
The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems

VICTOR LAGERKVIST∗, Linköping University, Sweden

MAGNUS WAHLSTRÖM, Royal Holloway, University of London, Great Britain

We study the fine-grained complexity of NP-complete satisfiability (SAT) problems and constraint satisfaction problems (CSPs) in the
context of the strong exponential-time hypothesis (SETH), showing non-trivial lower and upper bounds on the running time. Here, by a
non-trivial lower bound for a problem SAT(Γ) (respectively CSP(Γ)) with constraint language Γ, we mean a value 𝑐0 > 1 such that the
problem cannot be solved in time𝑂 (𝑐𝑛) for any 𝑐 < 𝑐0 unless SETH is false, while a non-trivial upper bound is simply an algorithm
for the problem running in time𝑂 (𝑐𝑛) for some 𝑐 < 2. Such lower bounds have proven extremely elusive, and except for cases where
𝑐0 = 2 effectively no such previous bound was known. We achieve this by employing an algebraic framework, studying constraint
languages Γ in terms of their algebraic properties. We uncover a powerful algebraic framework where a mild restriction on the allowed
constraints offers a concise algebraic characterization. On the relational side we restrict ourselves to Boolean languages closed under
variable negation and partial assignment, called sign-symmetric languages. On the algebraic side this results in a description via
partial operations arising from system of identities, with a close connection to operations resulting in tractable CSPs, such as near
unanimity operations and edge operations. Using this connection we construct improved algorithms for several interesting classes of
sign-symmetric languages, and prove explicit lower bounds under SETH. Thus, we find the first example of an NP-complete SAT
problem with a non-trivial algorithm which also admits a non-trivial lower bound under SETH. This suggests a dichotomy conjecture
with a close connection to the CSP dichotomy theorem: an NP-complete SAT problem admits an improved algorithm if and only if it
admits a non-trivial partial invariant of the above form.

CCS Concepts: •Mathematics of computing→ Discrete mathematics; • Theory of computation→ Complexity theory and
logic.

ACM Reference Format:
Victor Lagerkvist and Magnus Wahlström. YYYY. The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems. ACM Trans.

Comput. Theory 1, 1, Article A (January YYYY), 53 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

The 3-SAT and 𝑘-SAT problems, of finding a satisfying assignment to a 3-CNF respectively 𝑘-CNF formula, are among
the most well-studied NP-hard problems in terms of the precise computational complexity. We have seen a long range of
improved algorithms for these problems, improving the trivial bound 𝑂∗ (2𝑛)1 to 𝑂∗ (𝑐𝑛) for various constants 𝑐 < 2. In
particular for 3-SAT we have seen improvements from 𝑂 (1.6181𝑛) achieved in 1985 by Monien and Speckenmeyer [50]
through to the latest improved bound of around 𝑂 (1.308𝑛) [26, 28, 29, 56], with a long list of papers in between.
∗This is the corresponding author
1The notation𝑂∗ hides factors polynomial in the input size.

Authors’ addresses: Victor Lagerkvist, Department of computer and information science, Linköping University, Linköping, Sweden, victor.lagerkvist@liu.se;
Magnus Wahlström, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, Great Britain, magnus.
wahlstrom@rhul.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© YYYY Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/0000001.0000001

2 V. Lagerkvist and M. Wahlström

Particular milestones include the local search approach of Schöning [59] and the so-called PPSZ algorithm of Paturi,
Pudlák, Saks and Zane [53]. However, the rate of improvement has been slowing down, and recent improvements for
general 3-SAT have been reported to be on the order of the tenth digit after the decimal point [56]. Are we approaching
a limit, or are there further breakthroughs ahead using new ideas? Similar questions can be asked about other problems,
such as Maximum Independent Set [65], where we for a while saw improvement mainly in increasingly complex case
analysis of branching schemes.

Clearly, we cannot take a slowing rate of improvement as direct evidence that further improvement is impossible. As
an example, we may consider the problem Chromatic Number, where we saw several gradual improvements solving
the problem in time 𝑂 (𝑐𝑛), 𝑐 > 2.3, until an ingenuous new idea gave an algorithm running in time 𝑂∗ (2𝑛) [8, Table 2].
Clearly, we would like some kind of an indication, even conjecturally, supporting a claim that, say, 3-SAT probably
can’t be solved in time 𝑂 (𝑐𝑛) for some concrete value 𝑐 > 1. But such claims have proven extraordinarily hard to find.

Two seminal hypotheses have been made in attempts to address these issues, the exponential-time hypothesis (ETH)
and the strong exponential-time hypothesis (SETH) [14, 32]. For 𝑘 ≥ 3, let 𝑐𝑘 denote the infimum of all constants 𝑐 > 1
such that 𝑘-SAT can be solved in time 𝑂 (𝑐𝑛). Then ETH is the statement that 𝑐3 > 1, and SETH is the statement
that lim𝑘→∞ 𝑐𝑘 = 2, implying that no subexponential algorithms are possible for 3-SAT and that no exponential
improvement over the trivial algorithm is possible for CNF-SAT in general.

Some results are known regarding the relative complexity of these problems. The seminal sparsification lemma [33]
implies that ETH is equivalent to the statement that 𝑐𝑘 > 1 for some constant 𝑘 , and further research has shown
that the sequence (𝑐𝑘)∞𝑘=3 increases infinitely often assuming ETH [32]. Additionally, both ETH and SETH have been
frequently treated as conjectures, and are used as indicators that some algorithms for problems in other domains may be
optimal (e.g., “if you can solve this problem exponentially faster than our algorithm, then SETH is false”); see [19, 20, 47].
Still, despite all this, we are no closer to concrete lower bounds for 𝑐𝑘 . Indeed, with some technical exception (see
Example 3.15), the class of NP-hard SAT problems can be split into two parts: Problems which cannot be solved in time
𝑂∗ (𝑐𝑛) for any 𝑐 < 2 assuming SETH, implying that no exponential improvement over brute force is possible, and
problems where no lower bound on the running time is known, except that 𝑐 > 1 assuming ETH. In this article, we take
steps towards changing this.

Our approach. To describe our approach, we need some definitions. We give summary descriptions here, with more
technical background in the following subsection. A constraint language is a (possibly infinite) set of relations Γ. A
constraint over Γ is defined by a relation 𝑅 ∈ Γ and a tuple (𝑥1, . . . , 𝑥𝑟) of variables, where 𝑟 is the arity of 𝑅. It is
satisfied by an assignment 𝑓 if (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑟)) ∈ 𝑅. We usually write 𝑅(𝑥1, . . . , 𝑥𝑟) or even 𝑅(𝑋) to represent such
constraints. A relation is Boolean if it is over domain {0, 1}, and Γ is Boolean if every relation in Γ is Boolean. For a fixed
Boolean constraint language Γ, the problem SAT(Γ) takes as input as set of variables 𝑉 and a list of constraints over Γ
with variables from 𝑉 . The task is to find an assignment 𝑓 : 𝑉 → {0, 1} such that for every constraint 𝑅(𝑥1, . . . , 𝑥𝑟) is
satisfied by 𝑓 . The constraint satisfaction problem CSP(Γ) is the more general case when the domain is not necessarily
Boolean.

For 𝑘 ≥ 1, let Γ𝑘 denote the special language such that SAT(Γ𝑘) corresponds to 𝑘-SAT, i.e., Γ𝑘 contains every Boolean
relation 𝑅 of arity 𝑟 ≤ 𝑘 such that |𝑅 | = 2𝑟 − 1, since these relations correspond precisely to 𝑟 -clauses. We then naturally
extend the definition of 𝑐𝑘 by defining 𝑐 (Γ) as the infimum over all constants 𝑐 > 1 such that SAT(Γ) can be solved in
time 𝑂∗ (𝑐𝑛). Thus 𝑐 (Γ𝑘) = 𝑐𝑘 , and it is known that ETH implies 𝑐 (Γ) > 1 for every language Γ such that SAT(Γ) is
NP-complete. We give more background below.
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 3

The key to our approach is that we are studying the complexity of SAT(Γ) for languages Γ that are defined not
directly, but only implicitly through their algebraic properties. Here, by an explicit definition we mean a language Γ
that is defined either by exhaustive enumeration, or via a “structural description” of all relations 𝑅 ∈ Γ. For example,
SAT problems with explicitly defined languages Γ include every problem with a finite language, the usual SAT problem
(CNF-SAT) defined via the language Γ =

⋃∞
𝑖=1 Γ𝑘 , and problems such as Horn SAT or even 0/1 Integer Programming,

where the former is defined as allowing clauses with at most one unnegated variable, and the latter allows constraints
of the type

∑
𝑖 𝛼𝑖𝑥𝑖 = 𝛽 , with the restriction 𝑥𝑖 ∈ {0, 1}.

Instead, we consider languages Γ containing all relations satisfying some algebraic property. The full background on
this takes quite some preamble (see next subsection), but very briefly, it is known that the precise complexity of SAT(Γ),
down to the value 𝑐 (Γ), is determined precisely by a set of algebraic invariants held by Γ, the partial polymorphisms of
Γ [36]. These are algebraic properties that restrict the shape of the search space for instances of SAT(Γ). The larger
the set of partial polymorphisms a language Γ observes, the more restricted is its search space, and consequently, the
smaller the value 𝑐 (Γ) (although of course, this decrease in complexity is not necessarily strict). Conversely, if we want
to study the most expressive languages Γ that still obey some restrictions to their expressive power, then we should
consider languages Γ with as few partial polymorphisms as possible.

With this background, we proceed as follows. To make the question more manageable, we restrict our attention
to sign-symmetric languages; informally, these are Boolean languages closed under variable negation and partial
assignment. We then go through the following steps.

(1) We derive an algebraic characterization of the types of partial polymorphisms enjoyed by sign-symmetric
languages. We refer to these as pSDI-operations. Among these, we characterize the weakest non-trivial pSDI-operations,
corresponding to the richest, most expressive languages Γ, and undertake an initial investigation of their structure.

(2) We study the problems SAT(Γ) for languages Γ = Inv(𝑓), defined as the language containing every relation
𝑅 invariant under 𝑓 , where 𝑓 is one of the weakest non-trivial pSDI-operations just discussed. Therefore, these are
the hardest possible problems SAT(Γ) which are not trivially SETH-hard, i.e., such that 𝑐 (Γ) < 2 is possible under
SETH. We find that, surprisingly, some of these problems correspond directly to classes of problems that can be solved
by generic problem-solving strategies used for other SAT problems, such as the meet-in-the-middle and local search

strategies. Thus, for some of these problems, we are able to show concrete bounds 𝑐 (Γ) < 2.
(3) Finally, we study lower bounds on SAT(Γ) under SETH. Here, the richness of the language Γ comes in hand, and

we are able to show a generic padding scheme that transforms an instance of SAT on 𝑛 variables to an instance of
SAT(Γ) for Γ = Inv(𝑝) with 𝑂 (𝑛) variables, where the constant depends only on the partial polymorphism 𝑓 . Thus,
for every language Γ = Inv(𝑓) we study, we are able to show concrete bounds, saying that 𝑐 (Γ) ≥ 𝑐 𝑓 under SETH, for
some constant 1 < 𝑐 𝑓 < 2.

Together, this provides the first problem SAT(Γ) such that we simultaneously have non-trivial upper bounds 𝑐 (Γ) < 2
on its complexity, as well as a lower bound 𝑐 (Γ) ≥ 𝑐 𝑓 > 1 assuming SETH. However, the upper and lower bounds
are still far apart, and there are many cases where the structure enforced by the pSDI-operation (if any) eludes us,
where we are as of yet unable to determine the existence of an improved algorithm yielding 𝑐 (Γ) < 2. We welcome
further investigations into these matters; in particular, we leave open the question of a dichotomy characterizing every
language Γ as either allowing 𝑐 (Γ) < 2, or having 𝑐 (Γ) = 2 under SETH.

Manuscript submitted to ACM

4 V. Lagerkvist and M. Wahlström

1.1 The algebraic approach for fine-grained SAT and CSP complexity

In order to discuss our results and methods in more detail, let us provide some quick background on the algebraic
notions used in the paper, and the algebraic approach to studying the complexity of CSPs.

Let Γ be a constraint language. The problems SAT(Γ) andCSP(Γ), as defined above, are referred to as the parameterized

satisfiability problem, respectively the parameterized constraint satisfaction problem. (This has no connection to the field
of parameterized complexity; it merely refers to the problem definition taking a “language parameter” Γ.) Studying
the parameterized versions of these problems provides a broader perspective, compared to simpler approaches like
studying languages defined only as allowing certain types of clauses, e.g. 𝑘-SAT and Horn-SAT.

Let us establish the terms fine-grained complexity of a language Γ to refer to the value 𝑐 (Γ) defined above, i.e., the
precise time complexity of SAT(Γ) and CSP(Γ) up to subexponential factors. Conversely, the coarse-grained complexity

simply refers to whether SAT(Γ) respectively CSP(Γ) is in P.
This coarse-grained complexity of SAT and CSP has been completely settled: for every finite language Γ, SAT(Γ) or

CSP(Γ) is either in P or NP-complete, and we know the precise characterisation of the properties of Γ that decide this.
For the Boolean case, this is Schaefer’s classical dichotomy theorem [55], whereas the case of general finite domains (the
CSP dichotomy conjecture) was more recently settled independently by Bulatov and Zhuk [11, 66] as the culmination of
two decades of research.

Key to settling the CSP dichotomy conjecture was the algebraic approach taken for the problem. For an overview,
see Bulatov [13] and Barto et al. [5] with further references; we briefly review the notions required for this paper.

The first observation is that the complexity of a problem SAT(Γ) or CSP(Γ) depends only on what we may informally
call the expressive power of the language Γ. Between two languages Γ and Δ, if every relation of Γ can be “implemented”
by relations from Δ, under some appropriate notion of implementation, then CSP(Δ) is at least as hard as CSP(Γ). The
seed of the algebraic approach is then the fact that the expressive power of a language Γ can be characterized in purely
algebraic terms through algebraic invariants of Γ using a Galois connection.

For coarse-grained complexity, a good starting point is the following.

Definition 1.1. Let Γ be a constraint language and 𝑅 a relation. A primitive positive definition (pp-definition) of 𝑅 over
Γ is a formula 𝐹 (i.e., a conjunction of constraints) over Γ ∪ {=}, on a variable set 𝑋 ∪ 𝑌 , such that

𝑅(𝑋) ≡ ∃𝑌 : 𝐹 (𝑋,𝑌) .

We say that 𝑅 is pp-definable over Γ if this holds. Similarly, a language Δ is pp-definable over Γ if every relation 𝑅 ∈ Δ

is pp-definable over Γ.

Such pp-definitions can be used as “gadgets” in problem reductions, and indeed, if Δ is pp-definable over Γ, then
there is a polynomial-time reduction from CSP(Δ) to CSP(Γ) (and in fact also a logspace reduction) [13, 35]. The
corresponding algebraic invariant is the following.

Definition 1.2. Let 𝐷 be a finite domain and let 𝑓 : 𝐷𝑘 → 𝐷 be an operation over 𝐷 . Let 𝑅 ⊆ 𝐷𝑟 be a relation over 𝐷 .
For tuples 𝑡1, . . . , 𝑡𝑘 ∈ 𝐷𝑛 , let 𝑓 (𝑡1, . . . , 𝑡𝑘) be the result of applying 𝑓 columnwise, i.e.,

𝑓 (𝑡1, . . . , 𝑡𝑘) = (𝑓 (𝑡1 [1], . . . , 𝑡𝑘 [1]), . . . , 𝑓 (𝑡1 [𝑛], . . . , 𝑡𝑘 [𝑛])) .

Then 𝑓 is a polymorphism of 𝑅 if and only if 𝑓 (𝑡1, . . . , 𝑡𝑘) ∈ 𝑅 for every sequence of tuples 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅. For a
constraint language Γ, an operation 𝑓 is a polymorphism of Γ if and only if it is a polymorphism of every relation 𝑅 ∈ Γ.
Synonymously to 𝑓 being a polymorphism of 𝑅, we may say that 𝑓 preserves 𝑅, or that 𝑅 is invariant under 𝑓 .
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 5

It is then known that for every pair of languages Γ, Δ, the language Δ is pp-definable over Γ if and only if every
polymorphism of Δ is also a polymorphism of Γ [25, 35]. Hence, the coarse-grained complexity of SAT(Γ) and CSP(Γ)
is indeed characterized by the polymorphisms of Γ.

However, for studying the fine-grained complexity the above characterization is insufficient, since the pp-definitions
introduce additional existentially quantified variables 𝑌 . To characterize the fine-grained complexity of SAT(Γ) and
CSP(Γ), let a quantifier-free pp-definition (qfpp-definition) of a relation 𝑅 over a language Γ be a pp-definition that does
not introduce any existentially quantified variables, i.e.,

𝑅(𝑋) ≡ 𝐹 (𝑋),

where 𝐹 (𝑋) is a formula over Γ ∪ {=}. The corresponding algebraic invariant is as follows.

Definition 1.3. Let 𝐷 be a domain. A 𝑘-ary partial operation over 𝐷 is a function 𝑋 → 𝐷 for some 𝑋 ⊆ 𝐷𝑘 . Let
𝑓 : 𝑋 → 𝐷 be a partial operation over 𝐷 and 𝑅 ⊆ 𝐷𝑟 a relation over 𝐷 . For 𝑡1, . . . , 𝑡𝑘 ∈ 𝐷𝑛 , let 𝑓 (𝑡1, . . . , 𝑡𝑘) be the result
of applying 𝑓 columnwise, i.e., 𝑓 (𝑡1, . . . , 𝑡𝑘) is undefined if there is at least one column 𝑖 ∈ [𝑛] so that 𝑓 (𝑡1 [𝑖], . . . , 𝑡𝑘 [𝑖])
is undefined, otherwise 𝑓 (𝑡1, . . . , 𝑡𝑘) is defined as in Def. 1.2. Then 𝑓 is a partial polymorphism of 𝑅 if and only if, for
any sequence of tuples 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅, either 𝑓 (𝑡1, . . . , 𝑡𝑘) is undefined or 𝑓 (𝑡1, . . . , 𝑡𝑘) ∈ 𝑅. Similarly, for a constraint
language Γ, 𝑓 is a partial polymorphism of Γ if and only if 𝑓 is a partial polymorphism of 𝑅 for every 𝑅 ∈ Γ.

For a partial operation 𝑓 , we use Inv(𝑓) to denote the set of all relations preserved by 𝑓 .

Generalizing the statement for polymorphism, a relation 𝑅 has a qfpp-definition over a language Γ if and only if
every partial polymorphism of 𝑅 is also a partial polymorphism of Γ [54]. As a consequence, the fine-grained complexity
of SAT(Γ) and CSP(Γ) is determined purely by the partial polymorphisms of Γ. In fact, for two languages Γ, Δ, if every
partial polymorphism of Γ is also a partial polymorphism of Δ, then 𝑐 (Δ) ≤ 𝑐 (Γ) [36]. In particular, if Γ is a Boolean
language that has no non-trivial partial polymorphism, then 𝑐 (Γ𝑘) ≤ 𝑐 (Γ) for every 𝑘 , thus 𝑐 (Γ) = 2 under SETH.

Finally, we make a brief note on the algebraic approach in determining coarse-grained complexity of CSPs. For
Boolean languages, studying pp-definitions generally suffices; e.g., Schaefer’s dichotomy [55] can be conveniently
stated in terms of the polymorphisms of Γ. However, for CSP(Γ) over larger domains, one generally uses a notion of
implementation more powerful than pp-definitions; and correspondingly, a more general algebraic invariant. Again,
see Bulatov [13] for a broader background. In particular, it is known that the coarse-grained complexity of CSP(Γ)
depends only on the identities satisfied by polymorphisms of Γ (so-called strong Maltsev conditions) rather than upon
the individual polymorphisms themselves. Such identities are equations satisfied by the polymorphism; and as we will
see, there is a curious similarity between the partial polymorphisms we are led to study in this work and the identities
characterizing some important classes of languages. For example, the following definitions are commonly used in the
literature. Note that all these definitions refer to total operations, since they concern polymorphisms rather than partial
polymorphisms.

• A Maltsev operation is any 3-ary operation 𝑓 : 𝐷3 → 𝐷 over a domain 𝐷 such that 𝑓 (𝑥, 𝑥,𝑦) = 𝑓 (𝑦, 𝑥, 𝑥) = 𝑦 for
any 𝑥,𝑦 ∈ 𝐷 . Languages Γ preserved by a Maltsev operation generalize relations definable via linear equations,
and the corresponding CSP can be solved in polynomial time for any such language [12]. For example, over a
finite field F, the operation 𝑓 (𝑥,𝑦, 𝑧) = 𝑥 − 𝑦 + 𝑧 is a Maltsev operation preserving solutions to systems of linear
equations over F. In particular, Boolean relations preserved by the operation 𝑓 (𝑥,𝑦, 𝑧) = 𝑥 ⊕ 𝑦 ⊕ 𝑧 are precisely
the solutions to systems of linear equations over GF(2).

Manuscript submitted to ACM

6 V. Lagerkvist and M. Wahlström

• A 𝑘-ary near-unanimity (NU) operation is any 𝑘-ary operation 𝑓 : 𝐷𝑘 → 𝐷 over a domain 𝐷 such that
𝑓 (𝑦, 𝑥, . . . , 𝑥) = 𝑓 (𝑥,𝑦, 𝑥, . . . , 𝑥) = . . . = 𝑓 (𝑥, . . . , 𝑥,𝑦) = 𝑥 for any 𝑥,𝑦 ∈ 𝐷 , i.e., if all but one positions of
𝑓 take the same value 𝑥 , then 𝑓 evaluates to 𝑥 . It is known that if Γ has an NU operation of some arity 𝑘 ≥ 3,
then CSP(Γ) can be solved efficiently using local consistency algorithms, e.g., propagation [5]. For the Boolean
domain, the (uniquely defined) 3-ary NU operation is called majority, and a relation is preserved by majority
precisely if it is the set of solutions to a 2-CNF formula.

• A𝑘-edge operation is any (𝑘+1)-ary operation 𝑓 over a domain𝐷 such that for any 𝑥,𝑦 ∈ 𝐷 , 𝑓 (𝑦,𝑦, 𝑥, 𝑥, 𝑥, . . . , 𝑥) =
𝑓 (𝑦, 𝑥,𝑦, 𝑥, 𝑥, . . . , 𝑥) = 𝑥 , and 𝑓 (𝑥, . . . , 𝑥,𝑦, 𝑥, . . . , 𝑥) = 𝑥 for any argument tuple over 𝑥,𝑦 containing precisely
one 𝑦 in position 𝑖 ≥ 4. This generalizes both previous cases, and precisely characterizes when a CSP can be
solved (in polynomial time) by the few subpowers algorithm [7, 31].

1.2 Our results

We use the universal-algebraic toolkit presented in the previous section to study the fine-grained complexity of NP-hard
problems SAT(Γ) and CSP(Γ). In particular, we study upper and lower bounds on 𝑐 (Γ) for Boolean languages Γ = Inv(𝑝)
defined by the existence of a single partial polymorphism 𝑓 ; by the discussion above, these are the richest languages Γ
which could possibly admit an improved upper bound under SETH, i.e., for which 𝑐 (Γ) < 2 is not immediately excluded
by SETH.

To lead the discussion, call a Boolean language Γ trivially SETH-hard if Γ qfpp-defines all 𝑘-clauses for every 𝑘 ∈ N,
i.e., for every 𝑘 ∈ N and every 𝑡 ∈ 2𝑘 , Γ qfpp-defines the relation 𝑅 = 2𝑘 \ {𝑡}. Similarly, call a partial operation 𝑓 a
trivial polymorphism if it is a polymorphism of every relation. It is easy to show the following:

• A partial 𝑟 -ary operation 𝑓 is a trivial polymorphism if and only if it is a subfunction of a projection, i.e., for
some 𝑖 ∈ [𝑟], 𝑓 (𝑥1, . . . , 𝑥𝑟) = 𝑥𝑖 for every tuple (𝑥1, . . . , 𝑥𝑟) ∈ 2𝑟 on which 𝑓 is defined.

• A language Γ is trivially SETH-hard if and only if every partial polymorphism of Γ is trivial.

Hence, the richest languages Γ which are not trivially SETH-hard correspond to languages Γ = Inv(𝑓) for a single,
non-trivial partial operation 𝑓 .

To make the question more manageable, we restrict our attention to the natural class of sign-symmetric languages.
As mentioned above, these are Boolean languages closed under variable negations and partial assignments; a more
formal definition is given later in the paper (Def. 3.9). This represents a natural restriction that leads to a significant
simplification of the algebraic framework, as we shall see. In addition, it is a natural restriction, which covers many SAT
problems previously considered, including 𝑘-SAT, Exact SAT, and relations that can be modelled using bounded-degree
polynomials [48] (see Theorem 3.1). Our investigations are presented in three parts: Algebraic and structural results,
upper bounds on 𝑐 (Γ) (i.e., algorithms), and lower bounds under SETH. We now present these in turn.

Finally, we want to stress that the only mathematically arbitrary choice we make is the restriction to sign-symmetric
languages (although we would of course argue that this choice is well justified). With this restriction in place, we simply
consider the weakest possible partial polymorphisms characterizing sign-symmetric languages, in a mathematically
precise sense, and investigate the languages Γ = Inv(𝑓) and the problem SAT(Γ) for such languages. Therefore, we find
it particularly interesting that several of these classes appear to coincide precisely with the language classes that can be
solved more efficiently using common algorithmic strategies such as meet in the middle, fast matrix multiplication for
CSPs, and local search for SAT.
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 7

Algebraic and structural results. We begin in Sections 3 and 4 by characterizing the algebraic invariants of sign-
symmetric constraint languages.We show that every sign-symmetric language is characterized by partial polymorphisms
𝑓 with the following properties:

(1) They are self-dual, i.e., for every tuple 𝑥 such that 𝑓 (𝑥) is defined, also its complement 𝑓 (𝑥) is defined and
𝑓 (𝑥) = 𝑓 (𝑥).

(2) They are idempotent, i.e., 𝑓 (𝑥, . . . , 𝑥) = 𝑥 is defined for every 𝑥 ∈ {0, 1}.

This result follows from previous work by the authors and Zanuttini [39, 43]. We call a partial operation which is
self-dual and idempotent a pSDI-operation.

Due to the symmetries required, each pSDI-operation can be defined in a compact way using what we refer to as
polymorphism patterns. These are partially defined equivalents of the identities of polymorphism used in coarse-grained
CSP complexity, strong Maltsev conditions, as discussed above. Thus, in the total case, strong Maltsev conditions
describe classes of operations which may result in tractability, and in the partial setting we obtain weaker, partial
analogues of these operations, but which might still be sufficient to construct an improved exponential algorithm.
For example, one of the cases studied in this article is the Boolean partial Maltsev operation, the Boolean operation 𝑓

such that 𝑓 (𝑦, 𝑥, 𝑥) = 𝑓 (𝑥, 𝑥,𝑦) = 𝑥 for any 𝑥,𝑦 ∈ {0, 1}, but 𝑓 (1, 0, 1) and 𝑓 (0, 1, 0) are undefined. We similarly define
the Boolean partial 𝑘-NU operation for 𝑘 ≥ 4 as the 𝑘-ary operation 𝑓 satisfying 𝑓 (𝑦, 𝑥, . . . , 𝑥) = 𝑓 (𝑥,𝑦, 𝑥, . . . , 𝑥) =
. . . = 𝑓 (𝑥, . . . , 𝑥,𝑦) = 𝑥 for any 𝑥,𝑦 ∈ {0, 1}, with 𝑓 (𝑥1, . . . , 𝑥𝑘) undefined otherwise. Each polymorphism pattern then
naturally gives rise to a partial operation 𝑓𝐷 over any domain 𝐷 . Furthermore, if we “map” an 𝑛-ary relation 𝑅 over
{0, 1} into a (𝑛/𝑑)-ary relation 𝑅′ over the domain 𝐷 = 2𝑑 in the natural way, and if 𝑅 is preserved by a pSDI-operation
𝑓 , then 𝑅′ is preserved by the corresponding partial operation 𝑓𝐷 . This connection is useful in some of the algorithmic
results (see Section 5).

In order to study the richest languages Γ = Inv(𝑓), we consider the weakest non-trivial pSDI-operations 𝑓 , specifically
those pSDI-operations 𝑓 such that any pSDI-operation 𝑓 ′ ≠ 𝑓 attained by reducing the domain of 𝑓 is trivial. We
characterize all pSDI-operations that are minimal in this sense, and show that they are arranged in a hierarchy with
clear levels according to their power. In particular we find the following:

• At the lowest level, there is a single pSDI-operation, the partial Maltsev operation.
• At every subsequent level, there is a unique strongest operation, the partial 𝑘-NU operation, as well as a unique
weakest operation we refer to as the 𝑘-universal operation.

Other common algebraic identities, such as those defining 𝑘-edge operations also correspond to pSDI-operations in this
hierarchy in a natural way.

We also investigate the structural consequences of these invariants, as well as the consequences of a language
not being preserved by an invariant or a class of invariants; see Section 4 for details and examples. In particular, the
language Γ𝑘 of 𝑘-clauses is preserved by the partial (𝑘 + 1)-NU operation, but not by any operation on an earlier level;
and the language corresponding to roots of polynomials of degree at most 𝑘 is preserved by the (𝑘 + 1)-universal partial
operation, but not by any stronger minimal operation. Furthermore, a sign-symmetric language Γ qfpp-implements all
𝑘-clauses if and only if it is not preserved by the 𝑘-universal partial operation.

Algorithms. Next, in Section 5 we investigate the possibility of non-trivial exponential-time algorithms for SAT(Γ)
based only on the partial polymorphisms of Γ. For a pSDI-operation 𝑓 , let Inv(𝑓)-SAT denote the problem SAT(Γ) with

Manuscript submitted to ACM

8 V. Lagerkvist and M. Wahlström

the only restriction being that every relation 𝑅 used in an instance is preserved by 𝑓 . For which minimal pSDI-operations
𝑓 can this problems solved faster than 2𝑛 , i.e., when is 𝑐 (Inv(𝑓)) < 2?

Although we do not manage to show this for every 𝑓 , we show partial results, mainly the following.

• When 𝑓 is the partial Maltsev operation, Inv(𝑓)-SAT can be solved in time 𝑂∗ (2𝑛/2) using a meet-in-the-middle
strategy.

• When 𝑓 is the 3-NU operation, then in the Boolean case, 𝑓 is a total operation and Inv(𝑓)-SAT is in P; however,
over larger domains 𝐷 , the corresponding problem of Inv(𝑓)-CSP is NP-hard but solvable in time 𝑂∗ (|𝐷 |𝜔𝑛/3)
using fast matrix multiplication, where 𝜔 < 2.373 is the matrix multiplication exponent.

• When 𝑓 is the partial 𝑘-NU operation, then we do not have a complete algorithm; but if the Erdős-Rado sunflower
conjecture [22] holds for sunflowers with 𝑘 sets, then 𝑐 (Inv(𝑓)) < 2 using a local search strategy.2

To the best of our knowledge, it is plausible that 𝑐 (Inv(𝑓)) < 2 for every non-trivial pSDI-operation 𝑓 , but to actually
show this involves some difficulty. For instance, consider the language whose relations can be modelled as the roots of
bounded-degree multivariate polynomials over the real numbers, when evaluated at points {0, 1}𝑛 only. This language is
preserved by the (𝑑 + 1)-universal partial operation, where 𝑑 is the degree bound, but no algorithm is known for solving
this with 𝑐 (Γ) < 2 (see Definition 3.19 for a formal definition of the 𝑑-universal operation). The known algorithm for
SAT with bounded-degree polynomials [48] (and its Boolean adaptation, cf. Theorem 3.1) relies upon the polynomial
being over a fixed finite field.

The algorithms come with some moderately tricky representation issues, where some of the algorithms above work
even if constraints are given only as oracles, while others need an explicit description. See Section 5 for details.

SETH-based lower bounds. In the final main contribution of the paper, we show in Section 6 that for every pSDI-
operation 𝑓 , there is a bound 1 < 𝑐 𝑓 < 2 such that 𝑐 (Inv(𝑓)) ≥ 𝑐 𝑓 unless SETH fails. These are the first non-trivial
lower bounds on 𝑐 (Γ) for any language Γ, except cases where 𝑐 (Γ) = 2.

We show this result by appealing to the algebraic condition; we show that for any non-total pSDI-operation 𝑓

there exists a universal “padding strategy”, whereby any constraint 𝑅(𝑋) on |𝑋 | = 𝑛 variables can be padded to a
constraint 𝑅′(𝑋,𝑌) such that |𝑌 | = 𝑂 (𝑛), 𝑅(𝑋) ≡ ∃𝑌𝑅′(𝑋,𝑌), and 𝑅′ is preserved by 𝑓 . Furthermore, the padding can
be performed in a “reusable” way, so that distinct relations 𝑅1 (𝑋1), 𝑅2 (𝑋2) can reuse shared padding variables. See
Sections 2.3 and 6 for details.

Our results give the following lower bounds on 𝑐 (Inv(𝑓)) assuming SETH:

• For the partial Maltsev operation, 𝑐 (Inv(𝑓)) > 1.1547.
• For the partial 3-edge and 3-universal operations, 𝑐 (Inv(𝑓)) > 1.2599.
• For the partial 𝑘-NU operation nu𝑘 at 𝑘 ≥ 4, we show 𝑐 (Inv(nu𝑘)) ≥ 21− log2 (𝑘+1)

𝑘−1 . In particular, this is the
strongest minimal pSDI-operation that is a partial polymorphism of (𝑘 − 1)-SAT.

The best convergence to 𝑐 (Γ) = 2 we are able to show for the partial 𝑘-NU operation, as a function of 𝑘 , is at the
rate 2 − 𝑂 (log𝑘/𝑘), whereas the convergence rate of the best known 𝑘-SAT algorithm is as 2 − 𝑂 (1/𝑘). As noted
below, there is a conjecture, Super-Strong ETH (SSETH), which states that the slowest achievable convergence rate is
𝑐𝑘 = 2 − Θ(1/𝑘), but this has not been shown, even subject to other established conjectures (or even, strictly speaking,
for the PPSZ algorithm in its most general form); see related work, below. If SSETH is to be connected to a more

2The best known bounds for the sunflower conjecture were recently drastically improved by Alweiss et al. [3]; unfortunately, barring anything but a
complete resolution, our algorithm results remain conjectural.

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 9

established conjecture such as SETH, then it should be an easier first step to give evidence that 𝑐 (Inv(nu𝑘)) ≥ 21−𝑂 (1/𝑘) ,
since Inv(nu𝑘+1)-SAT is a vastly more expressive problem than 𝑘-SAT that still shares some of the structure of 𝑘-SAT.

1.3 Related work

SETH and related conjectures. ETH and SETH have become standard tools for conjectural lower bounds via reductions.
In the current context of SAT, in addition to the foundational works of Impagliazzo et al. [32, 33] it is worth mentioning
the lower bound for Not-all-eqal SAT (NAE-SAT) and Hitting Set by Cygan et al. [19] and the lower bound for
Π23-SAT by Calabro et al. [15]; an algorithm with a running time of 𝑂 (𝑐𝑛) for one of these problems for some 𝑐 < 2
would imply a faster algorithm for SAT, falsifying SETH. Many more such examples are known for parameters more
permissive than 𝑛, e.g., for graph problems analysed for structural parameters such as treewidth [47].

Super-Strong ETH (SSETH) is the hypothesis that the running time of 𝑘-SAT depends on 𝑘 as 𝑐𝑘 = 2−Θ(1/𝑘), or more
specifically, that running times of 𝑐𝑘 = 2 − 𝑓 (𝑘)/𝑘 are not possible for any unboundedly growing function 𝑓 (𝑘) [60].
It seems fair to say that investigations of SSETH are still very early. It has long been known that the best known
algorithms for 𝑘-SAT, including PPSZ, have upper bounds on their running time of the type 𝑂 (2(1−Θ(1/𝑘))𝑛); Scheder
and Talebanfard [57] recently provided a lower bound, showed that this behaviour is tight for (a mildly restricted version
of) PPSZ. On the other hand, Vyas and Williams showed that random 𝑘-SAT formulas, which had been conjectured
to be a very hard class, can be solved in time 𝑂 (21−Ω (log𝑘/𝑘)𝑛) [60]. This was improved by Lincoln and Yedidia to
𝑂 (21−Ω (log2 𝑘/𝑘)𝑛) [46].

Fine-grained complexity of SAT and CSP. NP-hard SAT problems and CSPs with improved upper bounds (i.e., 𝑂 (𝑐𝑛)
for 𝑐 < 2 for SAT, respectively 𝑐 < |𝐷 | for CSP) include 𝑘-SAT and simple sparse languages such as Exact SAT [61].
The most general case we are aware of is when relations are given implicitly as roots of bounded-degree multivariate
polynomials over some finite field [48]. To be more precise, let F be a fixed finite field and 𝑑 ∈ Z a degree bound,
and consider the problem of finding a common root to a set of multivariate polynomials over F of degree at most 𝑑 .
Lokshtanov et al. [48] show that for any F and 𝑑 , this problem can be solved in time 𝑂 (𝑐𝑛

F,𝑑
) for some 𝑐F,𝑑 < |F|, where

𝑛 is the number of variables. Note that in this case, the basic search space is simply F𝑛 ; hence this is relevant to SAT
only when F = 𝐺𝐹 (2). However, it is not hard to see that their algorithm can be adapted to the problem of finding a
common root using only values 0 and 1 from F (i.e., a satisfying assignment 𝜙 : 𝑉 → {0, 1}) in time 𝑂 (𝑐𝑛

F,𝑑
) for some

𝑐F,𝑑 < 2; see Theorem 3.1 in Section 3.
In another direction, Brakensiek and Guruswami [9] show improved upper bounds for any optimization problem

that can be given a particular form of LP relaxation, which implies improved algorithms for some CSPs. We note that
despite similarities in definitions, their result does not apply to 𝑘-NU-SAT. Their result requires the existence of an
infinite family of partial threshold functions as partial polymorphisms, where the operations of the family must have
support of lower-bounded measure. While nu𝑘 is a partial threshold function, nu𝑘 alone does not imply the existence
of such a family.

Non-Boolean examples also include the matrix multiplication-based algorithm for 2-CSP [62], the 𝑂∗ (2𝑛)-time
algorithm for 𝑘-Colouring [8], and Subset Sum [30]. The latter has recently been shown to have a polynomial-space
algorithm with running time better than 𝑂∗ (2𝑛) by Bansal et al. [4].

Regarding lower bounds, it is known that 𝑐 (Γ) > 1 assuming ETH for every NP-hard problem, both for Boolean [36]
and non-Boolean languages [37]; i.e., neither problem type allows subexponential-time algorithms under ETH. Further-
more, curiously, there is an easiest NP-hard problem SAT(Γ0) such that for every NP-hard problem SAT(Γ) we have

Manuscript submitted to ACM

10 V. Lagerkvist and M. Wahlström

𝑐 (Γ) ≥ 𝑐 (Γ0) [36]. However, naturally, no concrete lower bound is known on 𝑐 (Γ0) under SETH or any other plausible
conjecture.

For other examples of “running time dichotomies” for SAT-like problems, see Bringmann et al. [10] and Künnemann
and Marx [38].

Algebraic aspects of SAT and CSP complexity. Partial polymorphisms were first introduced to the CSP community by
Schnoor & Schnoor [58] even though these notions were well-known in the algebraic community much longer [25, 54].
However, the principal motivationwas to obtain dichotomy theorems for CSP-like problems incompatible with existential
quantification, and the explicit connection to fine-grained time complexity of CSP was not realised until later by Jonsson
et al. [36]. However, continued advancements in understanding this inclusion structure revealed that even severely
restricted classes of constraint languages have a very complicated structure [18, 40]. In particular, it is known that any
finite language Γ can be characterized only using an infinite number of partial polymorphisms [41]; in fact, for any
finite set of purely partial polymorphisms 𝐹 , the language Γ = Inv(𝐹) contains 22Θ(𝑛) relations of arity 𝑛, as opposed to
finite languages Γ which can qfpp-define only 2𝑛𝑂 (1) relations of each arity.

Another related topic is the investigation of polynomial (or linear) kernels for SAT(Γ) parameterized by 𝑛, also known
as sparsification. The best known results are produced by phrasing constraints as roots of bounded-degree polynomials
evaluated at {0, 1}𝑛 [16], with an extension in terms of Maltsev languages which may or may not be more powerful [42].
Although there is no formal technical connection, variations on partial Maltsev polymorphisms occur as a possible
success criterion for the latter. However, unlike the case of improved running times, it is known that no finite set of
partial polymorphisms can suffice for polynomial sparsification [42]. Thus, in our earlier work [41, 42] we studied
properties of invariant sets Inv(𝐹), and properties of certain specific partial operations, but were unable to explicitly
make the connection between these types of operations and improved running times.

Structure of the article. We begin the article in Section 2 with a self-contained example which illustrates the main
ideas of our approach. Section 3 contains the necessary technical background, Section 4 characterizes sign-symmetric
languages via pSDI-operations and describes their inclusion structure, and Section 5 and Section 6 tackle upper and
lower bounds for sign-symmetric SAT and CSP problems. We conclude the article with a brief discussion in Section 7.

2 CASE STUDY: PARTIAL MALTSEV SATISFIABILITY

In this section, we pick one of the simplest invariants and provide self-contained upper and lower bounds on the running
time of SAT(Γ) for the language Γ consisting of all relations preserved by this invariant. For the broader context and
general definitions, see Section 3 and onward (as well as the relevant discussion in Section 1).

We focus on a problem we call partial Maltsev satisfiability, or Maltsev-SAT for short. This corresponds to the
problem SAT(Γ) for the infinite language Γ consisting of all relations preserved by the partial operation 𝜙 , referred to
as the partial Maltsev operation. The resulting language generalizes constraints definable via linear equations, such as
Exact SAT and Subset Sum. (This language was also discussed in Section 1.2, although we provide a bit more context
for the definitions below.)

For technical reasons, we assume that the constraints in the language are given via extension oracles. Concretely,
let 𝑅(𝑋) be a constraint on a set of variables 𝑋 . A partial assignment to 𝑋 is an assignment 𝑓 : 𝑋𝑓 → {0, 1} for some
𝑋𝑓 ⊆ 𝑋 . In the extension oracle model, we assume that 𝑅(𝑋) is provided in the form of an oracle that, given a partial
assignment 𝑓 to 𝑋 , will reveal whether there exists an assignment 𝑓 ′ : 𝑋 → {0, 1} such that 𝑓 ′ satisfies 𝑅(𝑋) and
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 11

𝑓 (𝑥) = 𝑓 ′(𝑥) for every 𝑥 ∈ 𝑋𝑓 . For now we assume that the oracle runs in polynomial time. A more general version
will be given in Section 3.

Under this oracle model, we show the following:

(1) Maltsev-SAT on 𝑛 variables can be solved in 𝑂∗ (2𝑛/2) time, via a meet-in-the-middle strategy, and
(2) there is a constant 𝑐 (𝜙) ∼ 1.1547 > 1 such thatMaltsev-SAT cannot be solved in𝑂∗ (𝑐𝑛) for any 𝑐 < 𝑐 (𝜙) unless

SETH is false.

But first, let us give a few more examples of relations preserved by 𝜙 .

2.1 Relations in Inv(𝜙)

Recall that a Maltsev operation on a domain 𝐷 is any 3-ary total operation 𝑓 : 𝐷3 → 𝐷 satisfying the identities

𝑓 (𝑥, 𝑥,𝑦) = 𝑓 (𝑦, 𝑥, 𝑥) = 𝑦

for any 𝑥,𝑦 ∈ 𝐷 , with remaining evaluations 𝑓 (𝑥,𝑦, 𝑧), 𝑥,𝑦, 𝑧 ∈ 𝐷 taking some defined, but unspecified values in 𝐷 .
The partial Maltsev operation 𝜙 over the Boolean domain 𝐷 = {0, 1} is then, as discussed, the partial operation 𝜙 which
is defined as above for inputs 𝑥,𝑦 ∈ {0, 1} meeting one of the above two patterns, but with 𝑓 (1, 0, 1) and 𝑓 (0, 1, 0)
undefined. So what languages are contained in the class Γ = Inv(𝜙) discussed in this section? A complete satisfactory
description of all such relations seems unlikely, for reasons we shall see soon, but we can give some illustrative examples.

As discussed, the corresponding total operation over 𝐷 = {0, 1} is the operation 𝑓 (𝑥,𝑦, 𝑧) = 𝑥 ⊕ 𝑦 ⊕ 𝑧, and a relation
𝑅 ⊆ {0, 1}𝑛 is preserved by 𝑓 if and only if 𝑅 is the set of solutions to a set of linear equations over GF(2). In other
words, this language has a basis of parity relations 𝑅 ⊆ {0, 1}𝑛 such that

𝑅(𝑋) ≡
(∑︁

𝑋 = 𝑏 (mod 2)
)

for 𝑏 ∈ {0, 1}. Indeed, it is easily verified that if three tuples 𝑡1, 𝑡2, 𝑡3 ∈ {0, 1}𝑛 satisfies such a constraint 𝑅(𝑋), then so
does the tuple 𝑡 = 𝑡1 ⊕ 𝑡2 ⊕ 𝑡3 = 𝑓 (𝑡1, 𝑡2, 𝑡3). Since being preserved by the partial operation 𝜙 is less strict than being
preserved by 𝑓 , clearly 𝑅 ∈ Inv(𝜙) for every such relation. But that is a very small fraction of the language Inv(𝜙).

For a broader class of examples, consider a (not necessarily finite) field F (or more generally a ring), and consider a
linear equation

𝑛∑︁
𝑖=1

𝛼𝑖𝑥𝑖 = 𝛽

where 𝛼𝑖 , 𝛽 ∈ F are constants and the 𝑥𝑖 are variables. Let 𝑅0 ⊆ F𝑛 be the set of solutions to this equation. Again, it is
easy to verify that 𝑓 (𝑥,𝑦, 𝑧) = 𝑥 − 𝑦 + 𝑧 is a polymorphism of 𝑅0, since

𝑛∑︁
𝑖=1

𝛼𝑖 (𝑥𝑖 − 𝑦𝑖 + 𝑧𝑖) = 𝛽 − 𝛽 + 𝛽 = 𝛽

for any 𝑥,𝑦, 𝑧 ∈ F𝑛 satisfying the equation. It is also easy to see that 𝑓 (𝑥,𝑦, 𝑧) is a Maltsev operation. Now, consider
restricting this equation to only values 𝑥 ∈ {0, 1}𝑛 , i.e., let a relation 𝑅 be defined as 𝑅 = 𝑅0∩{0, 1}𝑛 . Then 𝑅 is preserved
by 𝜙 : for any 𝑥,𝑦, 𝑧 ∈ 𝑅 it holds that 𝑥 − 𝑦 + 𝑧 ∈ 𝑅0, and if 𝑥𝑖 − 𝑦𝑖 + 𝑧𝑖 ∈ {0, 1} for every 𝑖 ∈ [𝑛], then also 𝑥 − 𝑦 + 𝑧 ∈ 𝑅.
In terms used in related work [42], 𝑅 is a Boolean relation with a Maltsev extension 𝑅0 over F. Every such relation 𝑅 also
belongs to Inv(𝜙).

This formulation provides some non-trivial NP-hard examples of instances of Inv(𝜙)-SAT. Exact SAT, as has been
discussed, is the SAT problem where the question is whether an input CNF has a satisfying assignment where every

Manuscript submitted to ACM

12 V. Lagerkvist and M. Wahlström

clause contains exactly one satisfied literal. In other words, the individual constraints of an Exact SAT instance can be
written as

𝑟∑︁
𝑗=1

𝑥𝑖 𝑗 = 1

over Z, where 𝑥𝑖 𝑗 ∈ {𝑥𝑖 𝑗 , 1 − 𝑥𝑖 𝑗 } for every 𝑗 . Hence the constraints have Maltsev extensions over Z with coefficients
𝛼𝑖 ∈ {1,−1} and with right-hand side 𝛽 ∈ Z.

For a more immediate example, if F = Z and if a constraint 𝑅(𝑋) is provided only as the linear equation defining 𝑅0,
then it will in general be NP-hard even to test non-emptiness of a single constraint 𝑅(𝑋) (cf. Subset Sum). Hence, for
such a language we can in general not construct an efficient extension oracle; however, we show in Theorem 6.3 that
Inv(𝜙)-SAT is in general still at least as hard as Subset Sum in the extension oracle model. (See Section 3.2 for more on
constraint representation.)

Finally, we claim that even this represents a small fraction of Inv(𝜙), although it perhaps represents the extent of the
useful portion of the language. Indeed, unlike most languages considered with explicit representations, the language
Inv(𝜙) is dense, in that there are 22Θ(𝑛) relations 𝑅 ∈ Inv(𝜙) of arity 𝑛 (cf. Section 4.1). Hence, beyond the manageable
examples above, Inv(𝜙) contains a large number of relations 𝑅 ⊆ {0, 1}𝑛 that appear to lack any useful structure, except
that they are sufficiently sparse and irregular that any attempt to apply 𝜙 to 𝑅 fails. Concretely, for any 𝑥,𝑦, 𝑧 ∈ 𝑅 there
is an index 𝑖 ∈ [𝑛] such that 𝜙 (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is undefined. In this case, we say that 𝜙 applies vacuously to 𝑅. The lower
bound presented in Section 2.3 exploits this phenomenon.

2.2 Upper bound

We now show the upper bound, i.e., that the language Inv(𝜙)-SAT can be solved in time 𝑂∗ (2𝑛/2) via a meet-in-the-
middle strategy. In fact, since exactly the same proof also works for relations over larger domains 𝐷 , we show the more
general result. That is, let 𝐷 be a finite domain. Define the partial operation 𝜙𝐷 by letting 𝜙𝐷 (𝑥, 𝑥,𝑦) = 𝜙𝐷 (𝑦, 𝑥, 𝑥) = 𝑦

for any 𝑥,𝑦 ∈ 𝐷 , with 𝜙𝐷 (𝑥,𝑦, 𝑧) undefined in all other cases. Note that for 𝐷 = {0, 1} this definition coincides with the
operation 𝜙 . We show that for any instance of Inv(𝜙𝐷)-CSP with constraints over the domain 𝐷 , on 𝑛 variables, we
can test satisfiability in time 𝑂∗ (|𝐷 |𝑛/2). The case 𝐷 = {0, 1} will then provide the promised improved algorithm for
Inv(𝜙)-SAT.

As usual with exponential-time meet-in-the-middle strategies, we show an algorithm by splitting the variable set in
two parts, enumerate the behaviour in each part exhaustively and locally, then using some global structure to connect
the two halves to look for a satisfying assignment. We begin by setting the scene.

Let 𝑅 be an 𝑛-ary relation on domain 𝐷 , 𝑋 a set of 𝑛 variables, and 𝑋 = 𝐴 ∪ 𝐵 a partition. We define a bipartite graph
𝐻 = 𝐻𝑅 (𝐴, 𝐵) as follows. The vertex sets of 𝐻 are𝑈 = 𝐷𝐴 and 𝑉 = 𝐷𝐵 , i.e., the vertices in𝑈 are in bijection with the
set of assignments 𝛼 : 𝐴 → 𝐷 and 𝑉 is in bijection with assignments 𝛽 : 𝐵 → 𝐷 . Note that the edges 𝑢𝑣 of 𝐻 where
𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 are then in bijection with total assignments 𝑋 → 𝐷 to the variable set 𝑋 . For assignments 𝛼 to 𝐴 and
𝛽 to 𝐵, we let 𝛼 ∪ 𝛽 denote the combined total assignment 𝑋 → 𝐷 . Now let 𝐻𝑅 (𝐴, 𝐵) contain an edge 𝑢𝑣 for 𝑢 ∈ 𝐷𝐴

and 𝑣 ∈ 𝐷𝐵 if and only if the corresponding combined assignment satisfies 𝑅(𝑋).
We note that for relations 𝑅 preserved by 𝜙𝐷 , the graph 𝐻𝑅 (𝐴, 𝐵) has a particularly nice structure, usually referred

to as being rectangular. By tools presented in Section 5 this will follow immediately from general results, but in order to
save on the amount of definitions needed for now, we show the property directly.

Lemma 2.1. If 𝑅 is a relation over 𝐷 preserved by 𝜙𝐷 , then 𝐻𝑅 (𝐴, 𝐵) is a vertex-disjoint union of bicliques.

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 13

Proof. We first note that 𝐻 = 𝐻𝑅 (𝐴, 𝐵) is 𝑃4-free, i.e., does not have the path on 4 vertices as an induced subgraph.
Assume that there is a path𝑢1−𝑣1−𝑢2−𝑣2 in𝐻 , and let the vertices𝑢𝑖 (respectively 𝑣𝑖) correspond to partial assignments
𝛼𝑖 (respectively 𝛽𝑖), for 𝑖 = 1, 2. Then the application

𝜙 (𝛼1 ∪ 𝛽1, 𝛼2 ∪ 𝛽1, 𝛼2 ∪ 𝛽2) = 𝛼1 ∪ 𝛽2

is defined. Indeed, for every variable 𝑎 ∈ 𝐴 the application of 𝜙 follows the pattern 𝜙 (𝑎1, 𝑎2, 𝑎2) = 𝑎1, and for every
𝑏 ∈ 𝐵 the application follows the pattern 𝜙 (𝑏1, 𝑏1, 𝑏2) = 𝑏2. Hence the assignment 𝛼1 ∪ 𝛽2 also satisfies 𝑅 and the edge
𝑢1𝑣2 exists in 𝐻 .

Hence 𝐻 is a bipartite, 𝑃4-free graph, and it is well-known, and not hard to see, that such graphs have the structure
as described (for a modern reference see e.g. Chapter 9.3 in Fomin et al. [23]). Indeed, consider a connected component
𝐶 of 𝐻 , and let 𝑢𝑣 be a non-edge of 𝐶 with 𝑢 ∈ 𝑈 ∩𝑉 (𝐶) and 𝑣 ∈ 𝑉 ∩𝑉 (𝐶). Let 𝑃 be a shortest path from 𝑢 to 𝑣 in 𝐶 .
Since 𝐻 is bipartite, 𝑃 has length at least 3, hence 𝑃 contains an induced 𝑃4. Thus, the non-edge 𝑢𝑣 cannot exist, and
every connected component of 𝐻 is a biclique. □

By this the structure 𝐻 = 𝐻𝑅 (𝐴, 𝐵) can be described much more succinctly with a labelling scheme. Let 𝐶1, . . . ,𝐶ℓ

be the connected components of 𝐻𝑅 (𝐴, 𝐵), including components on a single vertex, and for every vertex𝑤 ∈ 𝑉 (𝐻)
let the label of𝑤 be the index 𝑖 ∈ [ℓ] of the component containing𝑤 . Then there is an assignment satisfying 𝑅(𝑋) if
and only if there are vertices 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 such that 𝑢 and 𝑣 take the same label. Let a labelling scheme for 𝑅(𝑋) be
a procedure that given a vertex𝑤 ∈ 𝑉 (𝐻) returns a label ℓ (𝑤) such that for any two vertices 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , we have
ℓ (𝑢) = ℓ (𝑣) if and only if 𝑢 and 𝑣 are in the same connected component in 𝐻 . Such a labelling scheme can be used to
identify the satisfying assignments of the constraint 𝑅(𝑋). For example, if 𝑅(𝑋) ≡ (∑𝑛

𝑖=1 𝑝𝑖𝑥𝑖 = 𝑞) is a linear constraint,
with some coefficients 𝑝𝑖 , 𝑞, then a natural label for a partition [𝑛] = 𝐴 ∪ 𝐵 would be

∑
𝑖∈𝐴 𝑝𝑖𝑥𝑖 for the set 𝐷𝐴 and

𝑞 − ∑
𝑖∈𝐵 𝑝𝑖𝑥𝑖 for the set 𝐷𝐵 .

More generally, let 𝐹 = 𝑅1 (𝑋1) ∧ . . .∧𝑅𝑚 (𝑋𝑚) be an instance of Inv(𝜙)-CSP, with each constraint 𝑅𝑖 (𝑋𝑖) provided as
an extension oracle. Let𝑋 = 𝑋1 ∪ . . .∪𝑋𝑚 be the variable set of 𝐹 . We extend this labelling principle to find assignments
satisfying 𝐹 . First, for simplicity extend every constraint to have the same scope 𝑋 , i.e., for every 𝑖 ∈ [𝑚] define

𝑅′
𝑖 (𝑋) ≡ 𝑅𝑖 (𝑋𝑖),

i.e., 𝑅′
𝑖
= 𝑅𝑖 × 𝐷𝑋\𝑋𝑖 (up to a reordering of the arguments). It is easily verified that 𝑅′

𝑖
is also preserved by 𝜙 . Indeed,

assume that for three tuples 𝑡1, 𝑡2, 𝑡3 ∈ 𝑅′
𝑖
we have 𝜙 (𝑡1, 𝑡2, 𝑡3) = 𝑡 defined and 𝑡 ∉ 𝑅′

𝑖
. Let 𝑡 ′

𝑗
, 𝑗 = 1, 2, 3 be the projection

of 𝑡 𝑗 onto positions 𝑋𝑖 . Then 𝜙 (𝑡 ′1, 𝑡
′
2, 𝑡

′
3) = 𝑡 ′ is also defined, and since 𝑡 ∉ 𝑅′

𝑖
it must hold by construction of 𝑅′

𝑖
that

𝑡 ′ ∉ 𝑅𝑖 , contradicting that 𝜙 preserves 𝑅𝑖 . Hence every constraint 𝑅′
𝑖
(𝑋) admits a labelling scheme as above.

Now, to find two partial assignments 𝛼 : 𝐴 → 𝐷 and 𝛽 : 𝐵 → 𝐷 such that the total assignment defined by 𝛼 ∪ 𝛽

satisfies 𝐹 it suffices to find 𝛼 and 𝛽 such that 𝛼 and 𝛽 get the same labels in the constraint 𝑅′
𝑖
(𝑋) for every 𝑖 ∈ [𝑚].

Furthermore, assume that we have an efficient labelling scheme, i.e., one which computes a label in polynomial time
using access to an extension oracle. Then an algorithm for Inv(𝜙𝐷)-CSP in time 𝑂∗ (|𝐷 |𝑛/2) follows from standard
methods. Indeed, we simply let 𝑋 = 𝐴 ∪ 𝐵 be a partition with |𝐴|, |𝐵 | ≤ 𝑛/2 + 1, exhaustively enumerate the two sets
𝑈 = 𝐷𝐴 and 𝑉 = 𝐷𝐵 , and for every 𝑤 ∈ 𝑈 ∪𝑉 we let the label of 𝑤 be the tuple ℓ (𝑤) = (ℓ1 (𝑤), . . . , ℓ𝑚 (𝑤)), where
ℓ𝑖 (𝑤) for 𝑖 ∈ [𝑚] is the label given to𝑤 by the labelling scheme for the constraint 𝑅′

𝑖
(𝑋). Using standard data structures,

e.g., a red-black tree [17], we then simply check whether {ℓ (𝑢) | 𝑢 ∈ 𝐷𝐴} ∩ {ℓ (𝑣) | 𝑣 ∈ 𝐷𝐵} ≠ ∅, which can be done in
time 𝑂∗ (|𝑈 | + |𝑉 |) where the star hides factors polynomial in 𝑛 +𝑚 + |𝐷 | only.

Manuscript submitted to ACM

14 V. Lagerkvist and M. Wahlström

We close this section by noting that such an efficient labelling scheme is possible, even in the extension oracle model.

Lemma 2.2. Let 𝑅(𝑋) be a constraint over a domain 𝐷 , preserved by 𝜙𝐷 , and let 𝑋 = 𝐴 ∪ 𝐵 be a partition. If 𝑅(𝑋) is
provided as an extension oracle, then there exists an efficient labelling scheme.

Proof. Fix an ordering 𝑑1 < . . . < 𝑑 |𝐷 | for 𝐷 = {𝑑1, . . . , 𝑑 |𝐷 |} arbitrarily, and extend it to tuples over 𝐷 via the
lex-min ordering; i.e., for two tuples 𝑡, 𝑡 ′ ∈ 𝐷𝑟 let 𝑡 < 𝑡 ′ if for some 𝑖 ∈ [𝑟] we have 𝑡 [𝑖] < 𝑡 ′[𝑖] and 𝑡 [𝑗] = 𝑡 ′[𝑗] for
1 ≤ 𝑗 < 𝑖 . Observe that for any partial assignment 𝑓 : 𝑋 ′ → 𝐷 for some 𝑋 ′ ⊆ 𝑋 , we can use the extension oracle to test
whether there exists a total assignment extending 𝑓 and satisfying 𝑅(𝑋), and among all such assignment 𝑓 ′ : 𝑋 → 𝐷

we can find one that is lex-min in this ordering. Indeed, this is possible by simply iterating over the free arguments of 𝑓 ,
and iterating through the possible domain values 𝑑1, . . . , 𝑑 |𝐷 | for each one. This takes no more than 𝑂 (𝑛 |𝐷 |) queries to
the extension oracle.

Now, we describe the labelling schemes for 𝐴 and for 𝐵. Fix two distinct labels L and R to be used for rejected partial
assignments. For an assignment 𝛼 : 𝐴 → 𝐷 , if 𝛼 is rejected by the extension oracle let ℓ (𝛼) = L, otherwise compute ℓ (𝛼)
in two steps. First let 𝛽 : 𝐵 → 𝐷 be such that 𝛼 ∪ 𝛽 is the lex-min assignment extending 𝛼 and satisfying 𝑅(𝑋). Next, let
𝛼 ′ : 𝐴 → 𝐷 be such that 𝛼 ′ ∪ 𝛽 is the lex-min assignment extending 𝛽 and satisfying 𝑅(𝑋). We let the label of 𝛼 be 𝛼 ′.

For 𝛽 : 𝐵 → 𝐷 , let ℓ (𝛽) = R if the extension oracle rejects 𝛽 , otherwise let 𝛼 : 𝐴 → 𝐷 be such that 𝛼 ∪ 𝛽 is the lex-min
assignment extending 𝛽 satisfying 𝑅(𝑋), and let ℓ (𝛽) = 𝛼 .

Since the lex-min ordering is a total ordering on 𝑈 and 𝑉 in 𝐻𝑅 (𝐴, 𝐵), and since every connected component of
𝐻𝑅 (𝐴, 𝐵) is a biclique, it should be clear that this is a valid labelling scheme for 𝑅(𝑋). □

By the above arguments, and specialising to 𝐷 = {0, 1}, we get the following.

Theorem 2.3. maltsev-SAT is solvable in 𝑂∗ (2
𝑛
2) time.

Our of all the arguments above, the main ’active ingredient’ is the observation that 𝐻𝑅 (𝐴, 𝐵) is rectangular if
𝑅 ∈ Inv(𝜙). Indeed, all further arguments build on this property in standard ways. Hence the ‘rectangularity property’
of the invariant 𝜙 maps directly to an improved algorithm for Inv(𝜙)-SAT. The next challenge is to determine whether
similar useful structural properties are fixed by all other pSDI-invariants, in ways that allow for improved algorithms.
As we shall see in Section 5, we are unable to determine this in the fully general case, but for some further noteworthy
invariants it appears to hold.

2.3 Lower bound (overview)

Next, we observe lower bounds on 𝑐 (Inv(𝜙)) under SETH. For this section, we leave the general case of finite domains
𝐷 for the last section and focus again on the case 𝐷 = {0, 1}.

In passing, we note that the algorithm of Theorem 2.3 is very similar to the fastest known algorithms for Subset Sum.
Hence, since solving Subset Sum on 𝑛 integers in time𝑂∗ (𝑐𝑛) for any 𝑐 <

√
2 is a long open question, it appears unlikely

that a faster algorithm can be produced for Inv(𝜙)-SAT using purely abstract properties that also hold for Subset Sum.
In Section 6.2, we show that this connection can be made concrete: if Inv(𝜙)-SAT can be solved in time𝑂∗ (𝑐𝑛) for some
𝑐 <

√
2 in the extension oracle model then Subset Sum can be solved in time 𝑂∗ (𝑐𝑛+𝑜 (𝑛)) (Theorem 6.3).

However, since this task is not known to be SETH-hard, we need a different lower bound strategy for Inv(𝜙)-SAT.
This strategy will replicate into a lower bound 𝑐 (Γ) ≥ 𝑐0 > 1 for every language Γ = Inv(𝑓) defined by a non-total
pSDI-operation 𝑓 , with appropriate adjustments to the concrete constructions. We show this in Section 6.
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 15

The idea is the following. Let 𝑅 ⊆ 2𝑛 be a Boolean relation. Recall that 𝜙 is said to apply vacuously to 𝑅 if, for every
𝑡1, 𝑡2, 𝑡3 ∈ 𝑅 such that 𝜙 (𝑡1, 𝑡2, 𝑡3) is defined, we have 𝜙 (𝑡1, 𝑡2, 𝑡3) ∈ {𝑡1, 𝑡2, 𝑡3}. In particular, this implies that for almost
every triple (𝑡1, 𝑡2, 𝑡3) ∈ 𝑅3 there is a coordinate 𝑖 such that 𝜙 (𝑡1 [𝑖], 𝑡2 [𝑖], 𝑡3 [𝑖]) is undefined.

Concretely, note that for every coordinate 𝑖 ∈ [𝑛], if 𝜙 (𝑡1 [𝑖], 𝑡2 [𝑖], 𝑡3 [𝑖]) is defined, then

𝜙 (𝑡1 [𝑖], 𝑡2 [𝑖], 𝑡3 [𝑖]) ∈ {𝑡1 [𝑖], 𝑡3 [𝑖]}.

If we have 𝑡2 [𝑖] = 𝑡3 [𝑖] for every 𝑖 ∈ [𝑛], then indeed 𝜙 (𝑡1, 𝑡2, 𝑡3) = 𝑡1, and conversely if 𝑡1 [𝑖] = 𝑡2 [𝑖] for every 𝑖 ∈ [𝑛]
then 𝜙 (𝑡1, 𝑡2, 𝑡3) = 𝑡3. However, if there are two coordinates 𝑖, 𝑗 such that 𝑡1 [𝑖] = 𝑡2 [𝑖] ≠ 𝑡3 [𝑖] and 𝑡1 [𝑗] ≠ 𝑡2 [𝑗] = 𝑡3 [𝑗],
then 𝜙 (𝑡1 [𝑖], 𝑡2 [𝑖], 𝑡3 [𝑖]) ≠ 𝑡1 [𝑖] = 𝑡2 [𝑖] and 𝜙 (𝑡1 [𝑗], 𝑡2 [𝑗], 𝑡3 [𝑗]) ≠ 𝑡3 [𝑗], hence 𝜙 (𝑡1, 𝑡2, 𝑡3) could not be one of the
inputs 𝑡1, 𝑡2, 𝑡3. Hence, for every such triple there must exist a further coordinate 𝑘 with 𝑡1 [𝑘] ≠ 𝑡2 [𝑘] ≠ 𝑡3 [𝑘], so that
𝜙 (𝑡1 [𝑘], 𝑡2 [𝑘], 𝑡3 [𝑘]) is undefined.

We will show a reduction from CNF-SAT on variables 𝑋 to Inv(𝜙)-SAT on 𝑂 (|𝑋 |) variables, such that 𝜙 applies
vacuously to every relation of the output instance. This will be achieved by adding a set of padding variables 𝑌 to the
instance, such that 𝑌 = 𝑓 (𝑋) for an appropriate function 𝑓 , and for every triple of tuples (𝑡1, 𝑡2, 𝑡3) over 𝑋 such that
𝜙 (𝑡1, 𝑡2, 𝑡3) = 𝑡 ∉ {𝑡1, 𝑡2, 𝑡3} would be defined, there is a padding variable 𝑦 such that 𝜙 (𝑦 (𝑡1), 𝑦 (𝑡2), 𝑦 (𝑡3)) is undefined.
Here, 𝑦 (𝑡) for 𝑡 ∈ 2𝑋 denote the value of the padding variable 𝑦 given the assignment 𝑡 to 𝑋 .

Pushing this idea through requires to overcome two obstacles. First, we need to perform the padding in a way such
that the same set 𝑌 can be used to pad every distinct relation 𝑅𝑖 (𝑋𝑖) of the input. Indeed, using a fresh set of padding
variables 𝑌𝑖 for every 𝑘-clause 𝐶𝑖 of the input leads to an unmanageable number of newly introduced variables. Second,
the padding must be done in a way that still allows us to define an efficient extension oracle for the padded relations.

Our answer is to compute a “padding set” for the full relation 𝑅(𝑋) = 2𝑛 ; i.e., a set of variables 𝑌 such that for every
(𝑡1, 𝑡2, 𝑡3) ∈ (2𝑛)3 such that 𝜙 (𝑡1, 𝑡2, 𝑡3) = 𝑡 ∉ {𝑡1, 𝑡2, 𝑡3} is defined there is a padding variable 𝑦 ∈ 𝑌 that blocks the
application of 𝜙 as above. This padding set can then be reused for any smaller relation 𝑅𝑖 (𝑋𝑖) as well.

For the second obstacle, we define our padding variables by a set of XOR equations over the input, i.e, every variable
𝑦 ∈ 𝑌 is defined as 𝑦 =

⊕
𝑖∈𝑆𝑦 𝑥𝑖 for some set 𝑆𝑦 ⊆ [𝑛]. Furthermore, since the input is a set of disjunctive clauses, to

implement an extension oracle for a clause 𝐶𝑖 on a set of variables 𝑋𝑖 we only need to test that the variables 𝑋𝑖 are not
forced to take the one assignment that is forbidden by 𝐶𝑖 .

Padding set. As outlined above, we wish to define a set of “padding sets” 𝑆𝑦 ⊆ 𝑋 that blocks every non-projecting
application 𝜙 (𝑡1, 𝑡2, 𝑡3) of 𝜙 . For this, we first note the structure of such applications. Consider a triple (𝑡1, 𝑡2, 𝑡3)
of tuples from 2𝑛 such that 𝜙 (𝑡1, 𝑡2, 𝑡3) = 𝑡 is defined, and let 𝑃 (resp. 𝑄) be the set of positions 𝑖 ∈ [𝑛] such that
𝑡1 [𝑖] = 𝑡2 [𝑖] ≠ 𝑡3 [𝑖] (resp. 𝑡1 [𝑖] ≠ 𝑡2 [𝑖] = 𝑡3 [𝑖]). Note that for any 𝑖 ∈ [𝑛] \ (𝑃 ∪𝑄) we have 𝑡1 [𝑖] = 𝑡2 [𝑖] = 𝑡3 [𝑖] = 𝑡 [𝑖];
moreover, 𝑡 ∉ {𝑡1, 𝑡2, 𝑡3} if and only if both 𝑃 and 𝑄 are non-empty.

Furthermore, let 𝑆 ⊆ [𝑛] and define a padding variable 𝑦 (𝑋) =
⊕

𝑖∈𝑆 𝑥𝑖 . We claim that 𝜙 (𝑦 (𝑡1), 𝑦 (𝑡2), 𝑦 (𝑡3)) is
undefined for the triple (𝑡1, 𝑡2, 𝑡3) above if and only if |𝑆 ∩ 𝑃 | and |𝑆 ∩𝑄 | are both odd. This is perhaps non-obvious, but
it is easily verified. Indeed, we have 𝑦 (𝑡1) ≠ 𝑦 (𝑡2) if and only if |𝑆 ∩𝑄 | is odd, since those are precisely the positions
that switch values between 𝑡1 and 𝑡2, and we have 𝑦 (𝑡2) ≠ 𝑦 (𝑡3) if and only if |𝑆 ∩ 𝑃 | is odd for the same reason. In
particular, we can think of 𝑆 as blocking (or not blocking) the pair (𝑃,𝑄) itself, as it either blocks or does not block all
2 |𝑃 |+ |𝑄 | triples (𝑡1, 𝑡2, 𝑡3) generating the same pair (𝑃,𝑄).

It is now easy to create a padding set as a randomized construction. For every triple (𝑡1, 𝑡2, 𝑡3) that needs to be
blocked we define the pair (𝑃,𝑄) of disjoint subsets of [𝑛] as above, making (less than) 3𝑛 distinct pairs in total, and for

Manuscript submitted to ACM

16 V. Lagerkvist and M. Wahlström

every pair a random set 𝑆 ⊆ [𝑛] blocks all corresponding triples with probability 1/4. Hence after selecting𝑚 = 𝑐𝑛

random subsets, the expected number of unblocked pairs is (slightly less than)

3𝑛
(

3
4

)𝑐𝑛
= 1

for 𝑐 = (log 3)/(log(4/3)) ≈ 3.82. Hence there exists a padding set with 𝑐𝑛 variables 𝑌 , and by Markov’s inequality
using 𝑐𝑛 + 𝑑 sets for 𝑑 = 𝑂 (1) gives a correct construction with probability Ω(1). Derandomized constructions with
|𝑌 | = 𝑂 (|𝑋 |) are possible, but we omit the details.

Hence, assume that we have a collection of𝑚 sets 𝑆𝑖 ⊂ 𝑋 , numbering𝑚 = 𝑐𝑛 +𝑂 (1) in total, and a set of𝑚 padding
variables 𝑌 , where 𝑦𝑖 (𝑋) =

⊕
𝑗 ∈𝑆𝑖 𝑥 𝑗 for every assignment 𝑋 . Define the padding relation

𝑅0 (𝑋,𝑌) =
∧

𝑖∈[𝑚]

©«𝑦𝑖 =
⊕
𝑗 ∈𝑆𝑖

𝑥 𝑗
ª®¬

on variables 𝑋 ∪ 𝑌 .

Extension oracle. Let 𝐶𝑖 (𝑋𝑖) be the relation corresponding to a clause in the input on a set of variables 𝑋𝑖 ⊆ 𝑋 , and
let 𝑅𝑖 (𝑋,𝑌) = 𝑅0 (𝑋,𝑌) ∧ 𝐶𝑖 (𝑋𝑖). We show that we can define an efficient extension oracle for 𝑅𝑖 (𝑋). This has two
parts. First, the central relation 𝑅0 (𝑋,𝑌), which is simply a set of linear equations over GF(2). Hence, it is easy to verify
for any partial assignment 𝑓 to 𝑋 ∪𝑌 whether 𝑅0 (𝑋,𝑌) has a solution extending 𝑓 , and if so, which variables, if any, are
fixed among 𝑋 in the solution set. Subject to this, the latter information allows us to verify𝐶𝑖 (𝑋𝑖). Indeed, since𝐶𝑖 (𝑋𝑖)
is satisfied by all but one assignment to 𝑋𝑖 , at least one solution to 𝑅0 (𝑋,𝑌) will satisfy𝐶𝑖 (𝑋𝑖) unless all variables of 𝑋𝑖
are already fixed to values which fail to satisfy the clause. The latter can clearly be efficiently detected.

SETH lower bound. The above describes a (randomized) procedure that reduces an arbitrary instance of CNF-SAT, on
𝑛 variables, to an instance of Inv(𝜙)-SAT with |𝑋 | + |𝑌 | = (1 + 𝑐)𝑛 +𝑂 (1) variables, with a polynomial-time extension
oracle provided for every relation in the output. Hence, Inv(𝜙)-SAT cannot be solved faster than time

𝑂∗ (2
1

1+𝑐 𝑛) = 𝑂∗ (1.1547𝑛)

unless SETH is false.
For the general outlook, we note that the only details above that need to be adapted to the particular partial

operation 𝜙 is the construction of the padding set (or even just the analysis of the probability of successful padding).
We also note that there is quite some distance between the lower bound of 𝑐 (Inv(𝜙)) ≥ 21/4.82 and the upper bound of
𝑐 (Inv(𝜙)) ≤ 21/2. It would be very interesting to patch this gap.

As illustrated in this section, the partial Maltsev operation 𝜙 turned out be a rather well-behaved partial function
whose SAT problem (1) extends natural SAT problems such as satisfiability of linear equations over finite fields, and (2)
admits both an improved exponential-time algorithm and a concrete lower bound. This is certainly a promising starting
point, but is it possible to describe partial functions of a similar nature, and, crucially, how they relate to each? Hence,
how does Maltsev-SAT fit into the broader landscape of SAT problems? Can all SAT problems simpler than CNF-SAT
be described using partial polymorphism invariants? These are some of questions that one should have in mind when
we now properly begin the technical part of the article.

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 17

3 PRELIMINARIES

Throughout, for 𝑛 ∈ N, we let [𝑛] = {1, . . . , 𝑛}.
A 𝑘-ary relation over a domain 𝐷 is a subset of 𝐷𝑘 . If 𝑡 = (𝑥1, . . . , 𝑥𝑘) is a 𝑘-ary tuple we for every 1 ≤ 𝑖 ≤ 𝑘 let

𝑡 [𝑖] = 𝑥𝑖 , and if 𝑖1, . . . , 𝑖𝑘′ ∈ [𝑘] we write Proj𝑖1,...,𝑖𝑘′ (𝑡) = (𝑡 [𝑖1], . . . , 𝑡 [𝑖𝑘′]) for the projection of 𝑡 on the coordinates
𝑖1, . . . , 𝑖𝑘′ . This notation easily extends to relations and we write Proj𝑖1,...,𝑖𝑘′ (𝑅) for the relation {Proj𝑖1,...,𝑖𝑘′ (𝑡) | 𝑡 ∈ 𝑅}.

A set of relations is called a constraint language, or simply a language, and will usually be denoted by Γ and Δ. We
will typically define relations either by their defining logical formulas or by their defining equations. For example, the
relation 𝑅1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} may be defined by the expression 𝑅1/3 ≡ (𝑥1 + 𝑥2 + 𝑥3 = 1). However, we will
not always make a sharp distinction between relations and their defining logical formulas and will sometimes treat e.g.
a 𝑘-clause as a relation. We write ar(𝑅) for the arity of a relation 𝑅, and use the notation Eq𝐷 to denote the equality
relation {(𝑥, 𝑥) | 𝑥 ∈ 𝐷} over 𝐷 .

A 𝑘-ary Boolean relation 𝑅 is said to be totally symmetric, or just symmetric, if there exists a set 𝑆 ⊆ [𝑘] ∪ {0}
such that (𝑥1, . . . , 𝑥𝑘) ∈ 𝑅 if and only if 𝑥1 + . . . + 𝑥𝑘 ∈ 𝑆 . For example, 𝑅1/3 is totally symmetric as witnessed by the
set 𝑆 = {1}. Symmetric relations will prove to be useful since it is sometimes considerably simpler to describe the
symmetric relations invariant under a partial operation.

3.1 The parameterized SAT and CSP problems

Let Γ be a Boolean constraint language. The parameterized satisfiability problem over Γ (SAT(Γ)) is the computational
decision problem defined as follows.

Instance: A set 𝑉 of variables and a set 𝐶 of constraint applications 𝑅(𝑣1, . . . , 𝑣𝑘) where 𝑅 ∈ Γ, ar(𝑅) = 𝑘 , and
𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 .
Question: Is there a function 𝑓 : 𝑉 → {0, 1} such that (𝑓 (𝑣1), . . . , 𝑓 (𝑣𝑘)) ∈ 𝑅 for each 𝑅(𝑣1, . . . , 𝑣𝑘) in 𝐶?

The constraint satisfaction problem over a constraint language Γ (CSP(Γ)) is defined analogously with the only
distinction that Γ is not necessarily Boolean. We write (𝑑, 𝑘)-CSP for the CSP problem over a domain with 𝑑 elements
where each constraint has arity at most 𝑘 .

Bounded-degree polynomials. Lokshtanov et al. [48] showed that, for any finite field F and degree bound 𝑑 , there is
an algorithm that checks for the existence of a common root to a set of multivarite polynomials over F of degree at
most 𝑑 in time 𝑂 (𝑐𝑛

F,𝑑
), for some 𝑐F,𝑑 < |F|; i.e., an improved algorithm for the corresponding CSP where the domain is

F. We observe that their result also gives an improved algorithm for the corresponding SAT variant, where the search
space is restricted to {0, 1}𝑛 ⊆ F𝑛 . The proof can be found in the appendix.

Theorem 3.1. Let F be a fixed finite field and 𝑑 ∈ N a degree bound. There is a randomized algorithm that checks

whether a given system of multivariate polynomials over F of degree at most 𝑑 has a common root in {0, 1}𝑛 in time𝑂 (𝑐𝑛
F,𝑑

)
for some 𝑐F,𝑑 < 2, where 𝑛 is the number of variables in the system.

Lokshtanov et al. [48] also present a deterministic version, but we focus on the randomized version.

3.2 The extension oracle model

We have defined the SAT and CSP problems but so far not mentioned how instances are represented. For finite constraint
languages this is typically not of great importance, but since we in this article are mainly concerned with infinite
constraint languages, upper and lower bounds may in fact differ depending on the representation in question. We

Manuscript submitted to ACM

18 V. Lagerkvist and M. Wahlström

consider three distinct representations of SAT and CSP instances which we now define in detail. The most restrictive
notion is the non-uniform model. In this, we consider an infinite “base language” Γ, e.g., Γ = Inv(𝑓) for a partial operation
𝑓 , and consider finite slices Γ′ ⊂ Γ. We say that SAT(Γ) admits an improved algorithm in the non-uniform model if
there is a constant 𝑐 (Γ) < 2 such that, for every finite Γ′ ⊂ Γ there is an algorithm for SAT(Γ′) with a running time of
𝑂∗ (𝑐 (Γ)𝑛). In this model, the precise representation of constraints is irrelevant. This is the strongest model to show
lower bounds in.

Second, more permissively, we may let each relation 𝑅 occurring in a constraint 𝑅(𝑥1, . . . , 𝑥𝑘) be represented as a list
of tuples. We call this the explicit representation. This is one of the most frequently occurring representation methods
in the algebraic approach to CSP. However, it is inconvenient in many applications, since a relation may contain
exponentially many tuples with respect to the number of arguments. We therefore finally consider a more implicit
representation where each constraint is represented by a procedure which can verify whether a partial assignment of
its variables is consistent with the constraint.

Definition 3.2. Let 𝑅 be an 𝑛-ary relation over a set 𝐷 . A computable function which given indices 𝑖1, . . . , 𝑖𝑛′ ∈ [𝑛]
and 𝑡 ∈ 𝐷𝑛′ answers yes if and only if 𝑡 ∈ Proj𝑖1,...,𝑖𝑛′ (𝑅) is called an extension oracle representation of 𝑅.

Hence, given a constraint 𝑅(𝑥1, . . . , 𝑥𝑛) and a partial truth assignment 𝑓 : 𝑋 → 𝐷 , 𝑋 ⊆ {𝑥1, . . . , 𝑥𝑛}, the extension
oracle representation can be used to decide whether 𝑓 can be completed into a satisfying assignment of 𝑅(𝑥1, . . . , 𝑥𝑛).
We will usually implicitly assume that the oracle is polynomial-time computable, but for our purposes, subexponential
time suffices; cf. Section 6.2.

Example 3.3. For each 𝑟 ≥ 3 and 0 < 𝑘 < 𝑟 consider the relation 𝑅𝑟 = {(𝑥1, . . . , 𝑥𝑟) ∈ {0, 1}𝑟 | 𝑥1 + . . . + 𝑥𝑟 = 𝑘}.
Even though |𝑅𝑟 | is exponential with respect to 𝑟 it is not difficult to see that constraints over 𝑅𝑟 can be implicitly
represented by computing the weight of the given assignment.

Example 3.4. CNF-SAT can be succinctly represented in the extension oracle model. Consider e.g. a positive clause
(𝑥1 ∨ . . . ∨ 𝑥𝑛) and a partial truth assignment 𝑓 on {𝑥1, . . . , 𝑥𝑛} with respect indices 𝑖1, . . . , 𝑖𝑛′ . We then answer yes if 𝑓
can be extended to a model of the clause, and no otherwise. Slightly more formally, we answer no if 𝑓 is a total (i.e.,
{𝑖1, . . . , 𝑖𝑛′} = [𝑛]) assignment where 𝑓 (𝑥1) = . . . = 𝑓 (𝑥𝑛) = 0, and yes otherwise.

3.3 Partial polymorphisms and quantifier-free primitive positive definitions

Let 𝐷 be a finite set of values. A 𝑘-ary partial operation, or a partial function, 𝑓 over 𝐷 is a mapping 𝑋 → 𝐷 where
𝑋 ⊆ 𝐷𝑘 , and a 𝑘-ary total operation, or just operation, over𝐷 is a function𝐷𝑘 → 𝐷 . The set𝑋 is said to be the domain of 𝑓
and we let domain(𝑓) = 𝑋 denote this set and ar(𝑓) = 𝑘 denote the arity of 𝑓 . If 𝑓 and 𝑔 are two 𝑛-ary partial operations
over 𝐷 such that domain(𝑔) ⊆ domain(𝑓) and 𝑔(𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑥1, . . . , 𝑥𝑛) for every (𝑥1, . . . , 𝑥𝑛) ∈ domain(𝑔) then 𝑔
is said to be a subfunction of 𝑔. For 𝑛 ≥ 1 the 𝑖-ary projection, 1 ≤ 𝑖 ≤ 𝑛, is the operation 𝜋𝑛

𝑖
(𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑛) = 𝑥𝑖 and

a partial projection is any subfunction of a total projection.
If 𝑅 is an 𝑛-ary relation over 𝐷 and 𝑓 a 𝑘-ary operation over 𝐷 we say that 𝑓 is a polymorphism of 𝑅 if 𝑓 (𝑡1, . . . , 𝑡𝑘) =

(𝑓 (𝑡1 [1], . . . , 𝑡𝑘 [1]), . . . , 𝑓 (𝑡1 [𝑛], . . . , 𝑡𝑘 [𝑛])) ∈ 𝑅 for each sequence of tuples 𝑡1, . . . , 𝑡𝑛 ∈ 𝑅. If this holds then will
sometimes also say that 𝑅 is invariant under 𝑓 or that 𝑓 preserves 𝑅. Similarly, if 𝑓 in this context is a partial operation
we say that it is a partial polymorphism of 𝑅, that 𝑅 is invariant under 𝑓 , or that 𝑓 preserves 𝑅, if for any sequence of
tuples 𝑡1, . . . , 𝑡𝑘 we either have that 𝑓 (𝑡1, . . . , 𝑡𝑘) is undefined or 𝑓 (𝑡1, . . . , 𝑡𝑘) ∈ 𝑅. We let Pol(𝑅) and pPol(𝑅) be the set
of all polymorphisms and partial polymorphisms of the relation 𝑅, respectively, and if Γ is a constraint language we let
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 19

Pol(Γ) and pPol(Γ) denote the set of (partial) operations preserving each relation in Γ. Dually, if 𝐹 is a set of (partial)
operations we let Inv(𝐹) be the set of all relations invariant under 𝐹 . The two operators Inv(·) and pPol(·) are related
by the following Galois connection.

Theorem 3.5 ([25, 54]). Let Γ and Δ be two constraint languages. Then Γ ⊆ Inv(pPol(Δ)) if and only if pPol(Δ) ⊆
pPol(Γ).

Each set of partial operations 𝐹 then naturally induces a SAT problem SAT(Inv(𝐹)) where each relation involved in
a constraint is preserved by every partial operation in 𝐹 .

Definition 3.6. For a set of partial operations 𝐹 we write Inv(𝐹)-SAT (respectively Inv(𝐹)-CSP), for the problem
SAT(Inv(𝐹)) (respectively CSP(Inv(𝐹))).

The applicability of partial polymorphisms in the context of fine-grained time complexity might not be evident from
these definitions. However, sets of the form Inv(𝐹), called weak systems or weak co-clones, are closed under certain
restricted first-order formulas which are highly useful in this context. Say that a 𝑘-ary relation 𝑅 has a quantifier-free
definition (qfpp-definition) over a constraint language Γ over a domain 𝐷 if 𝑅(𝑥1, . . . , 𝑥𝑘) ≡ 𝑅1 (x1) ∧ . . . ∧ 𝑅𝑚 (x𝑚)
where each 𝑅𝑖 ∈ Γ ∪ {Eq𝐷 } and each x𝑖 is a tuple of variables of length ar(𝑅𝑖).

For any set of partial operations 𝐹 it is then known that Inv(𝐹) forms a weak system, and is therefore closed under
taking qfpp-definitions. Hence, Theorem 3.5 can equivalently be stated as: Δ qfpp-defines each relation in Γ if and only
if pPol(Δ) ⊆ pPol(Γ). With this interpretation the following theorem is then a straightforward consequence.

Theorem 3.7. [36] Let Γ and Δ be two finite constraint languages. If pPol(Γ) ⊆ pPol(Δ) then there exists a polynomial-

time many-one reduction from CSP(Δ) to CSP(Γ) which maps an instance (𝑉 ,𝐶) of SAT(Δ) to an instance (𝑉 ′,𝐶 ′) of
SAT(Γ) where |𝑉 ′ | ≤ |𝑉 | and |𝐶 ′ | ≤ 𝑐 |𝐶 |, where 𝑐 depends only on Γ and Δ.

In particular this implies that if CSP(Γ) is solvable in𝑂∗ (𝑐𝑛) time and pPol(Γ) ⊆ pPol(Δ) then CSP(Δ) is solvable in
𝑂∗ (𝑐𝑛) time, too. We will now briefly describe the closure properties of pPol(Γ), which are usually called strong partial

clones. First, if 𝑓 , 𝑔1, . . . , 𝑔𝑚 ∈ pPol(Γ) where 𝑓 is𝑚-ary and each 𝑔𝑖 is 𝑛-ary, then the composition

𝑓 ◦ 𝑔1, . . . , 𝑔𝑚 (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑔1 (𝑥1, . . . , 𝑥𝑛), . . . , 𝑔𝑚 (𝑥1, . . . , 𝑥𝑛))

is also included in pPol(Γ). This operation will be defined on a tuple (𝑥1, . . . , 𝑥𝑛) ∈ 𝐷𝑛 if and only if each 𝑔𝑖 (𝑥1, . . . , 𝑥𝑛)
is defined and the resulting application over 𝑓 is defined. Second, pPol(Γ) contains every partial projection, which is
known to imply that pPol(Γ) is closed under taking subfunctions (i.e., if 𝑓 ∈ pPol(Γ) then every subfunction of 𝑓 is
included in pPol(Γ)). If 𝐹 is a set of partial operations we write [𝐹]𝑠 = pPol(Inv(𝐹)) for the smallest strong partial
clone containing 𝐹 .

3.4 Sign-symmetric constraint languages and pSDI-operations

In this section we describe a property of constraint languages which occurs naturally in the context of SAT problems,
which also results in a simplified functional description on the polymorphism side.

Definition 3.8. An 𝑛-ary sign pattern is a tuple 𝑠 where 𝑠 [𝑖] ∈ {+,−} for each 1 ≤ 𝑖 ≤ 𝑛.

If 𝑡 is an 𝑛-ary Boolean tuple and 𝑠 an 𝑛-ary sign pattern then we let 𝑡𝑠 be the tuple where 𝑡𝑠 [𝑖] = 𝑡 [𝑖] if 𝑠 [𝑖] = + and
𝑡𝑠 [𝑖] = 1 − 𝑡 [𝑖] if 𝑠 [𝑖] = −. Similarly, if 𝑅 is a Boolean relation and 𝑠 an 𝑛-ary sign pattern we by 𝑅𝑠 denote the relation

Manuscript submitted to ACM

20 V. Lagerkvist and M. Wahlström

{𝑡𝑠 | 𝑡 ∈ 𝑅}. Last, for 1 ≤ 𝑖 ≤ 𝑛 and 𝑐 ∈ {0, 1} we let

𝑅𝑖=𝑐 = Proj1,...,𝑖−1,𝑖+1,𝑛 ({𝑡 | 𝑡 ∈ 𝑅, 𝑡 [𝑖] = 𝑐})

be the relation resulting from freezing the 𝑖th argument of 𝑅 to 𝑐 and removing it from the relation.

Definition 3.9. A Boolean constraint language Γ is said to be sign-symmetric if (1) 𝑅𝑠 ∈ Γ for every 𝑛-ary 𝑅 ∈ Γ and
every 𝑛-ary sign pattern 𝑠 and (2) 𝑅𝑖=𝑐 ∈ Γ for every 𝑐 ∈ {0, 1} and every 1 ≤ 𝑖 ≤ 𝑛.

Clearly, for every Boolean language Γ there exists a unique, minimal sign-symmetric language, namely the smallest
language Δ ⊇ Γ where (1) 𝑅𝑠 ∈ Δ whenever 𝑅 ∈ Δ and 𝑠 ∈ {−, +}ar(𝑅) , and (2) 𝑅𝑖=𝑐 ∈ Δ whenever 𝑅 ∈ Δ,
1 ≤ 𝑖 ≤ ar(𝑅), 𝑐 ∈ {0, 1}.

Example 3.10. Let 𝑅(𝑥,𝑦, 𝑧) ≡ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 be the set of models of the positive 3-clause. Then the relations
𝑅 (+,+,−) , 𝑅 (+,−,−) , and 𝑅 (−,−,−) are simply the set of models of the clauses (𝑥1 ∨ 𝑥2 ∨ ¬𝑥3), (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3), and
(¬𝑥1 ∨¬𝑥2 ∨¬𝑥3). Similarly, a relation of the form 𝑅2=0 is the set of models of the clause (𝑥1 ∨ 0∨ 𝑥3), i.e., the 3-clause
where the second argument is forced to 0. If we let Γ be the smallest sign-symmetric language containing {𝑅} then
SAT(Γ) is nothing else than the 3-SAT problem in slight disguise, where we allow the two constants 0 and 1 to occur in
constraints.

Before presenting the algebraic characterisation of sign-symmetric constraint languages, let us consider an example
which illustrates how sign-symmetry affects the expressive power of Γ.

Example 3.11. Let Γ be a sign-symmetric constraint language containing the symmetric 8-ary relation𝑅 = {(𝑥1, . . . , 𝑥8) ∈
{0, 1}8 | 𝑥1 + . . . + 𝑥8 ∈ {3, 5, 7}}. Let 𝑅0 = {(0)} and 𝑅1 = {(1)} be the two constant Boolean relations. Then Γ can
qfpp-define the positive 3-clause 𝑆 (𝑥1, 𝑥2, 𝑥3) ≡ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) by first qfpp-defining the relation

𝑆 ′(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ≡ 𝑅(𝑥4, 𝑥1, 𝑥1, 𝑥2, 𝑥2, 𝑥3, 𝑥3, 𝑥5) ∧ 𝑅0 (𝑥4) ∧ 𝑅1 (𝑥5),

and since we assumed that Γ is sign-symmetric, it follows that 𝑆 is qfpp-definable as well, since 𝑆 = 𝑆 ′′4=0 for 𝑆 ′′ = 𝑆 ′5=1.

Wewill now see that sign-symmetric constraint languages can be described by a natural class of partial polymorphisms.
As a shorthand we will sometimes denote the 𝑘-ary constant tuple (𝑑, . . . , 𝑑) by 𝑑𝑘 .

Definition 3.12. Let 𝑓 be a Boolean partial operation. We say (1) that 𝑓 is self-dual if 𝑥 ∈ domain(𝑓) for every
𝑥 ∈ domain(𝑓) and 𝑓 (𝑥) = 1 − 𝑓 (𝑥), where 𝑥 denotes the complement of the tuple 𝑥 , and (2) that 𝑓 is idempotent if
𝑑𝑘 ∈ domain(𝑓) and 𝑓 (𝑑𝑘) = 𝑑 for every 𝑑 ∈ 𝐷 .

In the sequel, we will call a Boolean partial operation which is both self-dual and idempotent a pSDI-operation, short
for partial, self-dual, and idempotent operation. Sign-symmetric constraint languages have a strong connection to
pSDI-operations, formalised in the following theorem.

Theorem 3.13. [39, 43] Let 𝐹 be a set of pSDI-operation. Then:

(1) Inv(𝐹) is sign-symmetric, and

(2) if Γ is a sign-symmetric constraint language such that Pol(Γ) contains only projections (meaning that SAT(Γ) is
NP-complete) then every 𝑓 ∈ pPol(Γ) is a subfunction of a pSDI-operation.

Example 3.14. Recall the ternary partial operation 𝜙 from Section 2 defined via 𝜙 (𝑎, 𝑎, 𝑏) = 𝑏 and 𝜙 (𝑎, 𝑏, 𝑏) = 𝑎 for all
𝑎, 𝑏 ∈ {0, 1}, and undefined otherwise. Hence, to be precise:
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 21

(1) 𝜙 (0, 0, 0) = 𝜙 (1, 1, 0) = 𝜙 (0, 1, 1) = 0, and
(2) 𝜙 (1, 1, 1) = 𝜙 (0, 0, 1) = 𝜙 (1, 0, 0) = 1.

We conclude that 𝜙 is idempotent since 𝜙 (0, 0, 0) = 0 and 𝜙 (1, 1, 1), and that 𝜙 is self-dual since in addition

(1) 𝜙 (1, 1, 0) = 1 − 𝜙 (1, 1, 0) = 1 − 𝜙 (0, 0, 1) = 0, and
(2) 𝜙 (0, 1, 1) = 1 − 𝜙 (0, 1, 1) = 1 − 𝜙 (1, 0, 0) = 0.

Thus, 𝜙 is a pSDI-operation, meaning that Inv(𝜙) is sign-symmetric.

We remark that Theorem 3.13 was originally proved under a slightly different notion of sign-symmetry where
constant arguments are not necessarily projected away. To be precise, Lagerkvist, Wahlström & Zanuttini [43] defined
𝑅𝑖=𝑐 as {(𝑥1, . . . , 𝑥𝑖−1, 𝑐, 𝑥𝑖+1, . . . , 𝑥𝑛) | (𝑥1, . . . , 𝑥𝑛) ∈ 𝑅}, meaning that every sign-symmetric constraint language under
this definition is included in a sign-symmetric constraint language under our current definition. However, the proof
remains valid under our current notion of sign-symmetry. Hence, the study of sign-symmetric constraint languages
reduces to studying properties of pSDI-operations. Let us give two examples illustrating why focusing on sign-symmetric
languages is indeed a simplification. First we demonstrate a language which admits improved algorithms but in a less
interesting way.

Example 3.15. Consider a Boolean language Γ consisting of relations of the type

𝑅(𝑥1, . . . , 𝑥2𝑟) ≡ 𝑅′(𝑥1, . . . , 𝑥𝑟) ∧ (𝑥1 ≠ 𝑥𝑟+1) ∧ . . . ∧ (𝑥𝑟 ≠ 𝑥2𝑟),

for every Boolean relation 𝑅′. Then SAT(Γ) can be solved in 𝑂∗ (2
𝑛
2) time, simply due to the fact that there for every

variable 𝑣 in an instance exists at least one variable 𝑣 ′ such that 𝑣 ≠ 𝑣 ′ in every solution. Hence the variable set of the
instance is divided into clusters of at least two variables each. It is also clear that no faster algorithm is possible under
SETH, since 𝑅′ can be an arbitrary 𝑘-clause. Thus this language has (under SETH) a tight running time of 𝑂∗ (2

𝑛
2), but

in an algorithmically uninteresting way.
This language has an infinite number of partial polymorphisms: any partial operation 𝑓 that is undefined on 𝑡 or 𝑡

for every pair (𝑡, 𝑡) of complementary tuples of {0, 1}ar(𝑓) is a partial polymorphism of Γ, simply because every attempt
to apply 𝑓 to tuples of some 𝑅 ∈ Γ will have at least one coordinate with an undefined value.

However, the sign-symmetric closure of Γ also contains the relation 𝑅′′ where the second half of the positions of 𝑅
are negated, meaning that

𝑅′′(𝑥1, . . . , 𝑥2𝑟) ≡ 𝑅′(𝑥1, . . . , 𝑥𝑟) ∧ Eq{0,1} (𝑥1, 𝑥𝑟+1) ∧ . . . ∧ Eq{0,1} (𝑥𝑟 , 𝑥2𝑟),

which clearly yields an SETH-hard language with running time 𝑂∗ (2𝑛) only assuming SETH. To see this, simply note
that the relation 𝑅′′ can define 𝑅′ by repeating variables, i.e., 𝑅′(𝑥1, . . . , 𝑥𝑟) ≡ 𝑅′′(𝑥1, . . . , 𝑥𝑟 , 𝑥1, . . . , 𝑥𝑟).

Next, we demonstrate a language Γ with strongly restricted expressive power in a technical sense, but which still
yields an SETH-hard language.

Example 3.16. Let Γ contain relations 𝑅≥1 (𝑥1, . . . , 𝑥𝑟) ≡ (𝑥1 ∨ . . . ∨ 𝑥𝑟) and 𝑅=𝑘 (𝑥1, . . . , 𝑥𝑟) ≡ (𝑥1 + . . . + 𝑥𝑟 = 𝑘) of
all arities 𝑟 and for all values 𝑘 . Then Γ has strongly restricted expressive power, e.g., it cannot qfpp-define the negative
2-clause (¬𝑥1 ∨¬𝑥2), even though it can pp-define this 2-clause via (¬𝑥 ∨¬𝑦) ≡ ∃𝑧 : 𝑅=1 (𝑥,𝑦, 𝑧). The fact that Γ cannot
qfpp-define e.g. (¬𝑥1 ∨¬𝑥2) can be evidenced by a partial polymorphism: define the partial operation 𝑓 as 𝑓 (0, 0, 0) = 0
and 𝑓 (1, 0, 0) = 𝑓 (0, 0, 1) = 𝑓 (1, 1, 1) = 1. It is easy to verify that 𝑓 preserves Γ but not any negative 2-clause. However,
consider the following Turing reduction from the Hitting Set problem: given a hypergraph and a parameter 𝑡 ∈ N, for

Manuscript submitted to ACM

22 V. Lagerkvist and M. Wahlström

each 1 ≤ 𝑘 ≤ 𝑡 create a SAT(Γ) instance where the hypergraph is translated to 𝑅≥1 constraints in the natural way, and
where we introduce a single 𝑅=𝑘 constraint which makes sure that only 𝑘 variables are assigned the value 1. Hence,
𝑐 (Γ) = 2 under SETH [19]. On the other hand, the sign-symmetric closure of Γ contains all 𝑘-clauses for all 𝑘 . Hence,
this problem is trivially SETH-hard.

3.5 Polymorphism patterns

In this section we describe a powerful method for constructing pSDI-operations with a natural correspondence to
polymorphisms occurring in CSP classification projects. In fact, we will see that all pSDI-operations, and hence all
sign-symmetric constraint languages, can be described in this form. We use this method to define several highly relevant
classes of pSDI-operations which we will return to many times in the sequel.

Definition 3.17. Let a polymorphism pattern of arity 𝑟 be a set of pairs (𝑡, 𝑥) where 𝑡 is an 𝑟 -ary tuple of variables and
where 𝑥 occurs in 𝑡 . We say that an 𝑟 -ary partial operation 𝑓 over a set of values 𝐷 is defined by an 𝑟 -ary polymorphism
pattern 𝑃 if

domain(𝑓) = {(𝜏 (𝑥1), . . . , 𝜏 (𝑥𝑟)) | ((𝑥1, . . . , 𝑥𝑟), 𝑥) ∈ 𝑃, 𝜏 : {𝑥1, . . . , 𝑥𝑟 } → 𝐷}

and 𝑓 (𝜏 (𝑥1), . . . , 𝜏 (𝑥𝑟)) = 𝜏 (𝑥) for every ((𝑥1, . . . , 𝑥𝑟), 𝑥) ∈ 𝑃 and every 𝜏 : {𝑥1, . . . , 𝑥𝑟 } → 𝐷 .

Example 3.18. It is easy to see that a polymorphism pattern also induces a set of total operations where each operation
satisfies the tuples in the polymorphism pattern, but may result in distinct values otherwise. For example, a ternary
minority operation 𝑓 can be defined by the polymorphism pattern 𝑃 = {((𝑥, 𝑥,𝑦), 𝑦), ((𝑥,𝑦, 𝑥), 𝑦), ((𝑦, 𝑥, 𝑥), 𝑥)}. In the
Boolean domain it is easily verified that the operation defined by this polymorphism pattern is in fact total, but for larger
domains the induced operation is properly partial. However, if we remove one of the tuples from 𝑃 , and for example
consider the polymorphism pattern 𝑃 \ {((𝑥,𝑦, 𝑥), 𝑦)}, then the class of total operations are known asMaltsev operations,
and in the Boolean domain we get the partial operation 𝜙 (0, 0, 0) = 0, 𝜙 (0, 0, 1) = 1, 𝜙 (1, 1, 0) = 0, 𝜙 (1, 0, 0) = 1,
𝜙 (0, 1, 1) = 0, 𝜙 (1, 1, 1) = 1. Note that this is precisely the partial operation under consideration in Section 2. We will
return to this ternary partial operation several times in the sequel.

A Boolean operation is pSDI if and only if it satisfies a polymorphism pattern. To see this, note that if 𝑓 is pSDI, then
it is easy to create a polymorphism pattern 𝑃 by letting each tuple 𝑡 ∈ domain(𝑓) such that 𝑓 (𝑡) = 0 correspond to an
entry in 𝑃 . Similarly, it is not difficult to show that any partial operation satisfying a polymorphism pattern must be
self-dual and idempotent. Thus, by Theorem 3.13 we first know that if Γ is sign-symmetric and SAT(Γ) is NP-complete
then there exists a set of pSDI-operations 𝐹 such that [𝐹]𝑠 = pPol(Γ), and by the preceding remark every 𝑓 ∈ 𝐹 can
be described by a polymorphism pattern. We will now define the pSDI-operations that will play a central role in our
current pursuit.

Definition 3.19. We define the following partial operations. Let 𝐷 be an arbitrary domain.

(1) For 𝑘 ≥ 3, the partial 𝑘-ary near-unanimity operation (partial 𝑘-NU operation), denoted nu𝐷
𝑘
, is the 𝑘-ary partial

operation defined by the pattern which for each 𝑖 ∈ {1, . . . , 𝑘} contains ((𝑥, 𝑥, . . . , 𝑥,𝑦, 𝑥, . . . , 𝑥), 𝑥), where 𝑦
occurs in the 𝑖th position.

(2) For 𝑘 ≥ 2, the partial 𝑘-edge operation, denoted 𝑒𝐷
𝑘
, is defined by the polymorphism pattern consisting of

((𝑥, 𝑥,𝑦,𝑦,𝑦, . . . , 𝑦,𝑦), 𝑦), ((𝑥,𝑦, 𝑥,𝑦,𝑦, . . . , 𝑦,𝑦), 𝑦), and for each 𝑖 ∈ {4, . . . , 𝑘+1}, the tuple ((𝑦, . . . , 𝑦, 𝑥,𝑦, . . . , 𝑦), 𝑦),
where 𝑥 appears in the 𝑖th position.

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 23

(3) For 𝑘 ≥ 2, let 𝐴 be a (2𝑘 − 1) × 𝑘 matrix whose rows enumerate all vectors {𝑥,𝑦}𝑘 \ {𝑥, . . . , 𝑥}. Let 𝑃 be the
polymorphism pattern consisting of tuples (t, 𝑥) for every column t in 𝐴. The 𝑘-universal operation, denoted u𝐷

𝑘
,

is the partial operation defined by 𝑃 .

In all cases, the domain 𝐷 may be omitted if understood from context; by default, we use 𝐷 = {0, 1}.

The operation 𝑒2 is simply the partial Maltsev operation from Section 2 with the first and second argument permuted,
and nu3 is the partial majority operation. Note that 𝑒2 and u2 are equivalent, and that nu3 is total over the Boolean
domain, although it is properly partial over every larger domain. Finally, we note an equivalent definition of u𝑘 . Say
that the 𝑖th argument of a 𝑘-ary partial operation 𝑓 is redundant if there exists 𝑗 ≠ 𝑖 such that 𝑡 [𝑖] = 𝑡 [𝑗] for every
𝑡 ∈ domain(𝑓). Then u{0,1}

𝑘
can be defined as the pSDI-operation of arity 2𝑘 − 1 defined on 2𝑘 + 2 tuples which is not a

partial projection and has no redundant arguments. It can be verified that this operation is unique up to permutation of
its arguments.

Last, we remark that there is a connection between our notion of polymorphism patterns and the operations
studied in connection to the CSP dichotomy (see e.g. the survey by Barto et al. [5]). In technical terms polymorphism
patterns essentially matches strong Maltsev conditions where the right-hand side is restricted to a single variable. Similar
restrictions, called height-1 identities, have been considered earlier and it is known that the complexity of a CSP(Γ)
problem only depends on the height-1 identities satisfied by the operations in Pol(Γ) [6]. In this context, it may be
interesting to note that the reduction used by Cygan et al. [19] showing that Hitting Set is SETH-hard has strong
similarities to the more general implementations used in pp-implementations and pp-constructions, which are associated
with the above-mentioned identities [5].

4 THE STRUCTURE OF SIGN-SYMMETRIC CONSTRAINT LANGUAGES

Each pSDI-operation 𝑓 defined in Definition 3.19 gives rise to a problem Inv(𝑓)-SAT where each relation is invariant
under 𝑓 . For example, in Section 2 we considered the problem Inv(𝜙)-SAT for the partial Maltsev operation 𝜙 , which is
the same problem as Inv(𝑒2)-SAT. We have already hinted the existence of an improved algorithm for this problem, but
before we turn to this matter we determine how the pSDI-operations that we have defined are related to each other.
As we will see, these operations, and in fact all pSDI-operations, can be precisely classified into “levels” where the
strongest operation is the partial 𝑘-NU operation, and the weakest operation is the partial 𝑘-universal operation. Due
to the connection between pSDI-operations and sign-symmetric languages this also gives a precise description of the
sign-symmetric languages of interest in the context of proving improved upper bounds.

As a preview of this structure, and of some of the included problems, we refer to Figure 1. The problem and language
inclusions illustrated in this figure will be shown across the next two subsections. To simplify this classification we are
mainly interested in pSDI-operations that are as “weak” as possible, in the following sense.

Definition 4.1. Let 𝑓 be a pSDI-operation. We say that 𝑓 is trivial if it is a subfunction of a projection, and a minimal

non-trivial pSDI-operation if 𝑓 is non-trivial but every proper subfunction 𝑓 ′ of 𝑓 which is a pSDI-operation is trivial.

It is important to observe that every sign-symmetric language Inv(𝑓), is included in a sign-symmetric language
Inv(𝑔) where 𝑔 is a minimal non-trivial pSDI-operation, since Inv(𝑓) ⊆ Inv(𝑔) whenever 𝑓 is a subfunction of 𝑔.

Example 4.2. Let us consider the partial 2-edge operation 𝑒2. Since this operation is defined by the pattern 𝑃 =

{((𝑥, 𝑥,𝑦), 𝑦), ((𝑥,𝑦, 𝑥), 𝑦)}, any pSDI-operation which is a proper subfunction of 𝑒2 is defined either by the pattern
{((𝑥, 𝑥,𝑦), 𝑦)}, or by the pattern {((𝑥,𝑦, 𝑥), 𝑦)}, and in both cases the partial operation is trivial.

Manuscript submitted to ACM

24 V. Lagerkvist and M. Wahlström

Subset Sum
Linear Equations
1-in-𝑘 SAT

2-edge = 2-universal

3-edge3-NU
2-SAT
(𝑑, 2)-CSP
Graph 𝑘-Clique

3-universal

Sidon Sets
Degree-2 Polynomials

4-NU
3-SAT
(𝑑, 3)-CSP
(3, ℓ)-Hyperclique

4-edge 4-universal

Degree-3 Polynomials

.

𝑘-NU 𝑘-edge

(𝑘 − 1)-SAT
(𝑑, 𝑘 − 1)-CSP
(𝑘 − 1, ℓ)-Hyperclique 𝑘-universal

Degree-(𝑘 − 1) Polynomials

Fig. 1. The inclusion structure between selected minimal pSDI-operations (solid outlines), and some problems that reduce to the
corresponding SAT or CSP problem (dotted outlines). Several classes on each level 𝑘 ≥ 3 have been omitted.

We invite the reader to verify that the remaining pSDI-operations defined in Definition 3.19 are all minimal. Our study
in this section is focused on constraint languages Γ = Inv(𝑓) where 𝑓 is a single minimal non-trivial pSDI-operation,
since these are the most expressive sign-symmetric constraint languages that are still restricted in expressive power.
But first, let us make an important note about the power of these languages.

4.1 Sparse and dense languages

We have the following result from Lagerkvist & Wahlström (assuming P ≠ NP).

Theorem 4.3. [41] Let 𝐹 be a finite set of partial operations such that Inv(𝐹)-SAT is NP-complete. Then any 𝑛-ary

Boolean relation has a pp-definition over Inv(𝐹) using at most 𝑂 (𝑛) existentially quantified variables.

By a counting argument, Theorem 4.3 implies that for any finite set 𝐹 as in the theorem, the language Inv(𝐹) can
qfpp-define 22Ω (𝑛) distinct 𝑛-ary relations (e.g., there is a double-exponential number of distinct solution spaces for
𝑛-variable instances of Inv(𝐹)-SAT). By contrast, for many natural languages, this number is bounded as 2𝑛𝑂 (1) ; call a
language sparse if this applies. Then certainly every finite language is sparse (since then only 𝑛𝑂 (1) distinct constraints
exist over 𝑛 variables), but furthermore, so is the language where relations are defined as roots of bounded-degree
multivariate polynomials over some fixed finite field, as frequently revisited in this article. This follows from the fact
that systems of such polynomials have bounded rank; hence any qfpp-definition over this language only needs to use
𝑛𝑂 (1) polynomials. Since there are at most 2𝑛𝑂 (1) distinct polynomials once the degree and the (finite) field have been
fixed, the sparseness follows (see Jansen & Pieterse [34] and Lagerkvist & Wahlström [42] for extensions and related
sparsification applications). With this in mind, it would seem that a complete and explicit characterisation of relations
in Inv(𝑓) is not likely to be useful. Still, for orientation it is interesting to note where specific important problems
SAT(Γ) belong in our hierarchy of classes, as we review next.
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 25

For minimal non-trivial pSDI-operations 𝑓 , a strengthening of Theorem 4.3 is possible: The language Inv(𝑓) is dense
enough that padding an 𝑛-ary relation 𝑅 with 𝑂 (𝑛) randomly chosen parity-check variables is sufficient to create a
relation in Inv(𝐹) with high probability. This will be exploited in Section 6.3 where we explore SETH based lower
bounds. Note that Theorem 4.3 does not directly imply a useful SETH lower bound since the introduction of a linear
amount of variables per constraint might result in an uncontrolled number of variables in total.

The above notion of sparseness can be compared with the related notion of languages having few subpowers, which
is effectively languages which remain sparse even under pp-definitions (i.e., when adding existentially quantified
variables). It is known that these are precisely the languages which are preserved by a total 𝑘-edge-operation for
some 𝑘 [7], and the problem CSP(Γ) for every such language Γ can be solved in polynomial time via the so-called few

subpowers algorithm [31].

4.2 Properties of specific sign-symmetric constraint languages

In this section, we provide some illustrative examples of languages included in Inv(𝑓) for particular pSDI-operations
𝑓 . Despite the density aspect discussed above, we find that the pSDI-operations defined in Section 3.5 do correspond
roughly to natural restrictions on the expressive power of a language Γ. We now illustrate the classes with a few
examples. In the process we occasionally refer to the language inclusions illustrated in Figure 1. Proofs of these
inclusions is given in Theorem 4.16 in Section 4.3. But first, to facilitate the proofs, let us observe some basic properties
of pSDI-operations.

Proposition 4.4. Let 𝑓 be a pSDI-operation. Then |domain(𝑓) | = 2𝑘 + 2 for some 𝑘 ∈ N, and 𝑓 is fully defined either

by the non-constant tuples 𝑡 such that 𝑓 (𝑡) = 0, or by the non-constant tuples 𝑡 such that 𝑓 (𝑡) = 1.

Furthermore, when 𝑓 is minimal, the value 𝑘 in this proposition defines the level of the operation 𝑓 , and corresponds
to the levels in Figure 1.

Consider also an application 𝑓 (𝑡1, . . . , 𝑡𝑟) = 𝑡 of a pSDI-operation 𝑓 to 𝑛-ary tuples 𝑡1, . . . , 𝑡𝑟 , such that the output
𝑡 is defined. Then for every 𝑖 ∈ [𝑛], the tuple (𝑡1 [𝑖], . . . , 𝑡𝑟 [𝑖]) corresponds to (at least) one of the patterns in the
polymorphism pattern definition of 𝑓 . Furthermore, 𝑡 ∉ {𝑡1, . . . , 𝑡𝑟 } if and only if for every 𝑗 ∈ [𝑟] there is 𝑖 ∈ [𝑛]
such that 𝑡 [𝑖] ≠ 𝑡 𝑗 [𝑖], and it can be verified that for all pSDI-operations defined in Section 3 (nu𝑘 , 𝑒𝑘 and u𝑘), this
requires that all patterns from the polymorphism pattern definition of 𝑓 are represented in the application 𝑓 (𝑡1, . . . , 𝑡𝑟).
Lemma 4.14 will show more formally that this holds in general for minimal non-trivial pSDI-operations. With this in
mind, let us now begin with a basic example.

Lemma 4.5. Let 𝑘 ≥ 3. For every (𝑘 − 1)-ary relation 𝑅, we have 𝑅 ∈ Inv(nu𝑘).

Proof. Let 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅 be such that nu𝑘 (𝑡1, . . . , 𝑡𝑘) is defined, and for 𝑖 ∈ [𝑘 − 1] let 𝑡 (𝑖) = (𝑡1 [𝑖], . . . , 𝑡𝑘 [𝑖]). For
every 𝑖 ∈ [𝑘 − 1], either 𝑡 (𝑖) is constant or there is a single index 𝑗 where 𝑡 (𝑖) [𝑗] deviates from its other entries. By the
pigeonhole principle, there is at least one index 𝑗 ∈ [𝑘] such that 𝑡 (𝑖) [𝑗] does not deviate from the majority for any
𝑖 ∈ [𝑘 − 1]. Then we have nu𝑘 (𝑡1, . . . , 𝑡𝑘) = 𝑡 𝑗 . □

We also show a corresponding negative statement. By the inclusions shown in the next section, this will imply that a
𝑘-clause is not preserved by any operation at “level 𝑘” of the hierarchy in Figure 1.

Lemma 4.6. Let 𝑅 ⊂ {0, 1}𝑘 be a 𝑘-clause, i.e., |𝑅 | = 2𝑘 − 1, 𝑘 ≥ 2. Then 𝑅 is not preserved by the partial 𝑘-universal

operation.

Manuscript submitted to ACM

26 V. Lagerkvist and M. Wahlström

Proof. By sign-symmetry, we assume that 𝑅 = {0, 1}𝑘 \ {0𝑘 }. Let 𝑡1, . . . , 𝑡𝑘 be the non-constant tuples in domain(u𝑘)
such that u𝑘 (𝑡𝑖) = 0 for each 𝑖 ∈ [𝑘]. Then for each 𝑖 ∈ [2𝑘 − 1], the tuple 𝑡 (𝑖) = (𝑡1 [𝑖], . . . , 𝑡𝑘 [𝑖]) defines a tuple of 𝑅;
thus the application

u𝑘 (𝑡 (1) , . . . , 𝑡 (2
𝑘−1)) = 0𝑘

is defined and shows that 𝑅 ∉ Inv(u𝑘). □

Next, we consider an illustrative example of a useful relation preserved by the partial 2-edge operation.

Lemma 4.7. Let 𝑅(𝑥1, . . . , 𝑥𝑛) ⊆ {0, 1}𝑛 be defined via a linear equation

𝑛∑︁
𝑖=1

𝛼𝑖𝑥𝑖 = 𝛽

evaluated over a finite field F. Then 𝑅 ∈ Inv(𝑒2).

Proof. This is a special case of the notion of a Maltsev embedding of 𝑅 previously investigated by the authors [42].
It is known that a relation with a Maltsev embedding is closed under a family of partial operations, of which 𝑒2 is the
simplest. □

A particular example of such relations is the Exact SAT problem. We show that its 1-in-𝑘 relations are also not
closed under nu𝑘 .

Lemma 4.8. Let 𝑅1/𝑘 = {(𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘 | 𝑥1+ . . .+𝑥𝑘 = 1}, and ΓX𝑆𝐴𝑇 = {𝑅𝑠1/𝑘 | 𝑘 ≥ 1, 𝑠 is a 𝑘-ary sign-pattern}.
Then ΓX𝑆𝐴𝑇 ⊆ Inv(𝑒2) but is not preserved by nu𝑘 for any 𝑘 .

Proof. The positive direction follows from Lemma 4.7, since 𝑅1/𝑘 can be phrased as a linear equation over the
integers mod 𝑝 , for 𝑝 ≥ 𝑘 +1. The negative direction is immediate: let 𝑅1/𝑘 = {𝑡1, . . . , 𝑡𝑘 }. Then nu𝑘 (𝑡1, . . . , 𝑡𝑘) is defined
and equals 0𝑘 . □

Another example of a problem with the character of linear equations is Subset Sum. Even though an instance of
Subset Sum is defined by just a single linear equation rather than as a SAT(Γ) instance, we show in Section 6.2 that the
complexity of 2-edge-SAT and Subset Sum are closely connected. As for the class Inv(𝑒𝑘) for 𝑘 ≥ 3, the inclusions
illustrated in Figure 1 imply that this class contains both relations with linear equation extensions and all (𝑘 −1)-clauses.

We are also able to characterise all symmetric relations in Inv(𝑒2). This will be needed later for Theorem 4.21.

Lemma 4.9. Let 𝑅 ⊆ {0, 1}𝑛 be a symmetric relation defined by 𝑅(𝑥1, . . . , 𝑥𝑛) ≡ (∑𝑥𝑖 ∈ 𝑆) for some 𝑆 ⊆ {0, . . . , 𝑛}.
Then 𝑅 is preserved by 𝑒2 if and only if 𝑆 = {𝑖 ∈ [𝑛] | 𝑖 ≡ 𝑞 (mod 𝑝)} for some 𝑝, 𝑞 ≤ 𝑛 + 1.

Proof. Let 𝑅 and 𝑆 be as in the statement. We first assume that 𝑅 is preserved by 𝑒2, and let 𝑎, 𝑏 ∈ 𝑆 with 𝑎 < 𝑏, if
possible (if no such pair exists, then 𝑆 can be produced via 𝑝 = 𝑛 + 1 and 0 ≤ 𝑞 ≤ 𝑛 + 1, and the claim holds). Write
𝑏 = 𝑎 + 𝑑 , and assume 𝑎 − 𝑑 ≥ 0. We will define three tuples 𝑡1, 𝑡2, 𝑡3 ∈ 𝑅 so that 𝑒2 (𝑡1, 𝑡2, 𝑡3) is defined and returns a
tuple of weight 𝑎 − 𝑑 , which is sufficient to prove the claim since 𝑅 is symmetric and thus contains all tuples of weight
𝑎−𝑑 . Hence, define 𝑡1 = 1𝑎−𝑑1𝑑1𝑑0𝑛−𝑎−𝑑 , 𝑡2 = 1𝑎−𝑑1𝑑0𝑑0𝑛−𝑎−𝑑 , and 𝑡3 = 1𝑎−𝑑0𝑑1𝑑0𝑛−𝑎−𝑑 . Note that these tuples have
weights 𝑎+𝑑 , 𝑎, and 𝑎, meaning that they are all included in 𝑅. If we then apply 𝑒2 we get 𝑒2 (𝑡1, 𝑡2, 𝑡3) = 1𝑎−𝑑0𝑑0𝑑0𝑛−𝑎−𝑑

of weight 𝑎 − 𝑑 , and since we assumed that 𝑅 is invariant under 𝑒2 it follows that this tuple is included in 𝑅. A very
similar proof shows 𝑏 + 𝑑 ∈ 𝑆 assuming 𝑏 + 𝑑 ≤ 𝑛. Hence, every non-trivial arithmetic sequence in 𝑆 is complete.
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 27

Now let 𝑎, 𝑏 ∈ 𝑆 with 𝑎 < 𝑏 be chosen to minimise 𝑏 − 𝑎. Let 𝑏 = 𝑎 + 𝑑 and write 𝑆 ′ = {𝑖 ∈ [𝑛] | 𝑖 = 𝑎 (mod 𝑑)}. On
the one hand, by the above we have 𝑆 ′ ⊆ 𝑆 . On the other hand, for any entry 𝑥 ∈ 𝑆 \ 𝑆 ′ there is an entry 𝑦 ∈ 𝑆 ′ with
|𝑥 − 𝑦 | < 𝑑 , contradicting the choice of 𝑎, 𝑏. Thus 𝑆 = 𝑆 ′.

In the other direction, let 𝑅 and 𝑆 be as described for some parameters 𝑝 and 𝑞, and let 𝑒2 (𝑡1, 𝑡2, 𝑡3) = 𝑡 be defined
for some tuples 𝑡1, 𝑡2, 𝑡3 ∈ 𝑅. Let 𝑋𝑖 ⊆ [𝑛] for 𝑖 = 1, 2, 3 be the positions 𝑗 such that 𝑡𝑖 [𝑗] ≠ 𝑡 [𝑗]; then 𝑋2 = 𝑋1 ∪ 𝑋3 by
definition of 𝑒2. Let𝑤 denote the Hamming weight of a tuple and let 𝑥 = 𝑤 (𝑡1) −𝑤 (𝑡) and 𝑦 = 𝑤 (𝑡3) −𝑤 (𝑡). Assume
𝑥,𝑦 ≠ 0 as otherwise 𝑤 (𝑡) ∈ {𝑤 (𝑡1),𝑤 (𝑡3)} and 𝑡 ∈ 𝑅. Then 𝑝 divides both 𝑤 (𝑡2) −𝑤 (𝑡1) = 𝑥 and 𝑤 (𝑡2) −𝑤 (𝑡3) = 𝑦.
But then also𝑤 (𝑡) = 𝑤 (𝑡1) − 𝑦 = 𝑤 (𝑡1) − 𝑘𝑝 for some integer 𝑘 , hence𝑤 (𝑡) ∈ 𝑆 and 𝑡 ∈ 𝑅. □

Finally, we show two examples for the partial 𝑘-universal operation u𝑘 . The first is a previously studied class of
Lokshtanov et al. [48] (as adapted to the Boolean case in Theorem 3.1). They show that if 𝑑 is fixed and F is fixed and
finite, then this problem admits an improved algorithm, although this is unknown if F is infinite.

Definition 4.10. Let 𝑃𝑑 denote the set of Boolean relations such that each 𝑛-ary 𝑅 ∈ 𝑃𝑑 is the set of roots of an
𝑛-variate polynomial over some field F, where each polynomial has degree at most 𝑑 .

Lemma 4.11. Let 𝑅 ∈ 𝑃𝑑 be an 𝑛-ary relation. Then 𝑅 is preserved by (argument paddings of) u𝑑+1, but not by any other

non-trivial pSDI-operation of domain size at most 2𝑑 + 4.

Proof. For the first direction, let 𝑃 (𝑥1, . . . , 𝑥𝑛) be the polynomial defining𝑅, recall that the arity of u𝑑+1 is 𝑟 = 2𝑑+1−1,
and let 𝑡1, . . . , 𝑡𝑟 ∈ 𝑅 be such that u𝑑+1 (𝑡1, . . . , 𝑡𝑟) = 𝑡 ′ is defined. We will show that 𝑡 ′ ∈ 𝑅. Since the set of relations
representable by bounded-degree polynomials is sign-symmetric, we may assume for simplicity that 𝑡 ′ = 1𝑛 . For 𝑖 ∈ [𝑛],
let 𝑡 (𝑖) := (𝑡1 [𝑖], . . . , 𝑡𝑟 [𝑖]) be the tuple of values taken by the variable 𝑥𝑖 in this application of u𝑑+1. We then note
that 𝑡 (𝑖) , 𝑖 ∈ [𝑛], can take only 𝑑 + 2 different values, corresponding to the elements 𝑥 ∈ domain(u𝑑+1) such that
u𝑑+1 (𝑥) = 1. We use the tuples (𝑡1, . . . , 𝑡𝑟) to define a new polynomial of degree at most 𝑑 and with at most 𝑑 + 1
variables, by identifying all pairs of variables 𝑥𝑖 and 𝑥 𝑗 that have the same pattern, i.e., if 𝑡 (𝑖) = 𝑡 (𝑗) . We also eliminate
any variable 𝑥𝑖 such that 𝑡 (𝑖) = 1𝑟 by replacing 𝑥𝑖 by the constant 1 in 𝑃 . Let 𝑃 ′ be the resulting polynomial, and let 𝑅′

be the corresponding relation. If ar(𝑅′) < 𝑑 + 1, then by Lemma 4.5 𝑅′ is preserved by nu𝑑+1 and thus by u𝑑+1 as well
(see Theorem 4.16). Otherwise, the tuples 𝑡 (1) , . . . , 𝑡 (𝑛) enumerate all (𝑑 + 1)-tuples except 1𝑑+1 (recall the definition of
u𝑑 from Definition 3.19). Thus, we have 𝑃 ′(𝑥1, . . . , 𝑥𝑑+1) = 0 for every set of values 𝑥1, . . . , 𝑥𝑑+1 ∈ {0, 1} except possibly
𝑥1 = . . . = 𝑥𝑑+1 = 1. Hence, we will prove that 𝑃 ′(1, . . . , 1) = 0, too. First, for each 𝐼 ⊂ [𝑑 + 1] let 𝜒𝐼 ∈ {0, 1}𝑑+1 be the
tuple such that 𝜒𝐼 [𝑖] = 1 if and only if 𝑖 ∈ 𝐼 . Second, we may without loss of generality assume that 𝑃 ′ is multilinear,
and since its degree is at most 𝑑 we may in addition assume that it can be written as a sum Σ𝐼 ⊂[𝑑+1]𝛼𝐼

∏
𝑖∈𝐼 𝑥𝑖 , where

each 𝛼𝐼 is a coefficient (possibly equal to 0). Hence, 𝑃 ′(𝜒𝐼) =
∑
𝐼 ′⊆𝐼 𝛼𝐼 ′ for each 𝐼 ⊂ [𝑑 + 1], and to prove our claim it is

therefore sufficient to show that 𝛼𝐼 = 0 for each 𝐼 ⊆ [𝑑 + 1]. Indeed, 𝛼∅ = 0 since 0𝑑+1 ∈ 𝑅′; and 𝛼 {𝑖 } = 0 for every
𝑖 ∈ [𝑑 + 1] since 𝑃 ′(𝜒{𝑖 }) = 𝛼 {𝑖 } + 𝛼∅ = 𝛼 {𝑖 } = 0; and so on, in order of increasing cardinality of 𝐼 . Hence, 𝑃 ′ is the
constantly-zero polynomial, implying that 1𝑑+1 ∈ 𝑅′, and since 𝑃 ′ is an evaluation of 𝑃 , we have 𝑡 ′ = 1𝑛 ∈ 𝑅. We have
thus shown that relations defined as roots of polynomials of degree 𝑑 are preserved by the (𝑑 + 1)-universal operation.

In the other direction, the same argument will show that for any non-trivial pSDI-operation 𝑓 with |domain(𝑓) | ≤
2𝑑+4 other than the (𝑑+1)-universal operation, it is possible to define a polynomial on (|domain(𝑓) |−2)/2 variables and
of degree at most 𝑑 such that the corresponding relation is not preserved by 𝑓 . Indeed, let 𝑛 = (|domain(𝑓) | − 2)/2 and
𝑟 = ar(𝑓), and let 𝑡1, . . . , 𝑡𝑟 ∈ {0, 1}𝑛 be tuples such that 𝑡 (𝑖) = (𝑡1 [𝑖], . . . , 𝑡𝑟 [𝑖]) for 𝑖 ∈ [𝑛] enumerate the non-constant
tuples 𝑥 ∈ domain(𝑓) such that 𝑓 (𝑥) = 1 is defined. Then 𝑓 (𝑡1, . . . , 𝑡𝑟) = 1𝑛 is defined, and 1𝑛 ∉ {𝑡1, . . . , 𝑡𝑟 } since

Manuscript submitted to ACM

28 V. Lagerkvist and M. Wahlström

otherwise 𝑓 is a partial projection, and is therefore trivial (by choice of the tuples 𝑡 (𝑖)). If 𝑛 ≤ 𝑑 , then we may simply
consider the polynomial 𝑃 (𝑥1, . . . , 𝑥𝑛) =

∏
𝑖∈[𝑛] 𝑥𝑖 , whose corresponding relation 𝑅 is not preserved by 𝑓 . Otherwise,

let 𝐼 ⊂ [𝑑 + 1] be such that 𝜒𝐼 ∉ {𝑡1, . . . , 𝑡𝑟 }; this exists since 𝑓 is not the (𝑑 + 1)-universal partial operation. Let 𝑃 ′ be the
(𝑑 + 1)-variate polynomial

∑
𝐽 ⊂[𝑑+1] 𝛼 𝐽

∏
𝑖∈𝐽 𝑥𝑖 , with coefficients 𝛼 𝐽 = 0 if 𝐼 ⊈ 𝐽 , and with 𝛼 𝐽 = (−1) | 𝐽 |− |𝐼 | otherwise.

The purpose of each monomial 𝛼 𝐽
∏

𝑖∈𝐽 𝑥𝑖 is as follows. First, if 𝐽 = 𝐼 then we simply ensure that the monomial
𝛼𝐼

∏
𝑖∈𝐼 𝑥𝑖 =

∏
𝑖∈𝐼 𝑥𝑖 is included, which in turn implies that 𝑃 ′(𝛼𝐼) = 1 since any other monomial is 0 under 𝛼𝐼 . Second,

for any strict superset 𝐽 ⊂ [𝑑 + 1] of 𝐼 we have (1) −∏
𝑖∈𝐽 𝑥𝑖 if |𝐽 | − |𝐼 | is odd or (2) ∏𝑖∈𝐽 𝑥𝑖 if |𝐽 | − |𝐼 | is even. With this

intuition we see that 𝑃 ′(𝜒𝐼) = 1, 𝑃 ′(𝜒 𝐽) = 0 for every 𝐽 ⊂ [𝑑 + 1] distinct from 𝐼 , and that 𝑃 ′(1𝑑+1) = −(−1)𝑑+1−|𝐼 | .
Hence, the relation corresponding to 𝑃 ′ is not preserved by 𝑓 . □

Finally, we give one example of a symmetric relation in Inv(u3) that has no obvious connection to roots of polynomials,
showing that Inv(u3) is richer than the description in Lemma 4.11. A Sidon set is a set 𝑆 ⊆ {0, . . . , 𝑛} in which all sums
𝑖 + 𝑗 are distinct, for all 𝑖, 𝑗 ∈ 𝑆 . In other words the set {𝑖 + 𝑗 | 𝑖, 𝑗 ∈ 𝑆} has size

(|𝑆 |
2
)
+ |𝑆 |.

Lemma 4.12. Let 𝑆 ⊆ {0, . . . , 𝑛} be a Sidon set, and define the relation 𝑅(𝑥1, . . . , 𝑥𝑛) ⊆ {0, 1}𝑛 as

𝑅(𝑥1, . . . , 𝑥𝑛) ≡
(
𝑛∑︁
𝑖=1

𝑥𝑖 ∈ 𝑆

)
.

Then 𝑅 is preserved by u3.

Proof. Assume that there exists 𝑡1, . . . , 𝑡7 ∈ 𝑅 such that u3 (𝑡1, . . . , 𝑡7) = 𝑡 ∉ 𝑅. For 𝑖 ∈ [𝑛], let 𝑥𝑖 = (𝑡1 [𝑖], . . . , 𝑡7 [𝑖])
be the tuple of values taken by argument 𝑖 of 𝑅 in these tuples. Then the tuples 𝑥𝑖 take up to 8 different values, partitioned
as two constant tuples and three pairs of complementary tuples. Let 𝑋 𝑗 for 𝑗 = 1, 2, 3 be the set of arguments 𝑖 ∈ [𝑛]
such that the tuple 𝑥𝑖 belongs to the 𝑗 :th of these pairs, and let 𝑛 𝑗 be the difference in Hamming weight compared
to 𝑡 if flipping all values belonging to 𝑋 𝑗 . Let𝑊 be the Hamming weight of 𝑡 . Then 𝑆 contains the values𝑊 + 𝑛1,
𝑊 +𝑛2,𝑊 +𝑛1 +𝑛3 and𝑊 +𝑛2 +𝑛3, forming two pairs of weights with common difference 𝑛3. Since 𝑛3 ≠ 0 (otherwise
𝑊 =𝑊 + 𝑛3 ∈ 𝑆) we must have 𝑛1 = 𝑛2. By symmetry, we have 𝑛1 = 𝑛2 = 𝑛3. But then 𝑆 contains the values𝑊 + 𝑛1,
𝑊 + 𝑛1 + 𝑛2 =𝑊 + 2𝑛1, and𝑊 + 𝑛1 + 𝑛2 + 𝑛3 =𝑊 + 3𝑛1, which is a contradiction. Thus 𝑛 𝑗 = 0 for at least one 𝑗 , hence
𝑊 ∈ 𝑆 and 𝑡 ∈ 𝑅, contradicting the original assumption. □

4.3 Structure of minimal non-trivial pSDI-operations

Recall that the level of a minimal non-trivial pSDI operation 𝑓 is (|domain(𝑓) | −2)/2. In this section we describe minimal
pSDI-operations for each level and prove that inclusion structure in Figure 1 holds. We find no examples of minimal
non-trivial pSDI-operations on level 0 or 1, and the only non-trivial example on level 2 is the 2-edge operation. At
each level 𝑘 ≥ 3 the partial 𝑘-NU and 𝑘-universal operations are the unique strongest and weakest minimal non-trivial
pSDI-operation, respectively, whereas the 𝑘-edge operation is intermediate. We also find that the 𝑘-universal operations
u𝑘 are maximally weak in the sense that any non-trivial pSDI-operation with a domain of size 2𝑘 + 2 can define u𝑘 .

To prove these statements, we begin with the following lemma, which formalises one of the main methods of
constructing a (𝑘 + 1)-ary partial operation from a 𝑘-ary partial operation. We refer to 𝑔 as an argument padding of 𝑓 .

Lemma 4.13. Let 𝑓 be a𝑘-ary partial operation and let𝑔 be a (𝑘+1)-ary partial operation such that (1) Proj1,...,𝑘 (domain(𝑔)) =
domain(𝑓) and (2) 𝑓 (𝑥1, . . . , 𝑥𝑘) = 𝑔(𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1) for every (𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1) ∈ domain(𝑔). Then 𝑔 ∈ [𝑓]𝑠 .
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 29

Proof. Let 𝑓 and 𝑔 be as in the statement, and first construct the (𝑘 + 1)-ary partial operation

𝑓 ′(𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1) = 𝑓 (𝜋𝑘+1
1 (𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1), . . . , 𝜋𝑘+1

𝑘
(𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1)).

Clearly, 𝑓 ′ ∈ [𝑓]𝑠 , since it is a composition of 𝑓 and the projections 𝜋𝑘+1
1 , . . . , 𝜋𝑘+1

𝑘
, and it is not difficult to see that

Proj1,...,𝑘 (domain(𝑓 ′)) = domain(𝑓) and that 𝑔 can be obtained as a subfunction of 𝑓 ′. Since [𝑓]𝑠 is closed under taking
subfunctions it follows that 𝑔 ∈ [𝑓]𝑠 . □

More generally, if 𝑓1, . . . , 𝑓𝑚 are partial operations such that each 𝑓𝑖+1 is an argument padding of 𝑓𝑖 , then we also
say that 𝑓𝑚 is an argument padding of 𝑓1. Using Lemma 4.13 and Theorem 3.5 we may therefore conclude that
Inv(𝑓) ⊆ Inv(𝑔) whenever 𝑔 is an argument padding of 𝑓 . Hence, one useful strategy when comparing the expressive
strength of sign-symmetric languages is to fix a pSDI-operation 𝑓 and then construct stronger languages Inv(𝑔) via
argument padding. We will now prove that this strategy is particularly fruitful for the partial 𝑘-NU operation, nu𝑘 , in
the sense that any minimal, non-trivial pSDI-operation on level 𝑘 is an argument padding of nu𝑘 .

Lemma 4.14. Let 𝑓 be a pSDI-operation with |domain(𝑓) | = 2𝑘 + 2, 𝑘 ≥ 3. Then 𝑓 is a minimal non-trivial operation if

and only if 𝑓 is an argument padding of nu𝑘 .

Proof. In the one direction, assume that 𝑓 is a padding of nu𝑘 . It is not hard to verify that every subfunction 𝑓 ′ of 𝑓
which is pSDI is a partial projection, and that 𝑓 is non-trivial. Thus, 𝑓 is minimal non-trivial. In the other direction,
assume that 𝑓 is minimal and non-trivial, and let 𝑟 = ar(𝑓). Let 𝑡1, . . . , 𝑡𝑘 be the non-constant tuples such that 𝑓 (𝑡1) = 0
is defined. For each 𝑖 ∈ [𝑘], let 𝑗𝑖 ∈ [𝑟] be such that making 𝑓 undefined on 𝑡𝑖 and its complement 𝑡𝑖 leaves a subfunction
of 𝜋𝑟

𝑗𝑖
. It follows that for all 𝑎 ∈ [𝑘], 𝑡𝑎 [𝑗𝑖] ≠ 0 if and only if 𝑎 = 𝑖 . Then the arguments 𝑗1, . . . , 𝑗𝑘 of 𝑓 define the partial

𝑘-NU operation, and 𝑓 is a padding of it. □

Our claims about the weakest and strongest operations follow from this.

Lemma 4.15. The following hold.

(1) The unique non-trivial non-total pSDI-operation at level 𝑘 < 3 is the partial 2-edge operation.

(2) For any minimal non-trivial pSDI-operation 𝑓 at level 𝑘 ≥ 3, we have Inv(nu𝑘) ⊆ Inv(𝑓) ⊆ Inv(u𝑘).
(3) There are at most 22𝑘−𝑘−1

distinct minimal non-trivial pSDI-operations at level 𝑘 .

Proof. 1. It is easy to verify that no non-trivial operation is possible on level 1. Let 𝑓 be a non-trivial pSDI-operation
on level 2, and let 𝑡1, 𝑡2 ∈ domain(𝑓) be the non-constant tuples such that 𝑓 (𝑡1) = 0. Consider the options for the pairs
(𝑡1 [𝑖], 𝑡2 [𝑖]) for 𝑖 ∈ [ar(𝑓)]. If two distinct positions 𝑖, 𝑖 ′ give identical pairs, then 𝑡 [𝑖] = 𝑡 [𝑖 ′] for every 𝑡 ∈ domain(𝑓)
and 𝑖 and 𝑖 ′ are redundant arguments in 𝑓 , which we may assume does not occur. If 𝑡1 [𝑖] = 𝑡2 [𝑖] = 0 for some 𝑖 ∈ [ar(𝑓)]
then 𝑓 is a partial projection. This leaves three possible arguments, and unless all three exist, 𝑓 will be a total operation.
The remaining case is that 𝑓 = 𝑒2.

2. By Lemma 4.14 𝑓 is a padding of nu𝑘 , which provides the first inclusion. For the second, we may assume that 𝑓
has no redundant arguments, since otherwise 𝑓 is equivalent to an operation with fewer arguments. But then by design,
u𝑘 is a padding of 𝑓 , and the second inclusion follows.

3. By Lemma 4.14, we can restrict our attention to paddings of nu𝑘 . Since 𝑓 is a pSDI-operation, it is defined by the
values of the 𝑘 non-constant tuples 𝑡 in the domain with 𝑓 (𝑡) = 0. Let 𝑡1, . . . , 𝑡𝑘 be those tuples, and for 𝑖 ∈ [ar(𝑓)] let
𝑡 (𝑖) = (𝑡1 [𝑖], . . . , 𝑡𝑘 [𝑖]). As above, we may assume that 𝑡 (𝑖) ≠ 𝑡 (𝑗) for all distinct 𝑖, 𝑗 ∈ [ar(𝑓)]. This leaves at most 2𝑘

Manuscript submitted to ACM

30 V. Lagerkvist and M. Wahlström

possible arguments. Furthermore, 𝑡 (𝑖) cannot be all-zero unless 𝑓 is a partial projection, and 𝑘 arguments are determined
by nu𝑘 . This leaves 2𝑘 − 𝑘 − 1 arguments, whose presence or absence defines 𝑓 . □

The inclusion structure between the 𝑘-NU, 𝑘-edge and 𝑘-universal partial operations are now straightforward to
prove with these results.

Theorem 4.16. Let 𝑘 ≥ 3. Then the following inclusions hold.

(1) Inv(𝑒2) ⊂ Inv(𝑒𝑘),
(2) Inv(nu𝑘) ⊂ Inv(𝑒𝑘) ⊂ Inv(u𝑘),
(3) Inv(nu𝑘) ⊂ Inv(nu𝑘+1),
(4) Inv(𝑒𝑘) ⊂ Inv(𝑒𝑘+1), and
(5) Inv(u𝑘) ⊂ Inv(u𝑘+1).

Proof. For the inclusions, the second item follows from Lemma 4.15, and every other inclusion follows from
Lemma 4.13. Indeed, it is readily verified that for every 𝑘 ≥ 3, 𝑒𝑘 is an argument padding of 𝑒𝑘−1 and nu𝑘+1 is an
argument padding of nu𝑘 . For the universal operations, let 𝑡1, . . . , 𝑡𝑘+1 be the non-constant tuples of domain(u𝑘+1)
such that u𝑘+1 (𝑡𝑖) = 0, 𝑖 ∈ [𝑘 + 1]. Then the tuples 𝑡 (𝑖) = (𝑡1 [𝑖], . . . , 𝑡𝑘+1 [𝑖]), 𝑖 ∈ [2𝑘+1 − 1] spell out all (𝑘 + 1)-tuples
except 0𝑘+1, without repetition. Consider the subset 𝐼 ⊂ [ar(u𝑘+1)] consisting of indices 𝑖 such that 𝑡𝑘+1 [𝑖] = 0. Note
that 𝑡 (𝑖) for 𝑖 ∈ 𝐼 enumerates all 𝑘-tuples except 0𝑘 , padded with a 0. It follows that Proj𝐼 (u𝑘+1) = domain(u𝑘) and that
u𝑘+1 is an argument padding of u𝑘 . By Lemma 4.13 the inclusion follows.

To show that the inclusions are strict, consider the following: a 𝑘-clause is preserved by nu𝑘+1 (Lemma 4.5) but not
by u𝑘 (Lemma 4.6); a 1-in-𝑘 constraint is preserved by 𝑒𝑘 for every 𝑘 ≥ 2 but not by nu𝑘 (Lemma 4.8); and the language
𝑃𝑘−1 of roots of polynomials of degree at most 𝑘 − 1 is preserved by u𝑘 but not by any other operation on level 𝑘 by
Lemma 4.11. □

Finally, we have an easy consequence in more general terms.

Corollary 4.17. Let 𝑓 be a pSDI-operation with |domain(𝑓) | = 2𝑘 + 2. Then Inv(𝑓) ⊆ Inv(u𝑘).

Proof. Let 𝑓 ′ be an arbitrary minimal pSDI-operation that is a subfunction of 𝑓 . Then 𝑓 ′ belongs to some level
𝑘 ′ ≤ 𝑘 , hence Inv(𝑓) ⊆ Inv(u𝑘′) ⊆ Inv(u𝑘) by Lemma 4.15 and Theorem 4.16. □

4.4 Complementary consequences

We now consider some dual questions, i.e., what consequences can we (in general) draw from the information that some
sign-symmetric language Γ is not preserved by 𝑓 , for some pSDI-operation 𝑓 ? We begin with an easy result, which
forms the building block of later results.

Lemma 4.18. Let Γ be a sign-symmetric language which is not preserved by nu𝑘 , for some 𝑘 ≥ 3. Then Γ can qfpp-define

a 𝑘-ary symmetric relation 𝑅𝑘 which does not contain any tuples of weight 0 but all tuples of weight 1.

Proof. Let 𝑘 ≥ 3 be an arbitrary constant, and let 𝑅 ∈ Γ be a relation not preserved by nu𝑘 of some arity 𝑛 = ar(𝑅).
Let 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅 be witnesses to this, i.e., nu𝑘 (𝑡1, . . . , 𝑡𝑘) = 𝑡 is defined and 𝑡 ∉ 𝑅. Define 𝑡 (𝑖) = (𝑡1 [𝑖], . . . , 𝑡𝑘 [𝑖]).

By sign-symmetry, we may assume that 𝑡 = 0𝑛 . Furthermore, if there is an argument 𝑖 ∈ [𝑛] such that 𝑡 (𝑖) = 0𝑘 , then
we can find a smaller counterexample by fixing the 𝑖th argument of 𝑅 to 0. Thus, for every 𝑖 ∈ [𝑛], the tuple 𝑡 (𝑖) now
contains precisely one non-zero value. Let us define a new relation 𝑅′(𝑥1, . . . , 𝑥𝑘) of arity 𝑘 by identifying arguments
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 31

according to this, i.e., for every position 𝑖 ∈ [𝑛] such that 𝑡 (𝑖) is non-zero in position 𝑗 ∈ [𝑘], insert the variable 𝑥 𝑗 in
position 𝑖 in 𝑅. Next, define 𝑅′′ as the result of the conjunction of all 𝑘! applications of 𝑅′ with permuted argument
order. Then 𝑅′′ is a symmetric relation which contains all tuples of weight 1 but none of weight 0. Thus, Γ qfpp-defines
a relation 𝑅𝑘 = 𝑅′′ as described of every arity 𝑘 ≥ 3. □

By a similar strategy, we have an important result about languages not preserved by the 𝑘-universal operation.

Lemma 4.19. Let Γ be a sign-symmetric language not preserved by u𝑘 for some 𝑘 ≥ 2. Then Γ can qfpp-define all

𝑘-clauses.

Proof. Let 𝑅 ∈ Γ be a relation not preserved by u𝑘 , and let 𝑛 = ar(𝑅) and 𝑟 = 2𝑘 − 1 be the arity of u𝑘 . Let
𝑡1, . . . , 𝑡𝑟 ∈ 𝑅 be such that u𝑘 (𝑡1, . . . , 𝑡𝑟) = 𝑡 is defined and 𝑡 ∉ 𝑅. By sign-symmetry of Γ, we may assume that 𝑡 = 0𝑛 .
Under this assumption we will prove that Γ can qfpp-define the relation {0, 1}𝑘 \ {0𝑘 }, i.e., the set of models of the
𝑘-clause (𝑥1 ∨ . . . ∨ 𝑥𝑘), which is sufficient since Γ is sign-symmetric. Create a new relation by identifying all variables
𝑥𝑖 and 𝑥 𝑗 in 𝑅(𝑥1, . . . , 𝑥𝑛) for which 𝑡𝑎 [𝑖] = 𝑡𝑎 [𝑗] for every 𝑎 ∈ [𝑟]. Also assume that there is no variable 𝑥𝑖 such that
𝑡𝑎 [𝑖] = 0 for every 𝑎 ∈ [𝑟], or else replace 𝑥𝑖 by the constant 0 in 𝑅 (again by sign-symmetry). If we for each 1 ≤ 𝑖 ≤ 𝑛

let 𝑡 (𝑖) = (𝑡1 [𝑖], . . . , 𝑡𝑟 [𝑖]), then it is important to note that the sequence 𝑡 (1) , . . . , 𝑡 (𝑛) enumerates all non-constant
elements in domain(u𝑘) where u𝑘 returns 0, since otherwise 𝑡𝑖 = 0𝑛 for some 𝑖 ∈ [𝑛]. Hence, the above variable
identifications result in a new relation 𝑅′ of arity precisely 𝑘 , and it is readily verified that the only 𝑘-tuple not included
in 𝑅′ is 0𝑘 . □

By utilising this expressive power, we show a similar (although perhaps less immediately enlightening) consequence
for languages not preserved by 𝑒𝑘 .

Lemma 4.20. Let Γ be a sign-symmetric language not preserved by 𝑒𝑘 for some 𝑘 ≥ 2. Then Γ can qfpp-define the relation

𝑅𝑘 defined by

𝑅𝑘 = {(𝑥1, . . . , 𝑥𝑘) ∈ {0, 1}𝑘 |
𝑘∑︁
𝑖=1

𝑥𝑖 = 1} ∪ {(1, 1, 0, . . . , 0)},

where the last tuple contains 1 in the first two positions and 0 in all remaining positions.

Proof. We first implement a 𝑘-ary relation 𝑅′ as in Lemmas 4.18 and 4.19. Let 𝑅 ∈ Γ be a relation not preserved by 𝑒𝑘 ,
of arity ar(𝑅) = 𝑛, and let 𝑡1, . . . , 𝑡𝑘+1 ∈ 𝑅 be tuples such that 𝑒𝑘 (𝑡1, . . . , 𝑡𝑘+1) = 𝑡 is defined and 𝑡 ∉ 𝑅. By sign-symmetry,
we can assume that 𝑡 = 0𝑛 , and that no tuple (𝑡1 [𝑖], . . . , 𝑡𝑘+1 [𝑖]) is constantly 0. Thus, there are precisely 𝑘 different
tuples occurring among (𝑡1 [𝑖], . . . , 𝑡𝑘+1 [𝑖]) for 𝑖 ∈ [𝑛]. We implement the relation 𝑅′ by inserting variables 𝑥1 through
𝑥𝑘 in positions 𝑖 ∈ [𝑛] according to these patterns. We deduce (up to argument ordering) that 𝑅𝑘 ⊆ 𝑅′ and 0𝑘 ∉ 𝑅′.
. Finally, since Γ is not preserved by 𝑒2, by Lemma 4.19 Γ qfpp-defines all 2-clauses. It can be easily verified that by
appropriate usage of constraints (¬𝑥𝑖 ∨ ¬𝑥 𝑗) for 𝑖, 𝑗 ∈ [𝑘] we can eliminate all tuples of 𝑅′ \ 𝑅𝑘 without eliminating
any tuple of 𝑅𝑘 ; hence the result is a qfpp-definition of 𝑅𝑘 . □

By the above (Lemmas 4.20 and 4.19) we have simple, ‘canonical’ consequences of a language not being preserved by
𝑒𝑘 respectively u𝑘 for some 𝑘 ≥ 2, in that these lemmas provide a single relation 𝑅 each, such that Γ can qfpp-define 𝑅
if and only if 𝑅 is not preserved by the respective partial operation. For the partial 𝑘-NU operation, the consequence is
more open, but we can actually strengthen this significantly if we assume a constraint language not preserved by any

partial 𝑘-NU operation.
Manuscript submitted to ACM

32 V. Lagerkvist and M. Wahlström

Theorem 4.21. Let Γ be a sign-symmetric language that is not preserved by the partial 𝑘-NU operation, for any 𝑘 . Then

one of the following holds.

(1) Γ can qfpp-define 1-in-𝑘-clauses for every 𝑘 .

(2) There is a fixed prime 𝑝 such that Γ can qfpp-define relations

𝑘∑︁
𝑖=1

𝑥𝑖 ≡ 𝑎 (mod 𝑝)

for every 0 ≤ 𝑎 < 𝑝 , of every arity 𝑘 .

Before we proceed with the proof, let us make a simple observation about qfpp-definitions among symmetric relations.

Lemma 4.22. Let 𝑅 be a symmetric 𝑛-ary relation, including tuples of weights 𝑆 ⊆ {0, . . . , 𝑛}. Using 𝑅, we can qfpp-define
symmetric relations of the following descriptions.

(1) Shift down: a relation of arity 𝑛 − 1 accepting values 𝑆 ′ = {𝑥 − 1 | 𝑥 ∈ 𝑆, 𝑥 > 0}.
(2) Truncate: a relation of arity 𝑛 − 1 accepting values 𝑆 ′ = {𝑥 ∈ 𝑆 | 𝑥 < 𝑛}.
(3) Grouping: for any integer 𝑝 > 1, a relation of arity ⌊𝑛/𝑝⌋ accepting values 𝑆 ′ = {𝑥 ′ | 𝑥 ′𝑝 ∈ 𝑆}.

Proof. These are implemented by, respectively, fixing an argument to 1 in 𝑅; fixing an argument to 0 in 𝑅; and
grouping arguments of 𝑅 in groups of size 𝑝 (after truncating ar(𝑅) to an even multiple of 𝑝). □

We can now show the result. The proof is split into two cases, but let us first consider the case when Γ is preserved
by the partial Maltsev operation.

Lemma 4.23. Let Γ be a sign-symmetric language that is not preserved by the partial 𝑘-NU operation for any 𝑘 , nor by

𝑒2. Then Γ can qfpp-define 1-in-𝑘-clauses for every 𝑘 .

Proof. The proof is similar to Lemma 4.20. Since Γ is not preserved by 𝑒2, by Lemma 4.19 Γ qfpp-defines 2-clauses,
and by Lemma 4.18 Γ qfpp-defines some symmetric relation 𝑅 of every arity 𝑘 which accepts tuples of weight 1 but not
tuples of weight 0. Adding all negative 2-clauses to 𝑅 qfpp-defines the relation 𝑅1/𝑘 which accepts only tuples of weight
1. □

We now finish the proof.

Proof of Theorem 4.21. If Γ is not preserved by 𝑒2, then the result follows from Lemma 4.23, so assume that 𝑒2 is a
partial polymorphism of Γ. By Lemma 4.18, Γ can qfpp-define a symmetric relation 𝑅 of any arity 𝑘 which accepts tuples
of weight 1 but not tuples of weight 0. By Lemma 4.9 this relation must be equivalent to

∑
𝑋 = 1 (mod 𝑟) for some

period 𝑟 (possibly 𝑟 > 𝑘). We first note that if Γ can qfpp-define a symmetric relation of arity 𝑟 ≥ 2𝑘 which accepts tuples
of only one weight𝑤 where𝑤 ∉ {0, 𝑟 }, then we can qfpp-define a 1-in-𝑘-clause. Let 𝑅′ be such a relation. We assume
𝑤 ≤ 𝑟/2, or else we negate every position of 𝑅′. Then we fix𝑤 − 1 arguments of 𝑅′ to 1 and 𝑟 − (𝑤 − 1+𝑘) ≥ 0 positions
to 0, leaving a 1-in-𝑘-clause on the non-fixed positions. Similarly, if Γ can qfpp-define symmetric relations of arbitrarily
large period 𝑟 accepting at least one non-constant tuple, then we can implement a relation 𝑅′ as above and produce a
1-in-𝑘-clause. Thus, in the remaining case, there is a global bound 𝑝 such that every symmetric relation qfpp-defined
by Γ has a period of at most 𝑝 . In particular, there is some period 𝑝 ′ ≤ 𝑝 that can be implemented for infinitely many
arities. If 𝑝 ′ is not prime, let 𝑝 ′ = 𝑝 ′′𝑝 ′′′ where 𝑝 ′′ is a prime factor of 𝑝 ′; we may simply group variables in groups of
𝑝 ′′′ variables at a time, and possibly pad with less than 𝑝 ′′′ zeroes, to implement symmetric relations of period 𝑝 ′′. It is
also easy to see that we can similarly implement all offsets 𝑎 by inserting constants. This finishes the proof. □

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 33

Section summary. In summary of this section, towards the purpose of discussing sign-symmetric languages Γ such
that SAT(Γ) does, or does not, admit an improved algorithm under SETH, we conclude the following. Recall that Γ𝑘

SAT

denotes the language of all 𝑘-clauses. We find that Γ𝑘
SAT is preserved by every minimal operation on level 𝑘 ′ > 𝑘 (in

particular, by nu𝑘+1); not preserved by any operation on a level 𝑘 ′ ≤ 𝑘 ; and that any sign-symmetric language Γ which
is not preserved by the 𝑘-universal partial operation u𝑘 can qfpp-define Γ𝑘

SAT. Assuming SETH, the minimal non-trivial
pSDI-operations that preserve Γ therefore appear to be reasonable proxies for the complexity of SAT(Γ).

Finally, for each level 𝑘 , there is a language – namely the language of roots of polynomials of degree less than
𝑘 – which is preserved by u𝑘 but not by any other operation at level 𝑘 ′ ≤ 𝑘 , and which does admit an improved
algorithm [48]. This shows that any “dichotomy” characterising sign-symmetric languages Γ for which SAT(Γ) admits
an improved algorithm under SETH, cannot require a minimal non-trivial pSDI-operation other than u𝑘 for some 𝑘 .

It remains to show that these very mild restrictions, of requiring only the presence of a single non-trivial pSDI-
operation 𝑓 preserving Γ, can be powerful enough to ensure that SAT(Γ) admits an improved algorithm. This is our
topic of study for the next section.

5 UPPER BOUNDS FOR SIGN-SYMMETRIC SATISFIABILITY PROBLEMS

In this section, we consider the feasibility of designing an improved algorithm directly for Inv(𝑓)-SAT for a minimal
non-trivial pSDI-operation 𝑓 , i.e., an improved algorithm that only uses the abstract properties guaranteed by such an
operation 𝑓 . Some of the algorithms that we consider are also valid for arbitrary finite domains, and in those cases
we by Inv(𝑓)-CSP mean the corresponding operation 𝑓 defined over the domain in question. We show improved
algorithms unconditionally for 𝑓 = 𝑒2 and for 𝑓 = nu3, over arbitrary finite domains (where the latter result is only
interesting for the non-Boolean case, since the Boolean case is in P). The algorithms for these cases use, respectively, a
Subset Sum-style meet-in-the-middle algorithm and fast matrix multiplication over exponentially large matrices. These
algorithms all work in the extension oracle model.

We also show conditional or partial results. We show two conditional results for partial 𝑘-NU operations, showing
that 𝑘-NU-CSP admits an improved algorithm in the oracle model if the (𝑘, 𝑘 − 1)-hypercliqe problem admits an
improved algorithm, and that 𝑘-NU-SAT admits an improved algorithm in the explicit representation model if the
Erdős-Rado sunflower conjecture [22] holds for sunflowers with 𝑘 sets. The first of these results is a direct generalisation
of the matrix multiplication strategy; the second uses fast local search in the style of Schöning [59]. Finally, we also
consider the symmetric special case of 3-edge-SAT, and show that this problem reduces to a problem of finding a
unit-coloured triangle in an edge-coloured graph. This, in turn, follows from fast algorithms for sparse triangle detection.
Several of the algorithms we reduce to have a running time that depends on the matrix multiplication exponent 𝜔 ; the
best currently known value is 𝜔 < 2.373 [44, 63].

Before we begin, we need the following lemma, which shows that if a relation is preserved by a pSDI-operation,
then it is possible to view the relation as a relation of smaller arity over a larger domain, which is preserved by the
corresponding partial operation over the larger domain.

Lemma 5.1. Let 𝑅 be an 𝑛-ary relation over a set of values 𝐷 , 𝑓 a pSDI-operation preserving 𝑅, and 𝑃 the polymorphism

pattern that defines 𝑓 . Let 𝐼1 . . . , 𝐼𝑚 be a partition of [𝑛], and 𝑅𝐼1,...,𝐼𝑚 the𝑚-ary relation

𝑅𝐼1,...,𝐼𝑚 = {(Proj𝐼1 (𝑡), . . . , Proj𝐼𝑚 (𝑡)) | 𝑡 ∈ 𝑅}

Manuscript submitted to ACM

34 V. Lagerkvist and M. Wahlström

over the set of values Proj𝐼1 (𝑅) ∪ . . .∪Proj𝐼𝑚 (𝑅). Then the partial operation 𝑓 ′ defined by 𝑃 over Proj𝐼1 (𝑅) ∪ . . .∪Proj𝐼𝑚 (𝑅)
preserves 𝑅𝐼1,...,𝐼𝑚

Proof. Let 𝑘 = ar(𝑓 ′) = ar(𝑓). Let 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅 and let 𝑡 ′1, . . . , 𝑡
′
𝑘
∈ 𝑅𝐼1,...,𝐼𝑚 be the corresponding tuples of 𝑅𝐼1,...,𝐼𝑚 .

Assume that 𝑓 ′(𝑡 ′1, . . . , 𝑡
′
𝑘
) is defined, i.e., (𝑡 ′1 [𝑗], . . . , 𝑡

′
𝑘
[𝑗]) ∈ domain(𝑓 ′) for each 𝑗 ∈ [𝑘]. Let 𝑖 ∈ [𝑛] and let 𝐼 𝑗 be the

index set such that 𝑖 ∈ 𝐼 𝑗 . Since 𝑓 ′(𝑡 ′1 [𝑗], . . . , 𝑡
′
𝑘
[𝑗]) is defined it must be an instantiation of a tuple 𝑝 ∈ 𝑃 . It follows that

(𝑡1 [𝑖], . . . , 𝑡𝑘 [𝑖]) must be an instantiation of 𝑝 as well, implying that 𝑓 (𝑡1 [𝑖], . . . , 𝑡𝑘 [𝑖]) is defined. Hence, 𝑓 ′ preserves
𝑅𝐼1,...,𝐼𝑚 . □

5.1 An 𝑂∗ (|𝐷 |
𝑛
2) algorithm for 2-edge-CSP

The following result was shown in Section 2.2, essentially using Lemma 5.1 together with the structure of binary
2-edge-relations.

Theorem 5.2. 2-edge-CSP is solvable in𝑂∗ (|𝐷 |
𝑛
2) time in both the extension oracle model and the explicit representation.

5.2 An 𝑂∗ (|𝐷 |
𝜔𝑛

3) algorithm for 3-NU-CSP

The algorithm in Section 5.1 used the rectangularity property of binary relations in order to obtain an improved
algorithm for 2-edge-CSP. In this section we will devise an 𝑂∗ (|𝐷 |

𝜔𝑛
3) time algorithm for 3-NU-CSP by exploiting a

structural property that is valid for all ternary relations preserved by nu3. Here, 𝜔 < 2.373 is the matrix multiplication
exponent. We will need the following definition.

Definition 5.3. An 𝑛-ary relation 𝑅 over 𝐷 is 𝑘-decomposable if there for every 𝑡 ∉ 𝑅 exists an index set 𝐼 ⊆ [𝑛],
|𝐼 | ≤ 𝑘 , such that Proj𝐼 (𝑡) ∉ Proj𝐼 (𝑅).

In the total case it is known that 𝑅 is 𝑘-decomposable if 𝑅 is preserved by a total 𝑘-ary NU-operation [35]. In general,
this is not true for partial NU-operations, but we still obtain the following result.

Lemma 5.4. Let 𝑅 be a 𝑘-ary relation preserved by nu𝑘 . Then 𝑅 is (𝑘 − 1)-decomposable.

Proof. Let 𝑡 be a 𝑘-ary tuple not included in 𝑅. Assume that Proj𝐼 (𝑡) ∈ Proj𝐼 (𝑅) for every index set 𝐼 ⊆ [𝑘], |𝐼 | < 𝑘 .
But then there must exist 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅 such that each 𝑡𝑖 differ from 𝑡 in at most one position. This furthermore implies
that nu𝑘 (𝑡1, . . . , 𝑡𝑘) is defined, and therefore also that nu𝑘 (𝑡1, . . . , 𝑡𝑘) = 𝑡 ∉ 𝑅. This contradicts the assumption that
nu𝑘 preserves 𝑅, and we therefore conclude that there must exist an index set 𝐼 ⊆ [𝑘] of size at most 𝑘 − 1, such that
Proj𝐼 (𝑡) ∉ Proj𝐼 (𝑅). □

Here, it might be instructive to note that any Boolean relation which is (𝑘 − 1)-decomposable can be defined
as a conjunction of (𝑘 − 1)-clauses. Hence, Lemma 5.4 properly generalises Lemma 4.5. With the help of (𝑘 − 1)-
decomposability we are now ready to prove our main result in this section.

Theorem 5.5. 3-NU-CSP is solvable in𝑂∗ (|𝐷 |
𝜔𝑛

3) time in both the extension oracle model and the explicit representation,

where 𝜔 < 2.373 is the matrix multiplication exponent.

Proof. Let (𝑉 ,𝐶) be an instance of 3-NU-CSP where𝑉 = {𝑥1, . . . , 𝑥𝑛} and𝐶 = {𝐶1, . . . ,𝐶𝑚}. Partition [𝑛] into three
sets 𝐼1, 𝐼2, 𝐼3 such that |𝐼𝑖 | = 𝑛

3 (or, if this is not possible, as close as possible). Let 𝐹1, 𝐹2, 𝐹3 denote the set of all partial
truth assignments corresponding to 𝐼1, 𝐼2, 𝐼3, and observe that |𝐹𝑖 | ≤ |𝐷 |

𝑛
3 +1 for each 1 ≤ 𝑖 ≤ 3. First, for each partial

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 35

truth assignment 𝑓 ∈ 𝐹𝑖 , remove it from the set 𝐹𝑖 if there exists a constraint in the instance which is not consistent with
𝑓 . This can be done in polynomial time with respect to the number of constraints in the instance, using an extension
oracle query for each constraint. Second, construct a 3-partite graph where the node set is the disjoint union of 𝐹1, 𝐹2
and 𝐹3, and add an edge between two nodes in this graph if and only if the combination of this partial truth assignment
is not contradicted by any constraint in the instance. Last, answer yes if and only if the resulting graph contains a
triangle.

We begin by proving correctness of this algorithm and then analyse its complexity. We first claim that if 𝑓1 ∈
𝐹1, 𝑓2 ∈ 𝐹2, 𝑓3 ∈ 𝐹3 forms a triangle in the 3-partite graph, then the combination of 𝑓1, 𝑓2, 𝑓3 satisfies each constraint
in the instance. Suppose otherwise, i.e., that there exists 𝑅(𝑥𝑖1 , . . . , 𝑥𝑖𝑘) ∈ 𝐶 , 𝑘 = ar(𝑅), which is not satisfied by the
combination of 𝑓1, 𝑓2, 𝑓3. Let 𝐼 ′1 = { 𝑗 | 𝑖 𝑗 ∈ 𝐼1}, 𝐼 ′2 = { 𝑗 | 𝑖 𝑗 ∈ 𝐼2}, and 𝐼 ′3 = { 𝑗 | 𝑖 𝑗 ∈ 𝐼3} and consider the relation
𝑅𝐼 ′1,𝐼

′
2,𝐼

′
3
= {(Proj𝐼1 (𝑡), Proj𝐼2 (𝑡), Proj𝐼3 (𝑡)) | 𝑡 ∈ 𝑅} over the set of values Proj𝐼1 (𝑅) ∪Proj𝐼2 (𝑅) ∪Proj𝐼3 (𝑅). By Lemma 5.1

this relation is preserved by the nu3 operation over the larger domain, and it then follows from Lemma 5.4 that this
relation is 2-decomposable. But then there exists 𝑦1, 𝑦2 ∈ {𝑓1, 𝑓2, 𝑓3} whose combination does not satisfy 𝑅(𝑥𝑖1 , . . . , 𝑥𝑖𝑘),
contradicting the assumption that 𝑓1, 𝑓2, 𝑓3 forms a triangle. Hence, if (𝑉 ,𝐶) is satisfiable, then there clearly exists a
triangle in the 3-partite graph, and if there exists a triangle, then by following the reasoning above, the instance must
be satisfiable.

For the complexity, we begin by enumerating the three sets of partial truth assignments, which takes 𝑂 (|𝐷 |
𝑛
3) time.

We then remove any partial truth assignment which is not consistent with the instance, which increases this by a
polynomial factor, depending only on the number of constraints and the extension queries for each constraint. Similarly,
when constructing the 3-partite graph we enumerate all binary combinations of partial truth assignments from the
three sets and check whether they are consistent. After this we check for the existence of a triangle in the resulting
graph with 𝑂 (|𝐷 |

𝑛
3) nodes, which can be solved in 𝑂 (|𝐷 |

𝑛
3
𝜔

) time for 𝜔 < 2.373, using fast matrix multiplication, i.e.,
by cubing the adjacency matrix and then scanning the diagonal for non-zero entries. □

5.3 Strategies for 𝑘-NU-SAT

It is easy to see that the strategy used in Theorem 5.5 extends to reducing 𝑘-NU-CSP problems to (𝑘, 𝑘 −1)-hypercliqe,
i.e., the problem of finding a 𝑘-vertex hyperclique in a (𝑘 − 1)-regular hypergraph. Thus we get the following.

Lemma 5.6. Assume that (𝑘, 𝑘 − 1)-hyperclique on 𝑛 vertices can be solved in time 𝑂∗ (𝑛𝑘−Y) for some Y > 0. Then
𝑘-NU-CSP admits an improved algorithm in the extension oracle model, i.e., an algorithm running in time 𝑂∗ (|𝐷 | (1−Y′)𝑛)
on domain size 𝐷 and on 𝑛 variables, for some Y ′ > 0.

However, it should be noted that this is a notoriously difficult problem, and there is some evidence against such
results [45]. Thus, we also investigate a less general algorithm that rests on a milder assumption.

5.3.1 𝑘-NU-SAT via local search. We show that subject to a popular conjecture,𝑘-NU-SAT admits an improved algorithm
in the explicit representation model via a local search strategy. To state this we need a few basic definitions. A sunflower

(with 𝑘 sets) is a collection of 𝑘 sets 𝑆1, . . . , 𝑆𝑘 with common intersection 𝑆 = 𝑆1 ∩ . . . ∩ 𝑆𝑘 , called the core, such that for
every pair 𝑖, 𝑗 ∈ [𝑘], 𝑖 ≠ 𝑗 , we have 𝑆𝑖 ∩ 𝑆 𝑗 = 𝑆 . Note that we may have 𝑆 = ∅. The sunflower conjecture [22], in the form
we will need, states that for every 𝑘 there is a constant 𝐶𝑘 such that for every 𝑛, every collection of at least 𝐶𝑛

𝑘
sets

of cardinality 𝑛 contains a sunflower with 𝑘 petals. This conjecture was the subject of the Polymath 10 collaborative
Manuscript submitted to ACM

36 V. Lagerkvist and M. Wahlström

mathematics project, but remains a notorious open problem. See Alon, Shpilka and Umans [1] for variations of the
conjecture and connections to other problems.

We first show a simple connection between the sunflower conjecture for sunflowers with 𝑘 sets and relations
𝑅 ∈ Inv(nu𝑘). For convenience, for a set 𝑆 ⊆ [𝑛] we denote by 𝜒𝑛

𝑆
the tuple 𝑡 ∈ {0, 1}𝑛 such that for each 𝑖 ∈ [𝑛],

𝑡 [𝑖] = 1 is 𝑖 ∈ 𝑆 and 𝑡 [𝑖] = 0 otherwise.

Lemma 5.7. Let 𝑅 ⊂ {0, 1}𝑛 be a relation with 0𝑛 ∉ 𝑅. Say that a tuple 𝑡 = 𝜒𝑛
𝑆
is minimal in 𝑅 if 𝑡 ∈ 𝑅 but for every

𝑆 ′ ⊂ 𝑆 we have 𝜒𝑛
𝑆′ ∉ 𝑅. For 𝑖 ∈ [𝑛], let F𝑖 be the set of minimal tuples in 𝑅 of Hamming weight 𝑖 . If 𝑅 is preserved by nu𝑘 ,

then F𝑖 does not contain a sunflower of 𝑘 sets.

Proof. Let F𝑖 be as in the statement, and assume that 𝑅 is preserved by nu𝑘 . Assume that there are distinct sets
𝑆1, . . . , 𝑆𝑘 forming a sunflower with some core 𝑆 , such that 𝜒𝑆 𝑗

∈ F𝑖 for every 𝑗 ∈ [𝑘]. But then the operation
nu𝑘 (𝜒𝑆1 , . . . 𝜒𝑆𝑘) is defined, and produces the tuple 𝜒𝑆 . This contradicts that the tuples are minimal in 𝑅. □

We show that the sunflower conjecture is sufficient to allow an improved algorithm. The key idea is that if a relation
𝑅 is given explicitly, the sun flower conjecture implies that all minimal tuples of 𝑅 of Hamming weight 𝑝 can be
enumerated in 𝑂∗ (2𝑂 (𝑝)) time, which makes a local search algorithm possible.

Lemma 5.8. Assume that the sunflower conjecture holds for sunflowers with 𝑘 sets, with some constant 𝐶𝑘 . Let Γ be a

sign-symmetric language preserved by nu𝑘 . Assume that for every 𝑛-ary relation 𝑅 ∈ Γ and every 𝑝 ∈ [𝑛], the minimal

tuples in 𝑅 of Hamming weight at most 𝑝 can be enumerated in time 𝑂∗ (2𝑂 (𝑝)). Then SAT(Γ) admits an improved

algorithm.

Proof. We first show that the assumptions are sufficient to allow a solution for the local search problem for SAT(Γ),
in the following form. Let an instance (𝑉 ,𝐶) of SAT(Γ) with |𝑉 | = 𝑛, a tuple 𝑡 ∈ {0, 1}𝑛 , and an integer 𝑝 ∈ [𝑛] be
provided. We can in𝑂∗ (2𝑂 (𝑝)) time decide whether there is a tuple 𝑡 ′ ∈ {0, 1}𝑛 with Hamming distance at most 𝑝 from
𝑡 that satisfies (𝑉 ,𝐶).

For this, we repeatedly perform the following procedure. Verify whether the present tuple 𝑡 satisfies (𝑉 ,𝐶), and if
not, let 𝑅(𝑋) be a constraint in𝐶 falsified by 𝑡 , and let 𝐼 ⊆ [𝑛] be the set of indices corresponding to the set of variables
𝑋 . Let 𝑠 be the sign pattern such that (Proj𝐼 (𝑡))𝑠 = 0 |𝑋 | . Note that 𝑅𝑠 ∈ Γ by assumption. We then enumerate the
minimal tuples in 𝑅𝑠 of Hamming weight at most 𝑝 , and for every such tuple 𝑡 ′, of weight 𝑖 , let 𝑡 ′′ be the tuple 𝑡 with
bits flipped according to 𝑡 ′, and recursively solve the local search problem from tuple 𝑡 ′′ with new parameter 𝑝 − 𝑖 .
Correctness is clear, since the search is exhaustive (because we loop through all minimal tuples). We argue that this
solves the local search problem itself in 𝑂∗ (2𝑂 (𝑝)) time. For the running time, assume for simplicity that producing the
tuples takes 𝑂∗ (𝑐𝑝) time and, for the same constant 𝑐 , there are at most 𝑐𝑖 minimal tuples of weight 𝑖 (by Lemma 5.7).
Up to polynomial factors, the running time is then bounded by a recurrence

𝑇 (𝑝) = 𝑐𝑝 +
𝑝∑︁
𝑖=1

𝑐𝑖𝑇 (𝑝 − 𝑖),

which is bounded as 𝑇 (𝑝) ≤ (2𝑐)𝑝 .
From here on, well-known methods can be used to complete the above into an improved algorithm: sample 𝑐𝑛

random points, for a suitable 𝑐 , and perform local search around the 𝑝-neighbourhood of each point. For additional
details, cf. Schöning’s algorithm for 𝑘-SAT [59] and its derandomisation [21], or, alternatively, restrict the above to
monotone local search instead of arbitrary local search and apply the method of Fomin et al. [24]. □

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 37

In particular, this is allows for an algorithm in the explicit representation model.

Theorem 5.9. Assume that the sunflower conjecture holds for sunflowers with 𝑘 sets. Then 𝑘-NU-SAT admits an improved

algorithm in the explicit representation model.

We leave it as an open question whether access to an extension oracle (also known as an interval oracle) suffices to
solve the local search problem in single-exponential time. The problem, of course, is that the bounds above only apply
to the minimal tuples, and while it is easy to find a single minimal tuple using an extension oracle, it is less obvious
how to test for the existence of a minimal tuple within a given interval. Meeks [49] showed how a similar result is
possible, but her method would require an oracle for finding minimal satisfying tuples of weight exactly 𝑖 , which is also
not clear how to do.

5.3.2 𝑘-NU-SAT and bounded block sensitivity. Finally, we briefly investigate connections between the nu𝑘 partial
operation and a notion from Boolean function analysis known as block sensitivity, introduced by Nisan [51]. See also
the book by O’Donnell [52].

We first introduce some temporary notation. For any relation 𝑅 ⊆ {0, 1}𝑛 , let 𝑓𝑅 : {0, 1}𝑛 → {0, 1} be a function
defined as 𝑓𝑅 (𝑡) = [𝑡 ∈ 𝑅], i.e., 𝑓𝑅 (𝑡) = 1 if 𝑡 ∈ 𝑅 and 𝑓𝑅 (𝑡) = 0 otherwise. For a tuple 𝑡 ∈ {0, 1}𝑛 and a set 𝑆 ⊆ [𝑛], let
𝑡𝑆 denote the tuple 𝑡 with the bits of 𝑆 flipped. A function 𝑓 : {0, 1}𝑛 → {0, 1} has block sensitivity bounded by 𝑏 if for
every 𝑡 ∈ {0, 1}𝑛 there are at most 𝑏 disjoint sets 𝑆1, . . . , 𝑆𝑏 ⊆ [𝑛] such that 𝑓 (𝑡𝑆𝑖) ≠ 𝑓 (𝑡) for every 𝑖 ∈ [𝑏]. We show
that nu𝑘 can be seen as a one-sided version of block sensitivity.

Lemma 5.10. Let 𝑅 ⊆ {0, 1}𝑛 be a relation. Then 𝑓𝑅 has block sensitivity less than 𝑘 if and only if both 𝑅 and its

complement 𝑅 := {0, 1}𝑛 \ 𝑅 are preserved by nu𝑘 .

Proof. In the first direction, assume that 𝑓 has block sensitivity at least 𝑘 . Let 𝑡 ∈ {0, 1}𝑛 be a tuple and let 𝑋1, . . . ,
𝑋𝑘 be disjoint non-empty subsets of [𝑛] such that for each 1 ≤ 𝑖 ≤ 𝑘 , we have 𝑓 (𝑡𝑋𝑖) ≠ 𝑓 (𝑡). Then if 𝑓 (𝑡) = 1, then the
tuples 𝑡𝑋𝑖 form a witness that 𝑅 is not preserved by nu𝑘 , and if 𝑓 (𝑡) = 0 they form a witness against 𝑅 being preserved
by nu𝑘 . In the other direction, let 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅 be such that nu𝑘 (𝑡1, . . . , 𝑡𝑘) = 𝑡 is defined and 𝑡 ∉ 𝑅. For 𝑖 ∈ [𝑘], let 𝑋𝑖
be the positions 𝑗 where 𝑡 [𝑗] ≠ 𝑡𝑖 [𝑗]. Then 𝑋1, . . . , 𝑋𝑘 are disjoint non-empty subsets of [𝑛] showing that 𝑓 has block
sensitivity at least 𝑘 . The case that 𝑅 is not preserved by nu𝑘 , instead of 𝑅, is completely dual. □

It is known that a block sensitivity of at most 𝑏 implies a certificate complexity of at most 𝑏2, i.e., for any relation
𝑅 ∈ Inv(nu𝑘) and any tuple 𝑡 ∈ 𝑅, there are at most 𝑏2 bits in 𝑡 that certify that 𝑡 ∉ 𝑅 [51]. This suggests a branching or
local search algorithm for SAT(Γ) where Γ contains such relations. However, more strongly, it implies that 𝑅 has a
decision tree of bounded depth [51], and thus, since 𝑘 is a constant, that 𝑅 only depends on constantly many arguments.
Thus, block sensitivity is a significantly stronger restriction than what nu𝑘 imposes.

However, one related question remains. Assume that 𝑅 is an 𝑛-ary relation preserved by nu𝑘 , and which does
depend on all its arguments. Is there a non-trivial upper bound on |𝑅 |, e.g., does it hold that |𝑅 | ≤ (2 − Y𝑘)𝑛 for some
Y𝑘 depending on 𝑘? A positive answer to this question would imply a trivial improved algorithm for 𝑘-NU-SAT via
enumeration of satisfying assignments, constraint by constraint.

5.4 Symmetric 3-edge-SAT

We finish this section with a result showing that a number of special cases of 3-edge-CSP admits an improved algorithm
via sparse triangle finding. The class in particular contains 3-edge-SAT for symmetric relations 𝑅 ∈ Inv(𝑒3). We begin

Manuscript submitted to ACM

38 V. Lagerkvist and M. Wahlström

by characterising the symmetric relations in Inv(𝑒3). In this context, for a relation of arity 𝑛, we say that an arithmetic
progression 𝑎, 𝑎 + 𝑏, . . . is complete if it contains all values 𝑖 ∈ N, 0 ≤ 𝑖 ≤ 𝑛, such that 𝑖 ≡ 𝑎 (mod 𝑏).

Lemma 5.11. Let 𝑅 ⊆ {0, 1}𝑛 be a symmetric relation preserved by 𝑒3. Let 𝑆 ⊆ {0, . . . , 𝑛} be the weights accepted by 𝑅.
Then either 𝑆 is a complete arithmetic progression (possibly a trivial one, of length 1), or 𝑆 = {𝑎, 𝑎+𝑏} or 𝑆 = {𝑛−𝑎, 𝑛−𝑎−𝑏}
for some 𝑎 < 𝑏.

Proof. Let us first make a simpler claim: if 𝑎, 𝑎 + 𝑏 ∈ 𝑆 is a pair that does not extend to a complete progression in 𝑆 ,
then either 𝑎 − 𝑏 < 0 or 𝑎 + 2𝑏 > 𝑛.

To see this, let 𝑎, 𝑎 +𝑏 ∈ 𝑆 , and assume 𝑎 + 2𝑏 ∉ 𝑆 , 𝑎 + 2𝑏 ≤ 𝑛. First assume 𝑎 ≥ 𝑏. We subpartition [𝑛] into one set𝑇0
of size 𝑎 − 𝑏 ≥ 0 and three sets 𝑇𝑖 of size 𝑏, 𝑖 = 1, 2, 3. This is possible since 𝑎 − 𝑏 + 3𝑏 = 𝑎 + 2𝑏 ≤ 𝑛. Let 𝑡 = 𝜒𝑇0∪...∪𝑇3

and for 𝑖 = 1, 2, 3 let 𝑡𝑖 = 𝑡𝑇𝑖 . Finally, let 𝑡4 = 𝑡𝑇1∪𝑇2 . Then the weight of 𝑡𝑖 for 𝑖 = 1, 2, 3 is 𝑎 + 𝑏 and the weight of 𝑡4 is 𝑎,
hence 𝑡1, . . . , 𝑡4 ∈ 𝑅; furthermore 𝑒3 (𝑡4, 𝑡1, 𝑡2, 𝑡3) is defined and produces 𝑡 . Thus we conclude 𝑎 < 𝑏, i.e., 𝑎 − 𝑏 < 0. By
the symmetric argument, if 𝑎, 𝑎 + 𝑏 ∈ 𝑆 with 𝑎 − 𝑏 ≥ 0 and 𝑎 − 𝑏 ∉ 𝑆 , then 𝑎 + 2𝑏 > 𝑛. This finishes the claim.

Next, assume that |𝑆 | > 2 and that 𝑆 contains some pair 𝑎, 𝑎 +𝑏 such that the progression does not continue. Let 𝑏 > 0
be the smallest value such that such a pair exists, and again by symmetry assume that 𝑎 + 2𝑏 ≤ 𝑛; thus 𝑎 − 𝑏 < 0. Let
𝑐 ∈ 𝑆 \ {𝑎, 𝑎 + 𝑏}. First assume 𝑐 > 𝑎 + 2𝑏. Then we may, similarly to above, pack sets with |𝑇0 | = 𝑎, |𝑇1 | = |𝑇2 | = 𝑏, and
|𝑇3 | = 𝑐 − 𝑎 − 2𝑏, and we have a witness showing 𝑎 + 2𝑏 ∈ 𝑆 . Otherwise, 𝑎, 𝑎 + 𝑏 and 𝑐 can form a pair which by choice
of 𝑏 must extend to a complete progression in 𝑆 . Indeed, if 𝑐 < 𝑎 + 𝑏 then |𝑎 − 𝑐 | < 𝑏, and otherwise 𝑎 + 𝑏 < 𝑐 < 𝑎 + 2𝑏.
Thus 𝑆 contains a complete progression with period less than 𝑏, and consequently there exists a value 𝑐 ′ ∈ 𝑆 with
𝑎 < 𝑐 ′ < 𝑎 + 𝑏. Iterating this step eventually produces an arithmetic progression of step size dividing 𝑏, covering 𝑎 and
𝑎 + 𝑏, contradicting the assumption that 𝑎 + 2𝑏 ∉ 𝑆 . Thus |𝑆 | = 2, i.e., 𝑆 = {𝑎, 𝑎 + 𝑏}. □

In particular, this lemma shows that every symmetric relation in Inv(𝑒3) is a simple arithmetic progression. By
Lemma 4.9, every such relation also extends in a simple way to a larger relation in Inv(𝑒2) by completing the progression,
which we call a 2-edge embedding of the relation.

We now describe the algorithm. Let 𝑅 be a relation with arguments 𝑋 . For a partition 𝑋 = 𝑋1 ∪𝑋2 and an assignment
𝑓 to 𝑋1, we refer to the 2-edge label of 𝑓 as the pair (𝑓0, 𝑔0) produced by first extending 𝑓 to a lex-min assignment 𝑔0
such that (𝑓 , 𝑔0) ∈ 𝑅, then extending 𝑔0 to a lex-min assignment 𝑓0 such that (𝑓0, 𝑔0) ∈ 𝑅. Note that this is the same
procedure used in the algorithm for 2-edge-CSP.

We extend this to 3-partite graphs as follows. Let the variable set be partitioned as [𝑛] = 𝑋 ∪ 𝑌 ∪ 𝑍 , and define a
graph 𝐺 = (𝑉 , 𝐸) with partition 𝑉 = 𝑉𝑋 ∪𝑉𝑌 ∪𝑉𝑍 , where the nodes of each part represent partial assignments as in
Section 5.2. For each edge, verify that the corresponding partial assignment is consistent with each relation in the input
instance. We proceed to give labels to edges of𝐺 for each relation 𝑅 as follows. We assume that for each relation, the
“type” of 𝑅 is known to us (2-edge, 3-NU, or symmetric 3-edge). If 𝑅 ∈ Inv(nu3), all edges get the same label. Otherwise,
let 𝑅 ⊇ 𝑅 be the 2-edge-embedding of 𝑅 (with 𝑅 = 𝑅 if 𝑅 is already 2-edge). Let 𝑝𝑞 be an edge in 𝐺 , corresponding to
partial assignments 𝑝, 𝑞. If one of these assignments, say 𝑝 , is an assignment to 𝑋 , then we set the label of 𝑝𝑞 to the
2-edge label of 𝑝 in the partition 𝑋 ∪ (𝑌 ∪ 𝑍). Otherwise, 𝑝 ∪ 𝑞 is an assignment to 𝑌 ∪ 𝑍 , and we set the label of 𝑝𝑞 to
the 2-edge label of this assignment in 𝑋 ∪ (𝑌 ∪ 𝑍). We show that this label scheme captures our language.

Lemma 5.12. Let 𝑅 be a relation with arguments𝑈 , for some𝑈 ⊆ [𝑛], and let 𝐺 = (𝑉 , 𝐸) and 𝑋 ∪ 𝑌 ∪ 𝑍 be as above.

If either 𝑅 ∈ Inv(𝑒2), or 𝑅 ∈ Inv(nu3), or 𝑅 is Boolean, symmetric and 𝑅 ∈ Inv(𝑒3), then a triple (𝑓 , 𝑔, ℎ) with 𝑓 ∈ 𝑉𝑋 ,

𝑔 ∈ 𝑉𝑌 , ℎ ∈ 𝑉𝑍 satisfies 𝑅 if and only if 𝑓 𝑔ℎ is a triangle in 𝐺 where the edges 𝑓 𝑔, 𝑓 ℎ, 𝑔ℎ all have the same label.

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 39

Proof. Refer to a triangle 𝑓 𝑔ℎ with all edge labels identical as a single-label triangle. We will also slightly abuse
notation by treating 𝑅 as a 3-ary relation taking values from 𝑉𝑋 ×𝑉𝑌 ×𝑉𝑍 . First assume that 𝑅 ∈ Inv(𝑒2), and recall
that 𝑅 is rectangular. Let 𝑓 𝑔ℎ be a single-label triangle with shared label 𝐿 = (𝑓0, 𝑔0ℎ0); we show that (𝑓 , 𝑔, ℎ) ∈ 𝑅.
Since 𝐿 is the label of the edge 𝑔ℎ, it must be that (𝑓0, 𝑔, ℎ), (𝑓0, 𝑔0, ℎ0) ∈ 𝑅, and by the edges 𝑓 𝑔 and 𝑓 ℎ it must be
that (𝑓 , 𝑔0, ℎ0) ∈ 𝑅 as well. By the partial 2-edge operation, this implies (𝑓 , 𝑔, ℎ) ∈ 𝑅. Thus every single-label triangle
corresponds to a satisfying assignment.

In the other direction, let (𝑓 , 𝑔, ℎ) ∈ 𝑅. Since 𝑅 is rectangular, there is a unique lex-min pair (𝑓0, 𝑔0ℎ0) in the biclique
containing (𝑓 , 𝑔ℎ), and both extensions (𝑓 , 𝑔0ℎ0) and (𝑓0, 𝑔ℎ) are compatible with 𝑅. Thus all three edges get the same
label and the algorithm works for 𝑅 ∈ Inv(𝑒2).

The case 𝑅 ∈ Inv(nu3) is trivial. Since such a relation is 2-decomposable, the entire verification of 𝑅 happens in the
stage where edges are filtered, and in the remaining graph, every triangle represents a satisfying assignment and every
triangle is single-label.

Finally, assume 𝑅 ∈ Inv(𝑒3) and is symmetric. If 𝑅 ∈ Inv(𝑒2), then we argue as above. Otherwise, by Lemma 5.11,
either 𝑆 = {𝑎, 𝑎 + 𝑏} or 𝑆 = {𝑛 − 𝑎, 𝑛 − 𝑎 − 𝑏} for 𝑎 < 𝑏, and 𝑅 verifies that each assignment (𝑓 , 𝑔, ℎ) has the correct
weight when computed mod𝑏. First assume that 𝑓 𝑔ℎ is a single-label triangle in 𝐺 and that 𝑆 = {𝑎, 𝑎 + 𝑏}. By the
edge-filtering step, we know that for each of the edges 𝑓 𝑔, 𝑔ℎ, 𝑓 ℎ the corresponding partial assignment has weight
at most 𝑎 + 𝑏. Thus the total weight of (𝑓 , 𝑔, ℎ) is at most (𝑎 + 𝑏) (3/2) ≤ 𝑎 + 𝑏 + (𝑎 + 𝑏)/2 < 𝑎 + 2𝑏. Dually, assume
𝑆 = {𝑛 − 𝑎 − 𝑏, 𝑛 − 𝑎}. No edge in 𝑓 𝑔ℎ has more than 𝑎 + 𝑏 zeroes, thus the total assignment has weight greater than
𝑛 − 𝑎 − 2𝑏. In both cases, since the edge-labels work to verify the value mod𝑏, we conclude (𝑓 , 𝑔, ℎ) ∈ 𝑅.

On the other hand, assume (𝑓 , 𝑔, ℎ) ∈ 𝑅. Since the edge labels are minimal for the more permissive relation 𝑅, the
triangle 𝑓 𝑔ℎ is a single-label triangle. □

The remaining problem can now be solved via algorithms for triangle-finding in sparse graphs.

Theorem 5.13. Assume a CSP or SAT problem with the following characteristic: for every relation 𝑅, either 𝑅 ∈ Inv(𝑒2)
and 𝑅 is labelled with type 𝑒2, or 𝑅 ∈ Inv(nu3) and 𝑅 is labelled with type nu3, or the language is Boolean, 𝑅 is a symmetric

relation in Inv(𝑒3) and 𝑅 is labelled with type 𝑒3. This problem can be solved in time 𝑂∗ (|𝐷 |
𝜔+3

6) in the extension oracle

model, where 𝜔 < 2.373 is the matrix multiplication exponent.

Proof. By the description above, we create a 3-partite graph 𝐺 on 3|𝐷 |𝑛/3 vertices (where |𝐷 | = 2 in the Boolean
case), and for every edge in 𝐺 we give it a vector of labels, one label per relation in the input instance. We refer to
this vector as the colour of the edge. Note that a symmetric relation 𝑅 can be “inspected” using its extension oracle to
find out the set 𝑆 of accepted weights. By Lemma 5.12, the instance has a satisfying assignment if and only if 𝐺 has a
triangle where all edges have the same colour.

This we solve as follows. For every colour 𝑐 used by an edge in 𝐺 , we generate the graph 𝐺𝑐 consisting of all edges
of colour 𝑐 . Let𝑚𝑐 be the number of edges of 𝐺𝑐 , and let 𝑁 ≤ 3|𝐷 |𝑛/3 be the number of vertices in 𝐺 . We check if 𝐺𝑐

contains a triangle. If 𝐺𝑐 is dense enough, then we use the usual triangle-finding algorithm for this, with running time
𝑂∗ (𝑁𝜔), otherwise we use an algorithm for triangle finding in sparse graphs. Alon, Yuster and Zwick [2] show such
an algorithm with running time 𝑂 (𝑚2𝜔/(𝜔+1)

𝑐), where 𝜔 < 2.373 is the matrix multiplication exponent. Hence, the
crossover point at which we use the dense algorithm is𝑚𝑐 ≥ 𝑁 (𝜔+1)/2 =: 𝑁𝛼 . Summing over all colours, we have∑
𝑐𝑚𝑐 ≤ 𝑁 2. Since the algorithm for sparse graphs has a super-linear running time, the worst case is when we are at

the crossover density and use the sparse algorithm 𝑁 2−𝛼 times for a cost of𝑂 (𝑁𝜔) each time. This works out to a total
Manuscript submitted to ACM

40 V. Lagerkvist and M. Wahlström

running time 𝑂 (𝑁 (𝜔+3)/2) for triangle-finding, i.e., the CSP is solved in time 𝑂∗ (|𝐷 | (𝜔+3)𝑛/6) = 𝑂∗ (|𝐷 |0.896𝑛) using
𝜔 = 2.373. □

It is an interesting question whether this strategy can be modified to work for arbitrary relations 𝑅 ∈ Inv(𝑒3).

Section summary. We have proved that it is indeed feasible to construct improved algorithms for Inv(𝑓)-SAT and
Inv(𝑓)-CSP for individual pSDI-operations 𝑓 . A crucial step for constructing algorithms of this form is first to identify
non-trivial properties of relations invariant under 𝑓 , which for the partial 2-edge operation turned out be rectangularity,
and for the partial 3-NU operation 2-decomposability. However, it might not always be the case that every invariant
relation satisfies such a clear-cut property, and for 3-edge-SAT we had to settle for an improved algorithm for symmetric
relations.

For 𝑘-NU-CSP and 𝑘-NU-SAT we also gave conditional improvements in terms of (𝑘, 𝑘 − 1)-hypercliqe and the
sunflower conjecture.

6 LOWER BOUNDS

In this section we turn to the problem of proving lower bounds for sign-symmetric SAT problems.

6.1 Lower bounds based on 𝑘-SAT

As an easy warm-up, we first consider languages Γ such that SAT(Γ) is at least as hard as 𝑘-SAT for some 𝑘 . Recall that
𝑐𝑘 for 𝑘 ≥ 3 denotes the infimum of the set {𝑐 | 𝑘-SAT is solvable in𝑂 (𝑐𝑛) time}. Under the ETH, 𝑐𝑘 > 1 for each 𝑘 ≥ 3,
and for each 𝑘 ≥ 3 there exists 𝑘 ′ > 𝑘 such that 𝑐𝑘′ > 𝑐𝑘 [32]. The best known upper bounds yield 𝑐𝑘 ≤ 2 −Θ(1/𝑘), but
no methods for lower-bounding the values 𝑐𝑘 are known.

Recall that Lemma 4.19 gives a condition under which a language Γ can qfpp-define all 𝑘-clauses. We observe the
immediate consequence of this.

Lemma 6.1. Let Γ be a sign-symmetric constraint language not preserved by the 𝑘-universal partial operation. Then

SAT(Γ) cannot be solved in time 𝑂∗ (𝑐𝑛) for any 𝑐 < 𝑐𝑘 , even in the non-uniform model.

Proof. By Lemma 4.19, Γ can qfpp-define all 𝑘-clauses. More concretely, there is a finite set Γ′ ⊆ Γ of relations such
that every 𝑘-clause has a fixed, finite-sized gadget implementation over Γ′ without using additional variables. Thus,
given a 𝑘-SAT instance on 𝑛 variables, we can produce an equivalent instance of SAT(Γ′) in linear time, with the same
variable set. □

As a consequence, 𝑐𝑘 is also a lower bound on the running time for Inv(𝑓)-SAT for every minimal pSDI-operation at
level 𝑘 + 1 and higher. However, this above lemma applies to any sign-symmetric constraint language, and not just to
the special case when Γ = Inv(𝑓). We can also observe a similar consequence for SETH-hardness.

Corollary 6.2. Let Γ be a sign-symmetric constraint language not preserved by the 𝑘-universal partial operation for

any 𝑘 . Then assuming SETH, SAT(Γ) does not admit an improved algorithm, even in the non-uniform model.

Proof. By SETH, there is for every Y > 0 a constant 𝑘 such that 𝑘-SAT cannot be solved in 𝑂∗ ((2 − Y)𝑛) time. By
Lemma 6.1, there is a reduction from 𝑘-SAT to SAT(Γ) for this 𝑘 . Thus, SAT(Γ) does not admit an improved non-uniform
algorithm. □

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 41

6.2 2-edge-SAT and Subset Sum

Next, we sharpen the connection between Subset Sum and 2-edge-SAT. Recall that an instance of Subset Sum consists
of a set 𝑆 = {𝑥1, . . . , 𝑥𝑛} of 𝑛 numbers and a target integer 𝑡 , with the question of whether there is a set 𝑋 ′ ⊆ 𝑆 such
that

∑
𝑋 ′ = 𝑡 . This can also be phrased as asking for 𝑧1, . . . , 𝑧𝑛 ∈ {0, 1} such that

𝑛∑︁
𝑖=1

𝑧𝑖𝑥𝑖 = 𝑡 .

Also recall from Lemma 4.7 that such a relation is contained in Inv(𝑒2). However, this does not by itself imply a problem
reduction, since an instance of 2-edge-SAT assumes the existence of an extension oracle for every constraint. We show
that such a reduction can be implemented by splitting the above equation apart into several equations, based on the
bit-expansion of 𝑡 .

Theorem 6.3. If 2-edge-SAT is solvable in 𝑂 (𝑐𝑛) time for 𝑐 > 1 in the extension oracle model, then Subset Sum is

solvable in 𝑂 (𝑐𝑛+𝑜 (𝑛)) time.

Proof. Let 𝑥1, . . . , 𝑥𝑛, 𝑡 ∈ N be the input to a Subset Sum instance. We will reduce this instance in subexponential
time to a disjunction over 2-edge-SAT instances on 𝑛 variables each.

We proceed as follows. We first apply a procedure of Harnik and Naor [27] that reduces a Subset Sum instance to
one of bit length at most 2𝑛 + log ℓ , where ℓ is the bit length of the input. If ℓ ≥ 2𝑛 , then we solve the instance by brute
force in time polynomial in the input length, otherwise we are left with an instance of bit length ℓ ′ ≤ 3𝑛.

Next, set a parameter 𝑘 =
√
𝑛, and split the binary expansion of the input integers into 𝑘 blocks of equal length,

giving
√
𝑛 blocks of some length 𝑑 = 𝑂 (

√
𝑛). For each 𝑖 ∈ [𝑛], and each 0 ≤ 𝑏 < 𝑘 , let 𝑥𝑖,𝑏 consist of the bits of the 𝑏:th

block in the binary expansion of 𝑥𝑖 , i.e., 𝑥𝑖 =
∑𝑘−1
𝑏=0 2𝑑𝑖𝑥𝑏,𝑖 and 0 ≤ 𝑥𝑖,𝑏 < 2𝑑 for every 𝑖 and 𝑏. For each block guess the

contribution of the solution to the target value; i.e., if 𝐼 ⊆ [𝑛] represents the solution so that
∑
𝑖∈𝐼 𝑥𝑖 = 𝑡 , then for each

block 𝑏 we guess the value 𝑡𝑏 =
∑
𝑖∈𝐼 𝑥𝑖,𝑏 . Note that 𝑡𝑏 < 𝑛2𝑑 , hence the largest overflow that can carry over to the next

block is 𝑡𝑏/2𝑑 < 𝑛. It follows that for a single block there are 𝑂 (𝑛2) options for 𝑡𝑏 , computed from 𝑡 by considering the
incoming and outgoing overflow values. We get at most 𝑂 (𝑛𝑘) = 2𝑜 (𝑛) guesses in total by guessing all overflows, after
which we have replaced the original equation

∑
𝑖 𝑧𝑖𝑥𝑖 = 𝑡 by the conjunction of

√
𝑛 linear equations, each with a target

integer of𝑂 (
√
𝑛) bits. This allows us to implement an extension oracle for every such constraint with a running time of

2𝑂 (
√
𝑛) , using a tabulation approach (cf. the well-known dynamic programming algorithm for the knapsack problem).

This encodes an instance of 2-edge-SAT in the extension oracle model with 𝑛 variables. Using an algorithm for
this problem, and multiplying its running time by the time required for answering an oracle query, yields the claimed
running time for Subset Sum. □

Given that the running time for 2-edge-SAT in the extension oracle model given in this article matches the best
known running time for Subset Sum, and given that improving the latter is a long-open problem, it seems at the very
least that an improvement to 2-edge-SAT would require significant new ideas.

6.3 Padding formulas

We now give a combinatorial interlude, showing how relations 𝑅 ⊆ {0, 1}𝑛 can be padded with additional variables
such that the new relation lies in Inv(𝑓), for any non-total partial operation 𝑓 . This will be leveraged in the next section
to finally provide concrete lower bounds on the running time of Inv(𝑓)-SAT for pSDI-operations 𝑓 .

Manuscript submitted to ACM

42 V. Lagerkvist and M. Wahlström

For a partial operation 𝑓 , say of arity 𝑘 , and a sequence of tuples 𝑡1, . . . , 𝑡𝑘 , we say that 𝑓 (𝑡1, . . . , 𝑡𝑘) is a vacuous
application if 𝑓 (𝑡1, . . . , 𝑡𝑘) is either undefined or 𝑓 (𝑡1, . . . , 𝑡𝑘) ∈ {𝑡1, . . . , 𝑡𝑘 }. If 𝑓 (𝑡1, . . . , 𝑡𝑘) is defined and 𝑓 (𝑡1, . . . , 𝑡𝑘) ∉
{𝑡1, . . . , 𝑡𝑘 } we call 𝑓 (𝑡1, . . . , 𝑡𝑘) a non-vacuous application.

Definition 6.4. Let 𝑅 ⊆ {0, 1}𝑛 be a relation and 𝐹 a set of Boolean partial operations. A padding of 𝑅 with respect
to 𝐹 is an (𝑛 +𝑚)-ary relation F𝑅 such that (1) Proj1,...,𝑛 (F𝑅) = 𝑅, (2) |F𝑅 | = |𝑅 |, and (3) F𝑅 ∈ Inv(𝐹). A universal

padding formula for 𝑛 ≥ 1 with respect to 𝐹 is an (𝑛 +𝑚)-ary relation U𝑃𝐹 which (1) is a padding of the relation
{0, 1}𝑛 and (2) 𝑓 (𝑡1, . . . , 𝑡ar(𝑓)) is a vacuous application for every partial operation 𝑓 ∈ 𝐹 and every sequence of tuples
𝑡1, . . . , 𝑡ar(𝑓) ∈ U𝑃𝐹 .

Note that if 𝑅 is a relation and 𝑓 a 𝑘-ary partial operation such that 𝑓 (𝑡1, . . . , 𝑡𝑘) is a vacuous application for every
sequence 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅, then 𝑅 ∈ Inv(𝐹). In particular this implies that U𝑃𝐹 ∈ Inv(𝐹) for every universal padding
formula U𝑃𝐹 of 𝐹 . Also, critically, if U𝑃𝐹 is an (𝑛 +𝑚)-ary universal padding formula for a set of partial operations 𝐹 ,
and 𝑅 is an 𝑛-ary relation, then the relation 𝑅′(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) ≡ 𝑅(𝑥1, . . . , 𝑥𝑛) ∧ U𝑃𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) is
a padding formula for 𝑅. Hence, a universal padding formula can be viewed as a blueprint which can be applied to
obtain a concrete padding formula for any relation. It is known that if 𝐹 contains no total operation, then a universal
padding formula can be constructed using a universal hash family [41].

Lemma 6.5. Let 𝐹 be a finite set of partial operations such that the only total functions in [𝐹]𝑠 are projections. For every
𝑛 ≥ 1 there exists an (𝑛 +𝑚)-ary universal padding formulaU𝑃𝐹 such that𝑚 ≤ 𝑐 · 𝑛, for a constant 𝑐 depending on 𝐹 .

Proof. See Lagerkvist & Wahlström [41, Lemma 35]. □

A quick note is in place on the role of universal padding formulas in obtaining lower bounds for Inv(𝐹)-SAT, when 𝐹

is a finite set of partial operations. Note that in a standard “gadget” reduction from CNF-SAT to some problem SAT(Γ),
one would introduce some number of local variables for every clause of the input, to create an equivalent output formula
that only uses constraints from Γ. The existence of padding formulas does allow us to do this for Inv(𝐹)-SAT, but for
lower bounds under SETH this is not useful since we have no control over the number of additional variables created
this way. However, the universality property of universal padding formulas allow us to reuse the padding variables
between different constraints, to produce an output which only has 𝑛 +𝑚 = 𝑂 (𝑛) variables in total. The details are
given in the next section (and an overview was given in Section 2.3) but first we investigate concrete values of the
constant 𝑐 for specific operations.

Lemma 6.6. Let𝑅(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) be a padding formula for {0, 1}𝑛 , where each𝑦𝑖 is a a parity bit over {𝑥1, . . . , 𝑥𝑛}
chosen uniformly at random. Then the following hold.

(1) For the partial 2-edge operation, 𝑅(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) is a universal padding formula with probability at least

1 − Y if𝑚 ≥ 3.82𝑛 +𝑂 (log(1/Y)).
(2) For any minimal non-trivial operation at level 𝑘 = 3, excepting the total operation 3-NU, 𝑅(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) is

a universal padding formula with probability at least 1 − Y if𝑚 ≥ 2𝑛 +𝑂 (log(1/Y)).
(3) For the partial 𝑘-NU operation, 𝑘 ≥ 4, and for any operation weaker than it, 𝑅(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) is a universal

padding formula with exponentially small failure probability if𝑚 = Ω(log𝑘
𝑘

𝑛).

Proof. For the partial 2-edge operation, the result was shown in Section 2.3. The rest of the statements follow a
similar line of argumentation, adapted to the various operations. We start with background claims.
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 43

Claim 1. Let 𝑓 be a partial operation. There are (|domain(𝑓) |)𝑛 sequences (𝑡1, . . . , 𝑡ar(𝑓)) of tuples in {0, 1}𝑛 such that

𝑓 (𝑡1, . . . , 𝑡ar(𝑓)) is defined.

Proof. For every argument 𝑖 ∈ [𝑛], we choose which element from domain(𝑓) the tuple (𝑡1 [𝑖], . . . , 𝑡ar(𝑓) [𝑖]) will
correspond to. Every such choice results in a distinct sequence of tuples. □

When 𝑓 is a pSDI-operation, we can reduce the relevant cases by a factor of 2𝑛 . Say that two tuples (𝑡1, . . . , 𝑡𝑟)
and (𝑡 ′1, . . . , 𝑡

′
𝑟) over {0, 1}𝑛 are equivalent if, for every 𝑖 ∈ [𝑛], either (𝑡1 [𝑖], . . . , 𝑡𝑟 [𝑖]) = (𝑡 ′1 [𝑖], . . . , 𝑡

′
𝑟 [𝑖]) or the two

sequences are complementary. Note that this defines equivalence classes of precisely 2𝑛 sequences. We show that only
the equivalence class is relevant for XOR-padding.

For a tuple (𝑡1, . . . , 𝑡𝑟) ∈ ({0, 1}𝑛)𝑟 and a set 𝑆 ⊆ [𝑛], by padding the tuple with 𝑆 we refer to adding a position 𝑛 + 1
to each tuple in the sequence, where 𝑡𝑖 [𝑛 + 1] =

⊕
𝑗 ∈𝑆 𝑡𝑖 [𝑗] for every 𝑖 ∈ [𝑟]. Write 𝑦𝑆 (𝑡) =

⊕
𝑖∈𝑆 𝑡 [𝑖].

Claim 2. Let 𝑓 be a pSDI-operation with ar(𝑓) = 𝑟 and let𝑦 =
⊕

𝑖∈𝑆 𝑥 [𝑖] be a parity bit with index set 𝑆 . Let (𝑡1, . . . , 𝑡𝑟)
and (𝑡 ′1, . . . , 𝑡

′
𝑟) be equivalent sequences of tuples from {0, 1}𝑛 . After padding the tuples with 𝑆 , either both of 𝑓 (𝑡1, . . . , 𝑡𝑟)

and 𝑓 (𝑡 ′1, . . . , 𝑡
′
𝑟) are defined or both are undefined.

Proof. We assume that 𝑓 (𝑡1, . . . , 𝑡𝑟) (and hence 𝑓 (𝑡 ′1, . . . , 𝑡
′
𝑟)) are defined, as otherwise the statement is trivial. We

claim that either 𝑦 (𝑡𝑖) = 𝑦 (𝑡 ′
𝑖
) for every 𝑖 ∈ [𝑟], or 𝑦 (𝑡𝑖) = 1 −𝑦 (𝑡 ′

𝑖
) for every 𝑖 ∈ [𝑟]. Indeed, for every position 𝑗 ∈ [𝑛],

either 𝑡𝑖 [𝑗] = 𝑡 ′
𝑖
[𝑗] for every 𝑖 ∈ [𝑟], or 𝑡𝑖 [𝑗] = 1 − 𝑡 ′

𝑖
[𝑗] for every 𝑖 ∈ [𝑟], by the definition of tuple equivalence. Hence

𝑦 (𝑡𝑖) = 𝑦 (𝑡 ′
𝑖
) if 𝑆 contains an even number of positions of the latter type, and 𝑦 (𝑡𝑖) = 1 − 𝑦 (𝑡 ′

𝑖
) otherwise, for every

𝑖 ∈ [𝑟]. Since 𝑓 is self-dual, in both cases either both of 𝑓 (𝑦 (𝑡1), . . . , 𝑦 (𝑡𝑟)) and 𝑓 (𝑦 (𝑡 ′1), . . . , 𝑦 (𝑡
′
𝑟)) are defined, or neither

is. □

Fix a pSDI-operation 𝑓 from the lemma statement, and let |domain(𝑓) | = 2𝑘 +2. Enumerate the tuples 𝑡 of domain(𝑓)
for which 𝑓 (𝑡) = 0 as 𝑧0, . . . , 𝑧𝑘 , where 𝑧0 is the all-zero tuple. Let the type of position 𝑗 ∈ [𝑛] of a tuple (𝑡1, . . . , 𝑡𝑟)
over {0, 1}𝑛 be the index 𝑖 ∈ {0, . . . , 𝑘} such that (𝑡1 [𝑗], . . . , 𝑡𝑟 [𝑗]) and 𝑧𝑖 are either equal or complementary (and
note that the type is invariant up to the tuple equivalence we defined). Given a tuple (𝑡1, . . . , 𝑡𝑟) over {0, 1}𝑛 and a
set 𝑆 ⊆ [𝑛], define 𝐼𝑆 (𝑡1, . . . , 𝑡𝑟) ⊆ [𝑘] as the set of values 𝑖 ∈ [𝑘] such that an odd number of positions 𝑗 ∈ 𝑆 are of
type 𝑖 in (𝑡1, . . . , 𝑡𝑟). Then 𝐼𝑆 is an invariant of the tuple equivalence classes; we claim that 𝐼𝑆 determines whether
𝑓 (𝑦𝑆 (𝑡1), . . . , 𝑦𝑆 (𝑡𝑟)) is defined. Indeed, let 𝑦𝑆 (𝑡1) = 𝑏; then 𝑦𝑆 (𝑡𝑖) ≠ 𝑏 for 𝑖 ∈ [𝑟] if and only if 𝑆 indexes an odd number
of positions 𝑗 ∈ [𝑛] such that 𝑡1 [𝑗] ≠ 𝑡𝑖 [𝑗], which is equivalent to 𝐼 containing an odd number of types 𝑝 such that
𝑧𝑝 [1] ≠ 𝑧𝑝 [𝑖]. This furthermore determines whether 𝑓 (𝑦𝑆 (𝑡1), . . . , 𝑦𝑆 (𝑡𝑟)) is defined, since 𝑓 is self-dual.

The proof can now be finished, with case-specific constant, using the probabilistic method. There are (𝑘 + 1)𝑛 types
for well-defined applications of 𝑓 , of which almost all are non-vacuous. There is a case-specific probability 𝑝 𝑓 that
a given non-vacuous application of 𝑓 remains defined after padding with a random column 𝑦𝑆 . Therefore, with the
correctly chosen value of𝑚, after𝑚 randomly chosen padding columns, on expectation there are at most

(𝑘 + 1)𝑛𝑝𝑚
𝑓

< Y

tuples (𝑡1, . . . , 𝑡𝑟) such that 𝑓 remains non-vacuous. By Markov’s inequality, the probability that the actual number is
non-zero is then at most Y. We proceed with computing 𝑝 𝑓 and𝑚.

1. When 𝑓 is the partial 2-edge operation, i.e., partial Maltsev, then we have 𝑘 = 2 and the constant 𝑝 𝑓 = 3/4 and the
constant factor in𝑚 ≈ 3.82𝑛 +𝑂 (log 1/Y) were computed in Section 2.3. The final 𝑂 (log(1/Y)) part is obvious.

Manuscript submitted to ACM

44 V. Lagerkvist and M. Wahlström

2. Let 𝑓 be an operation at level 𝑘 = 3, except 3-NU, and let 𝑟 = ar(𝑓). By the structure of argument padding among
pSDI-operations of Lemma 4.14, we have 𝑟 ≥ 4, and there exist three arguments of 𝑓 , say 1–3, such that projecting
𝑓 onto those three arguments yields the 3-NU operation, and |domain(𝑓) | = 8. Let 𝑧1, . . . , 𝑧3 be the three distinct
non-constant tuples in domain(𝑓) such that 𝑓 (𝑧𝑖) = 0. An application 𝑓 (𝑡1, . . . , 𝑡 −𝑟) is non-vacuous only if all types 1–3
are present, thus the set 𝐼𝑆 is a uniformly random subset of {1, 2, 3}. Furthermore, if |𝐼𝑆 | ≤ 1, then 𝑓 (𝑦𝑆 (𝑡1), . . . , 𝑦𝑆 (𝑡𝑟))
remains defined. We claim that in every other case, 𝑓 becomes undefined. Let 𝑖 > 3, 𝑖 ≤ 𝑟 be a position such that
(𝑧1 [𝑖], . . . , 𝑧3 [𝑖]) has Hamming weight 2 or 3; note that this must exist since 𝑓 is non-trivial and not equivalent to 3-NU.
In both cases, it is easy to check that any case where |𝐼𝑆 | > 1 means that 𝑓 (𝑦𝑆 (𝑡1), . . . , 𝑦𝑆 (𝑡4)) is undefined, already due
to positions 1–3 and 𝑖 .

Hence 𝑝 𝑓 = 1/2, there are at most 4𝑛 types of non-vacuous applications of 𝑓 , and we get𝑚 = 2𝑛 +𝑂 (log 1/Y).
3. For partial 𝑘-NU, 𝑘 ≥ 4, there are at most (𝑘 + 1)𝑛 types of non-vacuous applications of 𝑓 , and for 𝑆 ⊆ [𝑛],

𝑓 (𝑦𝑆 (𝑡1), . . . , 𝑦𝑆 (𝑡𝑟)) is defined if and only if |𝐼𝑆 | ≤ 1 or |𝐼𝑆 | ≥ 𝑘 − 1. Similarly, all types 1–𝑘 must be present in
(𝑡1, . . . , 𝑡𝑘), or otherwise the application is vacuous. Thus 𝑝 𝑓 = (2𝑘 + 2)/2𝑘 and we solve

(𝑘 + 1)𝑛
(

2𝑘 + 2
2𝑘

)𝑐𝑛
= 1

for
𝑐 =

log(𝑘 + 1)
log(2𝑘/(2𝑘 + 2))

=
log(𝑘 + 1)

𝑘 − 1 − log(𝑘 + 1) = Θ((log𝑘)/𝑘).

Adding any 𝑂 (𝑛) further bits takes care of the margin of error. □

We remark that with a padding strategy other than simple parity bits, a significantly lower scaling ratio may be
possible for the partial 𝑘-universal operations. However, the advantage of padding with parity bits is that the padding
can be efficiently inverted, allowing for efficient extension oracles for the padded relation.

6.4 SETH-based lower bounds for inv(F)-SAT

We now use the bounds obtained above to obtain lower bounds for Inv(𝐹)-SAT in the extension oracle model.

Lemma 6.7. LetU𝑃𝐹 be an (𝑛+𝑚)-ary universal padding formula via the construction in Lemma 6.6. Let𝑅 = {0, 1}𝑘 \{𝑡}
for a𝑘-ary tuple 𝑡 ∈ {0, 1}𝑘 . Then there is a polynomial-time extension oracle for𝑅(𝑥1, . . . , 𝑥𝑘)∧U𝑃𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚).

Proof. Let 𝛼 : 𝑋 → {0, 1}, 𝑋 ⊆ {𝑥1, . . . , 𝑥𝑘 , 𝑦1, . . . , 𝑦𝑚}, be a partial truth assignment. We need to show that
we can decide if 𝛼 is consistent with 𝑅(𝑥1, . . . , 𝑥𝑘) ∧ U𝑃𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) in polynomial time. First, we check
whether 𝛼 is consistent with the constraint 𝑅(𝑥1, . . . , 𝑥𝑘), which is easy to do due to the representation of 𝑅. Second,
recall that there for each 𝑦𝑖 exists an index set 𝑆𝑖 such that 𝑦𝑖 =

⊕
𝑠∈𝑆𝑖 𝑥𝑠 . Hence, the partial assignment 𝛼 together

with 𝑅(𝑥1, . . . , 𝑥𝑘) ∧ U𝑃𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) induces a system of linear equations over GF(2) where the unknown
variables are those unassigned by 𝛼 . We may thus solve this system and check whether it has any solution 𝑓 where
𝑓 [𝑖] ≠ 𝑡 [𝑖] for some 𝑖 ∈ [𝑘]. □

Theorem 6.8. Let 𝐹 be a set of partial operations, and set𝑚 ≥ 𝑐𝑛 + log𝑛 such that a random parity-padded formula

U𝑃𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) is a universal padding formula with high probability. Then Inv(𝐹)-SAT cannot be solved in

time 𝑂∗ (2(1/(𝑐+1)−Y)𝑛) for any Y > 0, assuming the randomised version of the SETH is true. In particular, we have the

following lower bounds for specific problems:

(1) 2-edge-SAT cannot be solved in 𝑂 (2(𝑐−Y)𝑛) time for any Y > 0, where 𝑐 ≈ 1/4.82; i.e., 𝑐 (Inv(𝜙)) > 1.1547.
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 45

(2) 3-edge-SAT cannot be solved in 𝑂 (2(𝑐−Y)𝑛) time for any Y > 0, where 𝑐 = 1/3; i.e., 𝑐 (Inv(𝑒3)) > 1.2599.
(3) 4-NU-SAT, being the smallest among the classes that contains 3-SAT, cannot be solved in 𝑂∗ (𝑐𝑛) time for any

𝑐 ≤ 1.1696.
(4) For 𝑘 ≥ 4, 𝑘-NU-SAT cannot be solved in 𝑂 (2(𝑐−Y)𝑛) time for any Y > 0, where 𝑐 = 1 − Θ(log𝑘

𝑘
), and the same

bound holds for the harder problems 𝑘-edge-SAT and 𝑘-universal-SAT.

Proof. Let F be a CNF-SAT instance on variable set 𝑋 , |𝑋 | = 𝑛, and compute a random padding formula
U𝑃𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚), with 𝑚 as stated. We assume that the construction is successful, i.e., that the result-
ing relation is a universal padding formula with respect to 𝐹 . For every clause in the input, defined on a tuple of variables
(𝑥𝑖1 , . . . , 𝑥𝑖𝑟), let 𝑅(𝑥𝑖1 , . . . , 𝑥𝑖𝑟) be the corresponding relation, and let 𝑅′(𝑥𝑖1 , . . . , 𝑥𝑖𝑟) ∧ U𝑃𝐹 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) be
the relation as in Lemma 6.7 (up to the ordering of variables). Note that we do not need to explicitly enumerate the
tuples in this relation, since we may simply provide the extension oracle proven to exist in Lemma 6.7. Then the output
is a conjunction of Inv(𝐹)-SAT relations, with a polynomial-time extension oracle for each one, and the resulting
instance is equivalent to F . Since the output instance has 𝑛 +𝑚 = (𝑐 + 1) · 𝑛 variables, an algorithm solving Inv(𝐹)-SAT
faster than the time stated would imply an improved algorithm for CNF-SAT. The bounds for specific problems follow
from the bounds for universal padding formulas computed in Lemma 6.6. In particular, the bound 1.1696 for 4-NU is
calculated through 𝑐 = log2 (5)/(3 − log2 (5)); and the precise lower bound for (𝑘 + 1)-NU, containing 𝑘-SAT, is time
21− log2 (𝑘+2)

𝑘 . □

Finally, we note that the convergence of the lower bounds for 𝑘-NU-SAT towards 2𝑛 , assuming SETH, is at a slower
rate than the upper bounds for the best known algorithms for 𝑘-SAT, which scale as 𝑐𝑘 ≤ 2 − Θ(1/𝑘) [32]. There are
also significant differences in problem model (finite language versus infinite language, and concrete constraints versus
extension oracles). It would be interesting to improve these results, to either improve the convergence rate or provide
bounds in some explicit representation model, assuming SETH.

Section summary. We have proven concrete lower bounds under SETH for sign-symmetric SAT problems. In the
process, we have identified 2-edge-SAT as the first SAT problem admitting both a non-trivial upper bound and a
non-trivial lower bound via the SETH. We also gave a lower bound subject to the Subset Sum problem, which as
remarked is strong evidence that the 𝑂∗ (2

𝑛
2) algorithm from Theorem 5.2 is the best we could reasonably hope for.

7 DISCUSSIONS AND CONCLUSIONS

Wehave investigated the structure of constraint languages under fine-grained reductions, with a focus on sign-symmetric
Boolean languages, and applied the results to an analysis of the time complexity of NP-hard SAT problems, in a general
setting.

The structural analysis uses an algebraic connection to analyse constraint languages via their partial polymorphisms.
Thereby the structural conclusions are relevant for any problem that takes as input a constraint formula over some
fixed constraint language, under just a few assumptions: (1) that the constraints in the formula are “crisp” rather than
soft, and are required to all be satisfied (as opposed to problems such as MAX-SAT, where a feasible solution may falsify
some constraints); (2) that there are no structural restrictions of the formula itself (e.g., no bounds on the number of
occurrences per variable); and (3) that the constraint language is sign-symmetric, i.e., allows the free application of
negated variables and the use of constants in constraints. Thus it naturally applies to SAT(Γ) problems, but would also

Manuscript submitted to ACM

46 V. Lagerkvist and M. Wahlström

be relevant for the analysis of problems such as #SAT and optimisation problems, or even parameterized problems such
as Local Search SAT(Γ) – is there a solution within distance 𝑘 of a given non-satisfying assignment 𝑡?

Structural results. The expressive power of sign-symmetric languages is characterised by the restricted partial
polymorphisms in this article referred to as pSDI-operations. We characterise the structure of all minimal non-trivial
pSDI-operations, and find that they are organised into a hierarchy, whose levels correspond to the problem complexity,
with close connections to being able to express the 𝑘-SAT languages. Moreover, we described the weakest and strongest
operations on each level. We find that particular families of pSDI-operations correspond to partially defined versions
of well-known algebraic conditions from the study of CSPs; in particular, the strongest operation at each level 𝑘
corresponds to the 𝑘-NU condition. Finally, we also give a result in the “vertical” direction of the hierarchy, giving a
simple characterisation of languages not preserved by the partial 𝑘-NU operation for any 𝑘 . By the above discussion,
this result should be of interest also for other inquiries.

Complexity of SAT(Γ) problems.We apply our results to an analysis of the fine-grained time complexity of SAT(Γ)
for sign-symmetric languages, under SETH. We consider previously studied languages with improved algorithms –
i.e., such that SAT(Γ) can be solved in time 𝑂∗ (𝑐𝑛) for some 𝑐 < 2 – and find that they correspond well to particular
classes of the hierarchy. Conversely, every known language Γ such that SAT(Γ) is SETH-hard – i.e., admits no improved
algorithm assuming SETH – lives entirely outside of the hierarchy. We also show the feasibility of giving improved
algorithms whose correctness relies only and directly on the above-mentioned pSDI-operations, by showing that known
algorithmic strategies such as fast matrix multiplication and (conjecturally) fast local search can be extended to work
for such classes.

Finally, we give complementary lower bounds – for every invariant 𝑓 as above, there is a constant 𝑐 𝑓 such that
Inv(𝑓)-SAT cannot be solved in 𝑂∗ (𝑐𝑛) time for any 𝑐 < 𝑐 𝑓 , assuming SETH. These results are arguably the first of
their kind; every previously known concrete lower bound under SETH has either been for showing that a problem
admits no non-trivial algorithm, or has been applied to problems analysed under more permissive parameters such as
treewidth. In particular, 2-edge-SAT is the first SAT problem which simultaneously has non-trivial upper and lower
bounds on the running time under SETH.

7.1 The abstract problem and polynomial-time connections

Finally, let us make a short detour to consider what we may call the abstract problem. We have noted that for every
Boolean pSDI-operation 𝑓 , there is a set of equational conditions that characterise 𝑓 , similarly to definitions of varieties
in universal algebra, and for every larger domain 𝐷 , these conditions will uniquely determine a partial operation
over the domain 𝐷 . Furthermore, these conditions are preserved under taking powers of the domain, which we have
exploited for particular cases of Inv(𝑓)-SAT and Inv(𝑓)-CSP to reduce input instances to instances of polynomial-time
solvable problems on exponentially many variables.

These polynomial-time problem will in general be search problems, like CSPs, and will be preserved by the same
type of operation 𝑓 , but have a fixed number of variables 𝑑 and with an unbounded domain size 𝑛. Let us refer to this
as the abstract Inv(𝑓)-problem. The question can be raised, for which pSDI-operations 𝑓 does such a problem allow
improved polynomial-time algorithms?

We refrain from phrasing the question formally, because the polynomial-time complexity may be strongly affected
by details such as constraint representation, but we note that the class of problems defined this way, unlike the original
problems SAT(Γ), contain several problems conjectured not to have such an improvement.

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 47

First, we note that every constraint of arity less than 𝑑 is preserved by the 𝑘-NU-type partial operation with 𝑘 ≥ 𝑑 .
This in particular includes the 𝑘-hyperclique problem for (𝑘 − 1)-uniform hypergraphs, which has been conjectured
not to be solvable in time 𝑂 (𝑛𝑘−Y) for any Y > 0 and 𝑘 > 3 [45]. Thus the abstract 𝑑-NU problem does not admit an
improved algorithm for 𝑑 > 3 under this conjecture.

Second, it can be verified that the problem of finding a zero-weight triangle, under arbitrary large edge weights, if
viewed as a single constraint of arity 𝑑 = 3, is preserved by the corresponding 3-universal partial operation. It is known
that subject to the 3SUM conjecture, this problem cannot be solved in 𝑂 (𝑛3−Y) for any Y > 0 [64].

If we restrict ourselves to the minimal non-trivial pSDI-operations 𝑓 defined for the Boolean domain in this article,
this leaves only a small number of concrete problems open under the above conjectures. By the inclusions we have
established, any operation 𝑓 at a level 𝑘 > 3 yields an abstract problem as hard as the 𝑘-NU operation. Furthermore, the
abstract 3-NU problem does admit an improved algorithm via fast matrix multiplication. It can be easily checked that
up to argument permutation, there are only eight distinct pSDI-operations 𝑓 at level 3 of the hierarchy; and by the
above discussion, the easiest and the hardest are (conjecturally) resolved. We consider it an interesting question to
investigate the complexity of the problem for these remaining cases.

7.2 Regarding a dichotomy for sign-symmetric SAT problems

Ignoring for the moment the lower bounds discussed in the previous section, the results throughout our article suggest
a simple potential dichotomy between NP-complete SAT problems solvable in 𝑂 (𝑐𝑛) time for 𝑐 < 2 and SAT problems
not solvable in𝑂 (𝑐𝑛) time for any 𝑐 < 2 unless SETH fails. We can formulate this conjecture as follows. To simplify the
conjecture we restrict ourselves to the non-uniform model.

Conjecture 7.1. Let Γ be a possibly infinite sign-symmetric Boolean constraint language such that SAT(Γ) is NP-
complete. Then SAT(Γ) admits a non-uniform algorithm with running time in 𝑂 (𝑐𝑛) time for 𝑐 < 2 if and only if Γ is

preserved by a non-trivial pSDI-operation.

Note that by Corollary 6.2, the negative direction of this conjecture is already known, up to SETH. It thus remains to
consider whether 𝑘-universal SAT admits a non-uniform improved algorithm for every 𝑘 . Furthermore, as discussed in
the Introduction, the class of constraints definable as the roots of bounded-degree multivariate polynomials represents
an example which by Lemma 4.11 is directly associated with 𝑘-universal SAT, and which has an improved algorithm
by Lokshtanov et al. [48]. Thus, the above conjecture at least represent a kind of Occam’s razor-type extrapolation of
least mathematical surprise.

However, at the moment this conjecture seems difficult to settle. An extreme negative result, such as the conclusion
that the full problem Inv(𝑓)-SAT admits an improved algorithm only when the abstract Inv(𝑓)-problem does, would by
Theorem 5.9 need to refute the sunflower conjecture. A full positive resolution would need to generalise the result of
Lokshtanov et al. [48] to apply based only on a weak abstract condition, whereas their present algorithm strongly uses
properties specific to polynomials. Intermediate outcomes are of course possible, but would raise further questions of
which pSDI-operations 𝑓 are powerful enough to guarantee the existence of an improved algorithm.

7.3 Future work

The investigations in this article leave several concrete open questions, and significant avenues for future work,
regarding all parts of the article. Let us highlight a few.

Manuscript submitted to ACM

48 V. Lagerkvist and M. Wahlström

Structural aspects. For better understanding of the language classes it may be fruitful to investigate restricted
classes of relations contained in them, such as symmetric relations, or relations 𝑅 such that both 𝑅 and its complement
belong to the class. For the former, in addition to the existing description for the 2-edge and 3-edge classes, it is easy to
see that the (non-trivial) symmetric relations in the 𝑘-NU class are precisely those of arity less than 𝑘 . For the latter, in
addition to the existing result regarding block sensitivity, it is possible to show that the corresponding “double-sided
version” of the partial 2-edge operation preserves precisely parity functions. In both cases, it may be interesting to
extend such descriptions to further classes.

A more concrete question is regarding the structure of Inv(nu𝑘) for 𝑘 > 3. Assume that 𝑅 ∈ Inv(nu𝑘) is an 𝑛-ary
Boolean relation, which depends on every argument. Is there a non-trivial upper bound on |𝑅 |?

Extension to CSPs. Many questions remain regarding an extension of the project to CSPs on non-Boolean do-
mains. While the minimal non-trivial pSDI-operations defined in this article do have higher-domain analogues, via
polymorphism patterns, and while these analogues do in some cases have useful consequences for the complexity of the
corresponding CSP, it is not clear that they are in general the only kind of condition that is relevant for the fine-grained
complexity of CSPs. In particular, in the Boolean domain there is a known correspondence between pSDI-operations
and sign-symmetric languages. No such correspondence has been shown for CSPs in general.

In a different vein, for higher-domain CSPs there are also classes of NP-hard problems whose time complexity is
far better than 𝑂∗ (|𝐷 |𝑛), e.g., 𝑘-Colouring corresponds to a CSP of domain size |𝐷 | = 𝑘 and can be solved in 𝑂∗ (2𝑛)
time for every 𝑘 [8]. Arguably, we do not have a good understanding of when this occurs in general, and it is thus not
clear whether asking for a 𝑂 (𝑐𝑛) time algorithm for 𝑐 < |𝐷 | is necessarily the best starting point. To mitigate some of
these technical difficulties one may initially only consider constraint languages whose total polymorphisms are the
projections.

Problems. Let us mention a few concrete algorithmic questions. First of all, by Lemma 4.12, symmetric relations
defined by Sidon sets are preserved by the 3-universal operation, but they do not seem to be captured by currently
known algorithms for problems in this class. Does the language consisting of all such relations admit an improved
algorithm?

Another problem is to find a generalisation of the algorithm for constraints defined via bounded-degree polyno-
mials [48], without explicitly using properties specific to polynomials. A different generalisation of this class was
considered by the present authors in the form of relations with bounded-degree Maltsev embeddings [42]. Since this
properly generalises bounded-degree polynomials, it is natural to ask whether this class admits an improved algorithm.

More broadly, as remarked earlier, the classification of the expressiveness of sign-symmetric constraint languages
may be of interest for questions other than just satisfiability. The algorithm for 2-edge-SAT, for instance, can be used
to solve the corresponding counting problem, showing that pSDI-operations may be powerful enough also in other
settings. Concrete questions to consider here include improved algorithms for the counting problem #SAT(Γ) and the
parameterized problem Local search SAT(Γ).

Lower bounds. Can the padding scheme be improved to give better asymptotics with respect to the level 𝑘? Recall
that the lower bound behaves as a bound of 2 − Θ((log𝑘)/𝑘), whereas all known algorithmic strategies yield running
times of the form (2 − Θ(1/𝑘))𝑛 .

It would also be very interesting to have a SETH-based lower bound in the explicit representation model. As discussed
earlier the padding construction is valid also in this representation, but is difficult to efficiently implement since the
resulting relations may contain exponentially many tuples with respect to the number of variables.

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 49

Acknowledgements

We thank the anonomyous reviewers for several helpful comments and suggestions. The first author has received
funding from the Swedish resourch council (VR) under grant 2019-03690.

REFERENCES

[1] N. Alon, A. Shpilka, and C. Umans. On sunflowers and matrix multiplication. Computational Complexity, 22(2):219–243, 2013.
[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica, 17(3):209–223, 1997.
[3] R. Alweiss, S. Lovett, K. Wu, and J. Zhang. Improved bounds for the sunflower lemma. In Proceedings of the 52nd Annual ACM SIGACT Symposium

on Theory of Computing (STOC-2020), pages 624–630. ACM, 2020.
[4] N. Bansal, S. Garg, J. Nederlof, and N. Vyas. Faster space-efficient algorithms for subset sum and k-sum. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing (STOC-2017), pages 198–209. ACM, 2017.
[5] L. Barto, A. Krokhin, and R. Willard. Polymorphisms, and How to Use Them. In A. Krokhin and S. Zivny, editors, The Constraint Satisfaction Problem:

Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2017.

[6] L. Barto, J. Opršal, and M. Pinsker. The wonderland of reflections. Israel Journal of Mathematics, 223(1):363–398, Feb 2018.
[7] J. Berman, P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Varieties with few subalgebras of powers. Transactions of the American

Mathematical Society, 362(3):1445–1473, 2010.
[8] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM Journal on Computing, 39(2):546–563, 2009.
[9] J. Brakensiek and V. Guruswami. Bridging between 0/1 and linear programming via random walks. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing (STOC-2019), pages 568–577, New York, NY, USA, 2019. ACM.
[10] K. Bringmann, N. Fischer, and M. Künnemann. A fine-grained analogue of Schaefer’s theorem in P: dichotomy of existsˆk-forall-quantified first-order

graph properties. In Proceedings of the 34th Computational Complexity Conference (CCC-2019), volume 137 of LIPIcs, pages 31:1–31:27. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[11] A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of the 58th Annual Symposium on Foundations of Computer Science (FOCS-2017).
IEEE Computer Society, 2017.

[12] A. Bulatov and V. Dalmau. A simple algorithm for Mal’tsev constraints. SIAM Journal On Computing, 36(1):16–27, 2006.
[13] A. A. Bulatov. Constraint satisfaction problems: Complexity and algorithms. ACM SIGLOG News, 5(4):4–24, Nov. 2018.
[14] C. Calabro, R. Impagliazzo, and R. Paturi. The complexity of satisfiability of small depth circuits. In Parameterized and Exact Computation, 4th

International Workshop (IWPEC 2009), pages 75–85, 2009.
[15] C. Calabro, R. Impagliazzo, and R. Paturi. On the exact complexity of evaluating quantified k-CNF. Algorithmica, 65(4):817–827, Apr 2013.
[16] H. Chen, B. M. P. Jansen, and A. Pieterse. Best-case and worst-case sparsifiability of Boolean csps. Algorithmica, 82(8):2200–2242, 2020.
[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
[18] M. Couceiro, L. Haddad, V. Lagerkvist, and B. Roy. On the interval of Boolean strong partial clones containing only projections as total operations.

In Proceedings of the 47th International Symposium on Multiple-Valued Logic (ISMVL-2017), pages 88–93. IEEE Computer Society, 2017.
[19] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlström. On problems as hard as CNF-SAT.

ACM Transactions on Algorithms, 12(3):41:1–41:24, 2016.
[20] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
[21] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. M. Kleinberg, C. H. Papadimitriou, P. Raghavan, and U. Schöning. A deterministic (2− 2/(𝑘 + 1))𝑛

algorithm for k-SAT based on local search. Theoretical Computer Science, 289(1):69–83, 2002.
[22] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal of the London Mathematical Society, s1-35(1):85–90, 1960.
[23] F. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019.
[24] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact algorithms via monotone local search. In Proceedings of the 48th Annual ACM SIGACT

Symposium on Theory of Computing (STOC 2016), pages 764–775, 2016.
[25] D. Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics, 27(1):95–100, 1968.
[26] T. D. Hansen, H. Kaplan, O. Zamir, and U. Zwick. Faster k-sat algorithms using biased-ppsz. In Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing (STOC-2019), pages 578–589. ACM, 2019.
[27] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications. SIAM Journal on Computing, 39(5):1667–1713, 2010.
[28] T. Hertli. 3-SAT faster and simpler - unique-SAT bounds for PPSZ hold in general. SIAM Journal on Computing, 43(2):718–729, 2014.
[29] T. Hertli. Breaking the PPSZ barrier for unique 3-sat. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming

(ICALP-2014), volume 8572 of Lecture Notes in Computer Science, pages 600–611. Springer, 2014.
[30] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack problem. Journal of the ACM, 21(2):277–292, Apr. 1974.
[31] P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard. Tractability and learnability arising from algebras with few subpowers. SIAM

Journal on Computing, 39(7):3023–3037, June 2010.
[32] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and System Sciences, 62(2):367 – 375, 2001.

Manuscript submitted to ACM

50 V. Lagerkvist and M. Wahlström

[33] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63:512–530,
2001.

[34] B. M. P. Jansen and A. Pieterse. Optimal sparsification for some binary CSPs using low-degree polynomials. In Proceedings of the 41st International

Symposium on Mathematical Foundations of Computer Science (MFCS-2016), volume 58, pages 71:1–71:14, 2016.
[35] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the ACM, 44(4):527–548, July 1997.
[36] P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones and the time complexity of SAT problems. Journal of Computer and

System Sciences, 84:52 – 78, 2017.
[37] P. Jonsson, V. Lagerkvist, and B. Roy. Fine-grained time complexity of constraint satisfaction problems. ACM Transactions on Computation Theory,

13(1), 2021.
[38] M. Künnemann and D. Marx. Finding small satisfying assignments faster than brute force: A fine-grained perspective into Boolean constraint

satisfaction. In Computational Complexity Conference, volume 169 of LIPIcs, pages 27:1–27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

[39] V. Lagerkvist. Strong Partial Clones and the Complexity of Constraint Satisfaction Problems: Limitations and Applications. PhD thesis, Linköping
University, The Institute of Technology, 2016.

[40] V. Lagerkvist and B. Roy. A Preliminary Investigation of Satisfiability Problems Not Harder than 1-in-3-SAT. In Proceedings of the 41st International

Symposium on Mathematical Foundations of Computer Science (MFCS-2016), pages 64:1–64:14, 2016.
[41] V. Lagerkvist and M. Wahlström. The power of primitive positive definitions with polynomially many variables. Journal of Logic and Computation,

27(5):1465–1488, 2017.
[42] V. Lagerkvist and M. Wahlström. Sparsification of SAT and CSP problems via tractable extensions. ACM Transactions on Computation Theory, 12(2),

2020.
[43] V. Lagerkvist, M. Wahlström, and B. Zanuttini. Bounded bases of strong partial clones. In Proceedings of the 45th International Symposium on

Multiple-Valued Logic (ISMVL-2015), pages 189–194, 2015.
[44] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the International Symposium on Symbolic and Algebraic Computation

(ISSAC-2014), pages 296–303, 2014.
[45] A. Lincoln, V. Vassilevska Williams, and R. Williams. Tight hardness for shortest cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2018), pages 1236–1252, 01 2018.
[46] A. Lincoln and A. Yedidia. Faster random k-cnf satisfiability. In Proceedings of the 47th International Colloquium on Automata, Languages, and

Programming (ICALP-2020), volume 168 of LIPIcs, pages 78:1–78:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
[47] D. Lokshtanov, D. Marx, and S. Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. In Proceedings of the Twenty-second

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2011), pages 777–789, 2011.
[48] D. Lokshtanov, R. Paturi, S. Tamaki, R. R. Williams, and H. Yu. Beating brute force for systems of polynomial equations over finite fields. In P. N.

Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2017), pages 2190–2202, 2017.
[49] K. Meeks. Randomised enumeration of small witnesses using a decision oracle. In 11th International Symposium on Parameterized and Exact

Computation (IPEC-2016), pages 22:1–22:12, 2016.
[50] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete Applied Mathematics, 10(3):287–295, 1985.
[51] N. Nisan. CREW PRAMs and decision trees. SIAM Journal On Computing, 20(6):999–1007, 1991.
[52] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
[53] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-sat. Journal of the ACM, 52(3):337–364, 2005.
[54] B. Romov. The algebras of partial functions and their invariants. Cybernetics, 17(2):157–167, 1981.
[55] T. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th Annual ACM Symposium on Theory Of Computing (STOC-1978),

pages 216–226. ACM Press, 1978.
[56] D. Scheder and J. P. Steinberger. PPSZ for general k-SAT - making Hertli’s analysis simpler and 3-SAT faster. In Proceedings of the 32nd Computational

Complexity Conference (CCC-2017), pages 9:1–9:15, 2017.
[57] D. Scheder and N. Talebanfard. Super strong ETH is true for PPSZ with small resolution width. In Proceedings of the 35th Computational Complexity

Conference (CCC-2020), volume 169 of LIPIcs, pages 3:1–3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
[58] H. Schnoor and I. Schnoor. Partial polymorphisms and constraint satisfaction problems. In N. Creignou, P. G. Kolaitis, and H. Vollmer, editors,

Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science, pages 229–254. Springer Berlin Heidelberg, 2008.
[59] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings of the 40th Annual Symposium on Foundations

of Computer Science (FOCS-1999), pages 410–414, 1999.
[60] N. Vyas and R. R. Williams. On super strong ETH. In Prooceedings of the 22nd International Conference on Theory and Applications of Satisfiability

Testing (SAT-2019), volume 11628 of Lecture Notes in Computer Science, pages 406–423. Springer, 2019.
[61] M. Wahlström. Algorithms, measures and upper bounds for satisfiability and related problems. PhD thesis, Linköping University, TCSLAB - Theoretical

Computer Science Laboratory, The Institute of Technology, 2007.
[62] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical Computer Science, 348(2):357 – 365, 2005.

Automata, Languages and Programming: Algorithms and Complexity (ICALP-A 2004).

Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 51

[63] V. V. Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the 44th Symposium on Theory of Computing Conference

(STOC-2012), pages 887–898, 2012.
[64] V. V. Williams and R. Williams. Finding, minimizing, and counting weighted subgraphs. SIAM Journal On Computing, 42(3):831–854, 2013.
[65] M. Xiao and H. Nagamochi. Exact algorithms for maximum independent set. Information and Computation, 255:126–146, 2017.
[66] D. Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM, 67(5):30:1–30:78, 2020.

A FINDING BOOLEAN ROOTS OF SYSTEMS OF BOUNDED-DEGREE POLYNOMIALS OVER A FINITE

FIELD

We now present the adaptation of the algorithm of Lokshtanov et al. [48] to finding Boolean roots for bounded-degree
systems over larger finite fields. We recall the statement.

Theorem 3.1. Let F be a fixed finite field and 𝑑 ∈ N a degree bound. There is a randomized algorithm that checks

whether a given system of multivariate polynomials over F of degree at most 𝑑 has a common root in {0, 1}𝑛 in time𝑂 (𝑐𝑛
F,𝑑

)
for some 𝑐F,𝑑 < 2, where 𝑛 is the number of variables in the system.

We need a version of their fast evaluation lemma (see [48, Lemma 2.2]) specialized to only producing evaluations in
{0, 1}𝑛 . Note that for such evaluations we can assume that the polynomial is multilinear.

Lemma A.1. Let 𝑃 be an 𝑛-variate multilinear polynomial over F provided as a sum of distinct monomials. There is an

algorithm that runs in time 𝑛𝑂 (1)2𝑛 and outputs a vector 𝑉 such that for every 𝑡 ∈ {0, 1}𝑛 , 𝑉 [𝑡] = 𝑃 (𝑡1, . . . , 𝑡𝑛).

Proof. Write 𝑃 (𝑥1, . . . , 𝑥𝑛) = 𝑃1 (𝑥1, . . . , 𝑥𝑛−1)𝑥𝑛 + 𝑃0 (𝑥1, . . . , 𝑥𝑛−1) by splitting the list of monomials according to
whether each term contains 𝑥𝑛 or not. Recursively compute the vectors 𝑉1 respectively 𝑉0 for evaluations of 𝑃1 and 𝑃0
on all assignments to 𝑥1, . . . , 𝑥𝑛−1. For the output vector𝑉 , for all assignments where 𝑥𝑛 = 0 simply copy𝑉0, and for an
assignment 𝑡 = (𝑡1, . . . , 𝑡𝑛) with 𝑡𝑛 = 1 let 𝑉 [𝑡] = 𝑉1 [(𝑡1, . . . , 𝑡𝑛−1)] +𝑉0 [(𝑡1, . . . , 𝑡𝑛)]. The base case, where 𝑛 ≤ 1, is
trivial.

Since a sum of distinct multilinear monomials has at most 2𝑛 terms, the time for setting up the split and summing up
the vector 𝑉 from 𝑉0 and 𝑉1 is bounded as 𝑛𝑂 (1)2𝑛 . Hence the time is bounded as 𝑇 (𝑛) = 2𝑇 (𝑛 − 1) + 𝑛𝑂 (1)2𝑛 , which
gives 𝑇 (𝑛) = 𝑛𝑂 (1)2𝑛 . □

We now present the proof sketch for Theorem 3.1

Proof. The algorithm is the same as Lokshtanov et al. [48], with different parameter settings. We review the result,
with suitable adjustments. Let F = 𝐺𝐹 (𝑞) be the finite field of order 𝑞 for some 𝑞 = 𝑝𝑘 and let 𝑑 ∈ N. Let 𝐼 be an input,
consisting of a set of variables 𝑋 = {𝑥1, . . . , 𝑥𝑛} and a set of polynomials 𝑝1, . . . , 𝑝𝑚 over F, each of degree at most 𝑑 .
For 𝑖 ∈ [𝑚], let 𝑝𝑖 (𝑡1, . . . , 𝑡𝑛) be the result of evaluating 𝑝𝑖 under the assignment where 𝑥 𝑗 = 𝑡 𝑗 for each 𝑗 ∈ [𝑛] (i.e., we
are extending 𝑝𝑖 to take 𝑛 arguments, even if most arguments are ignored). The proof of Lokshtanov et al. combines
two main ideas. The first is a randomized degree reduction. Let 𝛼 ∈ F𝑚 be a vector chosen uniformly at random. Then
for any tuple 𝑡 ∈ {0, 1}𝑛 ,

Pr
𝛼
[
𝑚∑︁
𝑖=1

𝛼 (𝑖)𝑝𝑖 (𝑡1, . . . , 𝑡𝑛) = 0] =

1 (𝑡1, . . . , 𝑡𝑛) is a satisfying assignment to the input,

1/𝑞 otherwise.

Furthermore, denote

𝑃𝛼 (𝑋) = 1 −
(
𝑚∑︁
𝑖=1

𝛼 (𝑖)𝑝𝑖 (𝑋)
)𝑞−1

.

Manuscript submitted to ACM

52 V. Lagerkvist and M. Wahlström

Then for any 𝑡 ∈ {0, 1}𝑛 , 𝑃𝛼 (𝑡) = 1 if 𝑡 is a satisfying assignment, and if not then 𝑃𝛼 (𝑡) = 0 with probability 1 − 1/𝑞
(over the choice of 𝛼). Furthermore, let 𝑆 = {𝛼1, . . . , 𝛼ℓ } be a collection of vectors in F𝑚 and let

𝑄𝑆 (𝑋) =
ℓ∏

𝑖=1
𝑃𝛼𝑖 (𝑋) .

If each 𝛼𝑖 is chosen independently and uniformly at random, then for any non-satisfying assignment 𝑡 , the probability
that 𝑄𝑆 (𝑡) ≠ 0 is 𝑞−ℓ . On the other hand, 𝑄𝑆 (𝑋) has degree up to ℓ (𝑞 − 1)𝑑 , whereas the “true” polynomial 𝑄 such that
𝑄 (𝑡) = 1 if 𝑡 is a satisfying assignment and 𝑄 (𝑡) = 0 otherwise could require degree up to 𝑛. Indeed, if 𝐼 has a unique
satisfying assignment, say 𝑡 = (1, . . . , 1), then 𝑄 (𝑋) = ∏𝑛

𝑖=1 𝑥𝑖 .
The other main ingredient in the proof is an application of fast parallel evaluation of polynomials [48, Lemma 2.2].

For our purposes, we are using Lemma A.1 here. For some parameter 𝛿 , we split the variables as 𝑋 = 𝑌 ∪ 𝑍 , where
|𝑍 | = ⌈𝛿𝑛⌉ =: 𝑛′. For the sake of argument, let 𝛽 ∈ F2𝑛′ and define the “ideal” polynomial

𝑅(𝑌) =
∑︁

𝑎∈{0,1}𝑛′
𝛽 (𝑎)𝑄 (𝑌, 𝑎) .

Then for any assignment to 𝑌 which cannot be extended to a satisfying assignment to𝑄 we have 𝑅(𝑌) = 0, whereas for
any 𝑌 which does have such an extension we have 𝑅(𝑌) ≠ 0 with probability at least 1 − 1/𝑞. Unfortunately, as above,
𝑅(𝑌) will have degree up to 𝑛 − 𝑛′, and simply preparing it as a list of monomials could take 2𝑛 time. Instead, let 𝛽 be
as above and independently at random select 2𝑛′ sets 𝑆𝑎 , each containing ℓ vectors 𝛼𝑎,𝑖 , chosen as above. Then define

�̃�(𝑌) =
∑︁

𝑎∈{0,1}𝑛′
𝛽 (𝑎)𝑄𝑆𝑎 (𝑌, 𝑎) .

Finally set ℓ = 𝑛′ + 2. First, we consider the probability that �̃�(𝑌) mimics 𝑅(𝑌). Let 𝑡 = (𝑡 ′, 𝑡 ′′) be an assignment to
(𝑌, 𝑍), and first assume that 𝑡 is a satisfying assignment. Then 𝑄𝑆𝑡′′ (𝑡

′, 𝑡 ′′) = 1, hence �̃�(𝑡 ′) ≠ 0 with probability
1 − 1/𝑞. On the other hand, if 𝑡 is not satisfying then the probability that 𝑄𝑆𝑡′′ (𝑡

′, 𝑡 ′′) ≠ 0 is bounded as 𝑞−ℓ , and if
no assignment (𝑡 ′, 𝑎) for 𝑎 ∈ 2𝑛′ is satisfying then by the union bound the probability that �̃�(𝑡 ′) ≠ 0 is bounded by
2𝑛′𝑞−𝑛′−2 ≤ 1/4. Hence for every 𝑡 ′ ∈ 2𝑛−𝑛′ there is a constant-factor separation in the probability that �̃�(𝑡 ′) = 0 based
on whether 𝑡 ′ can be extended to a satisfying assignment for 𝐼 or not. Repeating the randomization and evaluation
Ω(𝑛) times will boost the separation to the point that we can tell the difference between satisfiable and unsatisfiable
instances 𝐼 overall.

It remains to consider how to evaluate �̃�(𝑌) over all points 𝑌 in 𝑂∗ (𝑐𝑛) time for some 𝑐 < 2. We show only the
asymptotics in the exponent, without optimizing constants. The running time is split into two parts. The second, of
evaluating �̃� in all points given a description of �̃� as a sum of monomials, is done in𝑂∗ (2(1−𝛿)𝑛) time using Lemma A.1,
hence we focus on assembling such a description of �̃�. We will collect this as an explicit sum over all 2𝑛′ terms
𝛽 (𝑎)𝑄𝑆𝑎 (𝑌, 𝑎). We note that we only need to maintain a list of multilinear monomials since all evaluations are in {0, 1}𝑛 ,
i.e., at any step of the process we can reduce a list of monomials down to the corresponding multilinear terms. For each
𝑡 ′′, the polynomial𝑄𝑆 (𝑌, 𝑍) has degree up to ℓ (𝑞 − 1)𝑑 = (1 + 𝑜 (1))𝛿𝑛(𝑞 − 1)𝑑 . Let 𝛿 = 𝑐/((𝑞 − 1)𝑑) for some 𝑐 = 𝑂 (1);
in particular such that ℓ (𝑞 − 1)𝑑 < (𝑛 − 𝑛′)/2. Then, up to lower-order terms there are(

𝑛 − 𝑛′

ℓ (𝑞 − 1)𝑑

)
≈

(
(1 − 𝛿)𝑛

(𝑞 − 1)𝑑𝛿𝑛

)
≤

(
𝑛

𝑐𝑛

)
multilinear terms over 𝑌 from each contribution 𝛽 (𝑎)𝑄𝑆𝑎 (𝑌, 𝑎). Each such list of monomials can be constructed naively
over the description of 𝑄𝑆 , in a way that causes no significant overhead; see Lokshtanov et al. [48] for a discussion on
Manuscript submitted to ACM

The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP Problems 53

this. Hence the total time to construct �̃� is upper-bounded asymptotically as 𝑂∗ (2𝐻 (𝑐)𝑛2𝛿𝑛) where 𝐻 (𝑐) is the binary
entropy function, and the time to evaluate �̃� is 𝑂∗ (2(1−𝛿)𝑛). Clearly there is a 𝑐 = Θ(1) such that 𝐻 (𝑐) ≤ 1 − 2𝛿 . Then
for such a 𝑐 the total running time of the procedure is 𝑂∗ (2(1−𝛿)𝑛) where 𝛿 > 0. Hence for every 𝑞 and 𝑑 there is an
improved algorithm, and in particular if F is kept fixed, then the procedure scales with 𝑑 as 𝑂∗ (2(1−Θ(1/𝑑))𝑛). □

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 The algebraic approach for fine-grained SAT and CSP complexity
	1.2 Our results
	1.3 Related work

	2 Case Study: Partial Maltsev Satisfiability
	2.1 Relations in inv(malt)
	2.2 Upper bound
	2.3 Lower bound (overview)

	3 Preliminaries
	3.1 The parameterized SAT and CSP problems
	3.2 The extension oracle model
	3.3 Partial polymorphisms and quantifier-free primitive positive definitions
	3.4 Sign-symmetric constraint languages and pSDI-operations
	3.5 Polymorphism patterns

	4 The Structure of Sign-Symmetric Constraint Languages
	4.1 Sparse and dense languages
	4.2 Properties of specific sign-symmetric constraint languages
	4.3 Structure of minimal non-trivial pSDI-operations
	4.4 Complementary consequences

	5 Upper Bounds for Sign-Symmetric Satisfiability Problems
	5.1 An O(D(n/2)) algorithm for 2-edge-CSP
	5.2 An O*(D(wn/3)) algorithm for 3-NU-CSP
	5.3 Strategies for k-NU-SAT
	5.4 Symmetric 3-edge-SAT

	6 Lower Bounds
	6.1 Lower bounds based on k-SAT
	6.2 2-edge-SAT and Subset Sum
	6.3 Padding formulas
	6.4 SETH-based lower bounds for inv(F)-SAT

	7 Discussions and Conclusions
	7.1 The abstract problem and polynomial-time connections
	7.2 Regarding a dichotomy for sign-symmetric SAT problems
	7.3 Future work

	References
	A Finding Boolean roots of systems of bounded-degree polynomials over a finite field

