. Then D-CSP is not solvable in O(cn)
time for any c < |D| unless the SETH is false.

Proof. In Lagerkvist [36, Corollary 19] it is proved that D-CSP is not solvable
in O(cn) time for any c < |D| if {0, 1}-CSP is not solvable in O(dn) time for
any d < 2. Thus, we only need to prove that a O(dn) time algorithm, d < 2,
for {0, 1}-CSP is sufficient to contradict the SETH. Hence, assume that {0, 1}-
CSP is solvable in O(dn) time for some d < 2. Since limk→∞ T(Γk

SAT) = 1 by
the SETH it follows that there exists k such that SAT(Γk

SAT) is not solvable
in O(dn) time. But since there is a trivial CV-reduction from SAT(Γk

SAT)
to {0, 1}-CSP, this contradicts the assumption that {0, 1}-CSP is solvable in
O(dn) time. We conclude that D-CSP is not solvable in O(cn) time for any
c < |D|.

5 The Conservative Case

Lemma 24 (and as a consequence, Theorem 31) is only valid for ultracon-
servative constraint languages. In this section we develop techniques that
will be useful when Γ is conservative but not necessarily ultraconservative.
For the ternary domain {0, 1, 2} these techniques are sufficient to prove that
CSP(S{0,1,2}) results in the easiest NP-complete conservative CSP problem
over {0, 1, 2}, but for larger domains the situation appears to be more com-
plex. We begin with the following easy lemma, which provides a shortcut if the
constant relations over D are not qfpp-definable over a conservative constraint
language Γ.

Lemma 35. Let Γ be a conservative constraint language over a finite domain
D = {d1, . . . , dk} ⊆ N. Then, for each di ∈ D, there exists a k-ary relation
R ∈ 〈Γ〉6∃ such that Projj(R) = Rdi for some j ∈ {1, . . . , k}.

Proof. Note first that every endomorphism of Γ is idempotent, i.e., it is simply
the unary projection. It is then well-known that Γ can qfpp-define the relation
{(e(d1), . . . , e(dk)) | e is an endomorphism of Γ} (see e.g. Theorem 3.6 in
Barto [2]). Hence, Γ can qfpp-define the relation {(d1, . . . , dk)}, which satisfies
the claim of the lemma.
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We will now define a useful relation which is guaranteed to be qfpp-definable
by any constraint language Γ. This relation will then be used as a gadget when
constructing qfpp-definitions of certain conservative relations.

Definition 36. Let Γ be a constraint language over a finite domain D =
{d1, . . . , dk}. Let t1, . . . , tk2 ∈ D2 be a lexicographical enumeration of all binary
tuples over D. We define the relation BΓ

D as

BΓ
D = {(f(t1), . . . , f(tk2)) | f ∈ Pol(Γ), ar(f) = 2}.

The intuitive reasoning behind the relation BΓ
D is that each tuple can be

viewed as a representation of a binary function in Pol(Γ). Even better, BΓ
D

is known to be qfpp-definable by Γ for any contraint language Γ over a finite
domain (for proof, see e.g., Theorem 4.1 in Jeavons et al. [33])

Lemma 37. BΓ
D ∈ 〈Γ〉6∃ for any constraint language Γ over a finite domain

D.

With the help of the relation BΓ
D we are now ready to prove the main techni-

cal lemma of this section. If t1, . . . , tm are k-ary tuples we write SetCols(t1, . . . , tm)
for the set

{(t1[1], . . . , tm[1]), . . . , (t1[k], . . . , tm[k])}

(in other words, the set corresponding to the columns of the matrix represen-
tation of {t1, . . . , tm}). For example,

SetCols((0, 0, 1, 1), (0, 1, 0, 1)) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Lemma 38. Let Γ be a conservative constraint language over a finite domain
D ⊆ N. For each conservative relation E ⊆ D such that |E| = 2 there exists
an n-ary relation RE ∈ 〈Γ〉 6∃ such that Proji(RE) = E for some i ∈ {1, . . . , n}
and |RE | = 2.

Proof. Let n = |D|2 be the arity of the relation BΓ
D from Definition 36, and

recall that BΓ
D is qfpp-definable from Γ via Lemma 37. Since each f ∈

Pol(Γ) is conservative it furthermore follows that |Proji(B
Γ
D)| ≤ 2 for each

i ∈ {1, . . . , n}.
Let E = {a, b} ⊆ D be a conservative relation. Arbitrarily pick t1, t2 ∈ BΓ

D

such that (a, b) ∈ SetCols(t1, t2). Assume first that SetCols(t1, t2) = {(d, d) |
d ∈ D}∪{(a, b)}, i.e., the arguments of the relation {t1, t2} are either constant
or (a, b). It is then easily verified that there cannot exist f ∈ pPol(BΓ

D) which
does not preserve {t1, t2}. Hence, {t1, t2} ∈ 〈BΓ

D〉 6∃, and we are done.
Now assume that

SetCols(t1, t2) = {(d, d) | d ∈ D} ∪ {(a, b), (d1, e1), . . . , (dk, ek)}

where dj 6= ej in each pair (dj , ej), 1 ≤ j ≤ k. We claim that either
{t1, t2} ∈ 〈BΓ

D〉 6∃ or there exists a tuple t3 ∈ BΓ
D such that SetCols(ti, t3) ⊂

SetCols(t1, t2) for i = 1 or i = 2, and such that (a, b) ∈ SetCols(ti, t3).
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Hence, assume that {t1, t2} /∈ 〈BΓ
D〉6∃. Then there exists a binary partial oper-

ation f ∈ pPol(BΓ
D) which does not preserve {t1, t2}. Assume without loss of

generality that f(t1, t2) = t3 /∈ {t1, t2} for a tuple t3 included in BΓ
D.

Let I1 ⊆ {1, . . . , k} denote the set of indices such that f(di, ei) = di when-
ever i ∈ I1, and I2 ⊆ {1, . . . , k} the set of indices such that f(di, ei) = ei for
i ∈ I2. Note that, for each 1 ≤ i ≤ k, either f(di, ei) = di, or f(di, ei) = ei,
as otherwise there exists 1 ≤ j ≤ n such that |Projj(B

Γ
D)| ≥ 3, which we

have already concluded is impossible. Assume, without loss of generality, that
f(a, b) = a (the case when f(a, b) = b is symmetric).

If I2 is empty, then f(di, ei) = di for each 1 ≤ i ≤ k, implying that
f(t1, t2) = t1 ∈ {t1, t2}. Therefore, I2 contains at least one element. Now con-
sider the relation {t2, t3} and the set SetCols(t3, t2). Then (a, b) ∈ SetCols(t3, t2),
and we also claim that SetCols(t3, t2) ⊂ SetCols(t1, t2). Let 1 ≤ j ≤ n
and consider the two tuples (t1[j], t2[j]) and (t3[j], t2[j]). Then (t3[j], t2[j]) =
(f(t1[j], t2[j]), t2[j]), and hence, either

(f(t1[j], t2[j]), t2[j]) = (t2[j], t2[j]) ∈ SetCols(t1, t2)

or
(f(t1[j], t2[j]), t2[j]) = (t1[j], t2[j]) ∈ SetCols(t1, t2).

Furthermore, since I2 is non-empty, there exists at least one j ∈ I2 such that
(dj , ej) ∈ SetCols(t1, t2) but (dj , ej) /∈ SetCols(t3, t2). Hence, SetCols(t3, t2) ⊂
SetCols(t1, t2).

By repeating this procedure we will arrive at a pair of tuples t, t′ such that
(a, b) ∈ SetCols(t, t′) and such that {(t, t′)} ∈ 〈BΓ

D〉6∃, and we therefore let
RE = {t, t′}.

Lemma 38 can then be used to prove an analogue of Lemma 23 from Sec-
tion 4.1.

Lemma 39. Let Γ be a conservative language over a finite domain D and let
R ∈ 〈Γ〉 be an n-ary relation such that |R| = 2. Then there exists R′ ∈ 〈Γ〉6∃
such that (1) |R′| = 2 and (2) Proj1,...,n(R′) = R.

Proof. This follows almost immediately by combining Lemma 23 from Sec-
tion 4.1 with Lemma 38. To see this, simply note that all conservative relations
in Lemma 23 are of the form {(d1), (d2)} for d1, d2 ∈ D or {(d)}, d ∈ D, which
can be handled using Lemma 35 and Lemma 38.

With this result we can now without too much difficulty show that we
can always qfpp-define an SB-extension when CSP(Γ) is NP-complete and
conservative over {0, 1, 2}.

Lemma 40. Let Γ be a conservative constraint language over {0, 1, 2} such
that CSP(Γ) is NP-complete. Then there exists a relation in 〈Γ〉6∃ which is an
SB-extension.
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Proof. We will show how Lemma 24 can be adapted to the conservative setting
with the help of Lemma 38 and Lemma 39. In doing so we will also recapitulate
some of the crucial steps even though the constructions will be mostly identical.

Hence, by Lemma 22 we first know that there exists a relation R ∈ 〈Γ〉
which is an SB-extension. Let

R(x1, . . . , xn) ≡ ∃y1, y2, . . . , ym.ϕ(x1, . . . , xn, y1, . . . , ym)

denote its pp-definition over Γ. Using this pp-definition we will show that
Γ can qfpp-define an SB-extension by gradually removing each existentially
quantified variable. First consider the relation

R1(x1, . . . , xn, y1) ≡ ∃y2, . . . , ym.ϕ(x1, . . . , xn, y1, y2, . . . , ym).

Assume that |R1| > 3, i.e., that R1 is not an SB-extension. Let R = {t1, t2, t3}
and for each 1 ≤ i ≤ 3 let Si = {t[n + 1] | t ∈ R1, t

_
i t
′ = t}, 1 ≤ i ≤ 3. In

other words Si contains the possible values taken by the argument y1 in the
tuples of R1 corresponding to ti ∈ R. There are now a few cases to consider
depending on the sets S1, S2, S3:

1. |S1 ∪ S2 ∪ S3| = 1,

2. |S1 ∪ S2 ∪ S3| = 2, and

3. |S1 ∪ S2 ∪ S3| = 3,

The first and second case follows via identical arguments as the proof of
Lemma 24 but using Lemma 39 instead of Lemma 23.

Hence, assume that |S1∪S2∪S3| = 3, and first assume that S1∩S2∩S3 = ∅.
If S1 = {d1}, S2 = {d2}, and S3 = {d3}, then R1 is already an SB-extension.
Next, assume that S1 = S2 = {d1, d2} and that S3 = {d3} (or any other case
symmetric to this one). Let E = {d1, d3} and let E′ be the corresponding
relation from Lemma 39, and assume that ar(E′) = k + 1. Then we may
qfpp-define the SB-extension R′1 of arity n+ 1 + k as

R′1(x1, . . . , xn, y1, z1, . . . , zk) ≡ R1(x1, . . . , . . . , xn, y1) ∧ E′(y, z1, . . . , zk).

Last, assume that S1 = {d1, d2}, S2 = {d1, d3}, S3 = {d2, d3} (or a case
symmetric to this one). Then, just as in the corresponding case of the proof of
Lemma 24, we let E = {d1, d2}, E′ be the (k+1)-ary relation from Lemma 39,
and qfpp-define the relation R′1 of arity n+ 1 + k as

R′1(x1, . . . , xn, y1, z1, . . . , zk) ≡ R1(x1, . . . , . . . , xn, y1) ∧ E′(y, z1, . . . , zk).

The argument then proceeds as in the case when |S1 ∪ S2 ∪ S3| = 2.
Second, assume that S1 ∩S2 ∩S3 6= ∅. Then we arbitrarily pick an element

d ∈ S1 ∩ S2 ∩ S3. It is easily verified that R1(x1, . . . , xn, y) ∧ {(d)}(y) de-
fines an SB-extension, and using Lemma 35 this relation, or possibly a relation
with additional arguments, is qfpp-definable over Γ. If, instead, S1 = {d1, d2},
S2 = {d1, d3}, and S3 = {d2, d3}, then we let E = {d1, d3} and let E′ be the
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corresponding relation from Lemma 39 of arity k + 1, and construct the rela-
tion R′1(x1, . . . , xn, y1, z1, . . . , zk) ≡ R1(x1, . . . , . . . , xn, y1) ∧ E′(y, z1, . . . , zk).
Similarly to the proof of Lemma 24 this case then reduces to the case when
|S1 ∪ S2 ∪ S3| = 2.

It is then easy to see that the reductions in Section 4.2 allows us to claim
the following theorem, since Γ can qfpp-define an SB-extension whenever Γ is
conservative and CSP(Γ) is NP-complete.

Theorem 41. Let Γ be a finite, conservative constraint language over {0, 1, 2}.
If CSP(Γ) is NP-complete then T({SD}) ≤ T(Γ).

It is not obvious how to generalise Theorem 41 to arbitrary finite domains.
A good starting point would be to lift Lemma 38 to relations E with |E| ≥ 3.
However, the proof strategy used in Lemma 38 is based on finding tuples
t1, t2 which either correctly define E, or induce a binary partial operation
which can be used to select a third, refined tuple t3. But if |E| = 3 then we
cannot necessarily guarantee that the tuple t3 results in a refinement, and the
procedure might not terminate.

6 Concluding Remarks and Future Research

In this article we have studied the time complexity of NP-complete CSPs. We
have ruled out subexponential-time algorithms for NP-complete, finite-domain
CSPs, unless the ETH is false. This proof also extends to degree-bounded CSPs
and many classes of CSPs over infinite domains. We then proceeded to study
the time complexity of CSPs over ultraconservative constraint languages, and
proved that no such NP-complete CSP is solvable strictly faster than T({SD}).
It is an interesting open question if this can be extended to arbitrary constraint
languages, and we proved that for ternary domains it is in fact sufficient that Γ
is merely conservative. These results raise several directions for future research.

Structurally restricted CSPs and the ETH. Theorem 13 shows that
the algebraic approach is viable for analysing the existence of subexponential
algorithms for certain structurally restricted CSP(Γ) problems. An interesting
continuation would be to try to determine which of the structurally restricted
(but not constraint language restricted) CSPs investigated by De Haan et
al. [23] could be used to prove similar results. For example, is it the case
that CSP(Γ) is not solvable in subexponential time whenever CSP(Γ) is NP-
complete and the primal treewidth of an instance is bounded by Ω(n), unless
the ETH fails?

Stronger results for arbitrary constraint languages. We have seen that
for the ternary domain {0, 1, 2} it is possible to show that CSP(S{0,1,2}) results
in the easiest conservative, NP-complete CSP. However, generalising this to
larger domains seems to be riddled with technical difficulties. Is it possible to
circumvent this difficulty by directly proving that CSP(Γ ∪ 2D) ≤CV CSP(Γ)
whenever CSP(Γ) is NP-complete?
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For non-conservative constraint languages the situation appears to be even
more complicated. Most importantly, it is not clear if Lemma 22 is valid for
arbitrary constraint languages since the construction explicitly utilises con-
servative constraints over the domain, and it is thus uncertain whether Γ can
qfpp-define an SB-extension whenever CSP(Γ) is NP-complete. It might there-
fore be necessary to consider a less algebraic proof and instead directly try to
prove that CSP(R) ≤CV CSP(Γ) for an SB-extension R, rather than proving
that R can be qfpp-defined.

Infinite-domain CSPs. If the infinite-domain CSP dichotomy conjecture
for CSPs over reducts of finitely bounded homogeneous structures is correct,
we may already deduce that these problems are not solvable in subexponen-
tial time [3] whenever they are NP-hard. However, for arbitrary constraint
languages over infinite domains there is reason to believe that the situation
is overall much more complex. For example, there are NP-complete problems
CSP(Γ) not solvable in O(cn) time for any c ≥ 0, assuming the SETH is
true [34], which is in stark contrast to finite-domain CSPs which are always
solvable in O(|D|n) time for every finite domain D. In contrast to Theo-
rem 13, the results by Jonsson & Lagerkvist [34] were not obtained by pp-
interpretability, and it would be interesting to investigate if such strong, lower
bounds could be obtained using algebraically informed approaches.

Last, we have seen that the time complexity of CSP(SD) strictly decreases
for increasingly larger domains D, which makes it very tempting to find ex-
amples of NP-complete CSPs over infinite domains solvable in subexponential
time. Due to Theorem 13, such CSPs — if they exist — would fall outside
the infinite-domain CSP dichotomy conjecture. For this question it is impor-
tant to note that there is no obvious generalisation of SD to infinite domains
since such a relation would consist of an infinite number of arguments. Also,
the language {SD | D ⊂ N}, while defined over the infinite domain N, is not
relevant in this pursuit since the time complexity of CSP({SD | D ⊂ N}) is
not lower than CSP(S{0,1}).
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